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Abstract: Cervical cancer is one of the most common and deadliest cancers among women and poses
a serious health risk. Automated screening and diagnosis of cervical cancer will help improve the
accuracy of cervical cell screening. In recent years, there have been many studies conducted using
deep learning methods for automatic cervical cancer screening and diagnosis. Deep-learning-based
Convolutional Neural Network (CNN) models require large amounts of data for training, but large
cervical cell datasets with annotations are difficult to obtain. Some studies have used transfer learning
approaches to handle this problem. However, such studies used the same transfer learning method
that is the backbone network initialization by the ImageNet pre-trained model in two different
types of tasks, the detection and classification of cervical cell/clumps. Considering the differences
between detection and classification tasks, this study proposes the use of COCO pre-trained models
when using deep learning methods for cervical cell/clumps detection tasks to better handle limited
data set problem at training time. To further improve the model detection performance, based on
transfer learning, we conducted multi-scale training according to the actual situation of the dataset.
Considering the effect of bounding box loss on the precision of cervical cell/clumps detection, we
analyzed the effects of different bounding box losses on the detection performance of the model
and demonstrated that using a loss function consistent with the type of pre-trained model can help
improve the model performance. We analyzed the effect of mean and std of different datasets on the
performance of the model. It was demonstrated that the detection performance was optimal when
using the mean and std of the cervical cell dataset used in the current study. Ultimately, based on
backbone Resnet50, the mean Average Precision (mAP) of the network model is 61.6% and Average
Recall (AR) is 87.7%. Compared to the current values of 48.8% and 64.0% in the used dataset, the
model detection performance is significantly improved by 12.8% and 23.7%, respectively.

Keywords: cervical cancer; transfer learning; faster R-CNN; multi-scale training; bounding box loss

1. Introduction

Cervical cancer is the fourth most common cancer and also the second most common
disease among women living in developing and low-income countries [1]. According to
WHO statistics, in 2018, there were about 570,000 new cases and about 311,000 women
died from this fatal disease worldwide [2]. More than 80% of cervical cancer cases and
85% of deaths occur in low-income and developing countries due to a lack of screening
and treatment facilities [3]. Studies have shown that human papillomavirus (HPV) is a
major cause of cervical cancer [4], and in recent years, HPV-mediated cervical disease
has experienced a steep decline in some countries with the intervention of HPV vaccines.
However, widespread implementation has been limited by economic factors, different
health care priorities, and considerations of vaccine availability in different countries [5].
Cervical cancer is a type of curable cancer, with a cure rate of 92% if cervical cancer lesions
are detected in the early stages and treated adequately [6]. If women worldwide were
screened for cervical cancer at an early stage every five years, the mortality rate from
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cervical cancer would likely be reduced by 60% [7]. Therefore, to reduce the threat of
cervical cancer to women’s health, it is very important that early screening is performed in
addition to active prevention. Cervical cancer screening is a routine screening in women’s
health [8], and TCT (thin-layer liquid-based cytology) is the most commonly used type of
cytologic screening. In the medical field, the diagnosis of cervical cancer is mainly based
on the pathological morphology in cervical cytopathological images to determine whether
the disease is present. This method requires the human eye to observe samples through a
microscope, which requires high expertise and experience. It typically takes 10 years to
cultivate talent in this field [9]. In addition, the analysis of pathological images requires
considerable time, is somewhat subjective, and is a tedious and error-prone task. Beginning
in the 1980s, computer-aided diagnosis (CAD) systems were introduced to help physicians
interpret medical images and improve their efficiency [10].

In recent years, with deep learning performing well in many tasks, such as [11–13],
etc., many researchers have used deep learning methods in the development of automated
assisted screening methods for cervical cancer. Most of these studies focus on cell classifi-
cation, such as those in [14–25]. Large datasets are very important for high performance
deep convolutional networks, considering the limited cervical cell annotation data (e.g., the
Herlev benchmark dataset [26] has only 917 cells, with 675 abnormal cells and 248 normal
cells out of 917 cells). Some studies have used transfer learning [27] to address this problem.
There are also studies that used deep learning detection algorithms to identify and localize
cervical cells directly [28–41]. In such studies, the datasets used were generally private
and not publicly available. The amount of data and annotations in these datasets is gener-
ally not very large, and some of these studies use transfer learning methods to improve
network model performance. In cervical cell detection methods that use transfer learn-
ing [29,30,32,35,36], the weights are initialized in the same way as those used in cervical cell
classification studies, which employ transfer learning methods, i.e., the network parameters
are initialized using a model pre-trained on the classification problem via ImageNet [42].
However, detection and classification are two different tasks. Considering this factor, our
study proposes using the COCO [43] pre-trained model to initialize network parameters
when using deep learning detection algorithms for cervical cell detection, and performing
fine-tuning accordingly to obtain the best performance of the network model. This study
conducted extensive experiments to demonstrate that network model initialization using
COCO [43] pre-trained models was better than using ImageNet [42] pre-trained models in
the cervical cell detection study.

In the study of classification tasks, the processing aspect of the input image is usually
resized to one size (e.g., classification with ImageNet [42], where the input image is pro-
cessed to 224 × 224). However, the detection task differs from the classification task in that
the detection task has objects of different scales in the input images. To improve the ro-
bustness of the network model to cervical cells of different scales, In this study, multi-scale
training is carried out according to the actual situation of the dataset and transfer learning.

Bounding box loss is very important for the accurate localization of object detection,
and the optimization history of bounding box loss in recent years: L1, L2 loss; SmoothL1
loss; IoU loss [44]; GIoU loss [45]; DIoU loss [46]; CIoU loss [46]. L1 loss and L2 loss
assume the bounding box as four independent variables for optimization, and SmoothL1
loss combines the advantages of L1 loss and L2 loss. IoU (Intersection over Union) loss
regresses the prediction box as a whole, GIoU (Generalized IoU) solves the disadvantages
of IoU while making full use of its advantages. DIoU (Distance IoU) loss takes into
account both the overlapping area of the bounding box and the distance of the center point,
which converges faster. CIoU (Complete IoU) loss summarizes three important geometric
measures that a good bounding box regression loss should consider, i.e., overlap area,
center point distance, and aspect ratio. This loss function can lead to faster convergence
and better performance. Considering the impact of bounding box loss on the detection
precision of cervical cells/clumps, we analyze the impacts of different bounding box loss
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functions on model performance based on transfer learning. Finally, we select the most
suitable bounding box loss function (SmoothL1) for the current practical situation.

Our contributions can be summarized as follows: (1) We propose using COCO pre-
trained model weights to initialize the network model when using deep learning algorithms
for cervical cancer cell detection and use the fine-tuning method of transfer learning to
obtain the best performance, thereby better addressing the problem of the limited dataset at
training time; (2) we performed multi-scale training to improve the detection performance
of the network model for Cervical cells/clumps based on the pre-trained model and the
actual situation of the dataset; (3) we achieved the highest mAP (61.6%) and AR (87.7%) on
the current cervical cell dataset from [35].

2. Materials and Methods

In this study, the backbone of the network model is ResNet [47], with the Faster
R-CNN [48] + FPN [49] detection algorithm used as a benchmark. Transfer learning is
carried out using the COCO pre-trained model for fine-tuning. The training method uses
multi-scale training. The overall network structure of the model is shown in Figure 1.
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Figure 1. Overview of the network model. In the figure, the RPN (Region Proposal Network) and
ROI Head (Region of Interest) represent the first and second stages of Faster R-CNN.

2.1. CNN-Based Object Detection

CNN-based object detection algorithms can be mainly divided into two categories:
One is two-stage detection algorithms, including classical algorithms such as R-CNN [50],
Fast R-CNN [51], and Faster R-CNN [48]. Another class includes one-stage detection
algorithms, such as SSD [52], YOLO series [53–55], RetinaNet [56], and FCOS [57]. Two-
stage detection algorithms have higher precision for localization and target identification,
whereas one-stage detection algorithms have a higher inference speed. The first stage of the
two-stage detection algorithm, the RPN (Region Proposal Network) stage, perform region
suggestion to select ROIs (Regions of Interest) and extracts image features, whereas the
second stage intercepts features for each ROI region via ROI Pooling (or ROI Align) from the
feature map and converts them to the same size feature output for the next category-specific
classification and precise bounding box localization operations. One-stage algorithms have
no region suggestion step and operates directly on the input image to predict the class and
bounding box of the object. Here, we use Faster R-CNN [48] + FPN [49] as a baseline. The
first reason for this choice is that it is still very advanced and offers considerable flexibility.
The second reason is that the dataset used in this study is from [35], thus, we selected the
same baseline as [35] to improve the validation and comparison of the effectiveness of the
methods used in this study.

2.2. Transfer Learning

Transfer learning is a subfield of deep learning that focuses on transferring knowledge
from source data to a target domain to enhance the target task [58]. By transferring
knowledge from large public datasets (e.g., ImageNet [42]) to domain-specific tasks (e.g.,
cervical cell classification task [14,16]), the problem of overfitting can be reduced, the
generalization of the model can be improved, and the efficiency of model training can be
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enhanced. Fine-tuning is a transfer learning method that is commonly used as an effective
training strategy in various deep learning tasks. The following three ways are commonly
used: After the network model is initialized with pre-trained weights. The first way is
train current network model directly. The second is to freeze all the convolutional layers
of the network model and train only the fully connected layers that are adapted to target
tasks. The third is to freeze part of the convolutional layers of the network model (usually
the convolutional layers near the input part) and train the remaining convolutional and
fully connected layers. The first way is usually used when the target task data volume is
large and has high similarity to the source data. The second way is used when the target
task data volume is small, but the similarity with the source data is very high. The dataset
used in this study includes 6666 images in the training set, which is not a large amount of
data. Additionally, the dataset is of a cell type, which is not very similar to natural image
datasets such as ImageNet [42] and the COCO dataset [43]. Therefore, according to the
actual situation, we selected the third way to fine-tune the network model. The study
performed Fine-tuning by freezing the first few stages in the backbone (ResNet [47]) or
freezing the stem and other stages. Figure 2 shows the network freezing model of the study.
The model was fine-tuned for better feature learning by freezing some convolutional layers
during the training stage of the network.
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2.3. Multi-Scale Training

The multi-scale problem of object detection is a matter of concern [59]. In response,
researchers have explored, in detail, how to accurately detect objects of different scale sizes
in the input image, such as FPN [49] which fuses deep and shallow features on feature
maps of different scales. This method is used for image feature processing. However,
the size of the input image also has a great impact on the performance of the detection
model. In terms of processing the input image, a multi-scale approach can be used, i.e., the
input image is no longer processed into one scale as in the classification problem. Similar
to image pyramids [60], but unlike image pyramids, instead of scaling the input image
down to multiple scales and computing the feature maps separately for each scale and
performing subsequent detection, multi-scale training sets up multiple different scales to
choose from, and at each iteration, one scale is randomly selected from among the multiple
scales to process the input image. Although only one size is used each time, that size is
different each time. Under this approach, the robustness of the detection model to object
size is increased. The advantage of this training approach is that the model training time
is much less than that when using image pyramids, but the model detection performance
is still very good. The present study analyzes the actual situation of the used dataset and
calculates the average scale of the training set images, i.e., mean_images_width: 1311.1 px
and mean_images_height: 724.6 px. The multi-scale we chose is [(1333,640), (1333,800)].
There are two reasons for using this scale: One is that this is the same scale used in multi-
scale training to obtain the COCO pre-trained model. Here, we use this scale to better
utilize the COCO multi-scale pre-trained model. Second, this multi-scale is just around the
average scale of the dataset, which is more in line with the actual situation of the dataset.
Subsequent experiments also confirmed that using this multi-scale works well. For each
iteration of the input image, a scale is randomly selected from the two scales to resize the
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image (width: w, height: h), and the original image ratio is maintained when resizing, as
summarized in Table 1.

Table 1. The procedure of resizing the input image.

Resize Input Image

(1) Calculate the large and small values of the random selection scale.
max-edge = max(scale)
min-edge = min(scale)

(2) Calculate the resizing ratio (scale-factor): (max-edge)/long side, (min-edge)/short side, and
choose a small ratio (make the image as close to the original size as possible while
being resized).
scale-factor = min(max-edge/max(h, w), min-edge/min(h, w))

(3) Original image width: w, height: h. Calculate the width and height of the image
after resizing.
scale-w = int(w × float(scale-factor) + 0.5)
scale-h = int(h × float(scale-factor) + 0.5)

(4) After resizing, the padding operation is performed, and the resized image is padded to a
multiple of size-divisor = 32 to avoid feature loss during convolution. The width and height
of the final image are pad-w, and pad-h.
pad-w = int(np.ceil (scale-w/size-divisor)) × size-divisor
pad-h = int(np.ceil (scale-h/size-divisor)) × size-divisor

2.4. Bounding Box Loss

Bounding box regression is the key step in object detection. The “n-paradigm” (e.g.,
L1 loss and L2 loss) is widely used in bounding box regression, where the object bounds
are considered as four independent variables and the four values of the object bounds
are optimized, but the evaluation metric is the IoU (Intersection over Union) metric. The
“n-paradigm” is not suitable, however, for the evaluation metric. To solve this problem, IoU
loss was proposed in [44] to predict the bounding box, which regresses the four bounds of
the predicted box as a whole instead of the four independent variables. This loss function
speeds up the convergence of the model and improves the localization precision. IoU
loss has some weaknesses, however. One weakness is that when the predicted box and
object box do not intersect, IoU = 0, which cannot reflect the distance between the two
boxes, i.e., IoU loss, cannot optimize the case when the two boxes do not intersect. Second,
when two predicted boxes have the same size and the two IoUs are also the same, IoU loss
cannot distinguish between the two intersecting cases. To address these problems, GIoU
(generalized IoU) loss was proposed in [45], which again improved the model detection
performance. However, although IoU loss and GIoU loss are favorable for the IoU metric,
there are still problems of slow convergence and inaccurate regression [45]. Additionally,
the GIoU loss degenerates into IoU loss when the predicted box is inside the object box and
the predicted box is the same size. Thus, this method cannot determine the relative position
relationship. To solve these problems, DIoU loss (Distance-IoU) and CIoU loss (Complete
IoU) were proposed in [46]. DIoU loss takes into account the overlap area and central
point distance between the predicted box and the object box and directly minimizes the
normalized distance between the predicted box and the object box. As a result, this method
converges much faster than IoU and GIoU loss in training. Based on DIoU loss, CIoU loss
takes into account the scale information of the aspect ratio of the bounding box. The CIoU
loss integrates the overlap area, central point distance, and aspect ratio of the predicted box
and object box, which speeds up the convergence and improves performance.

The mathematical definitions of bounding loss functions are shown below. Definitions
of the symbols are in Table 2.
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(1) L1 loss:
L1 =|x|

dL1(x)
x = {1, x ≥ 0

−1, x < 0

x: The difference between the predicted value and the true value. L1 loss is not smooth
at the zero point.

(2) L2 loss:
L2 = x2

dL2(x)
x = 2x

L2 loss has a large x value and correspondingly large derivatives at the beginning of
training, which makes the initial training unstable.

(3) SmoothL1 loss:

SmoothL1(x) = {0.5x2, |x| < 1
|x| − 0.5, others

dSmoothL1(x)
x = {x, |x| < 1

±1, others

SmoothL1 loss combines L1 loss and L2 loss, which uses L1 loss when x is large at the
initial stage of training.

(4) IoU loss:

A: Prediction box; B: Ground truth

IoU = A∩B
A∪B

IoU loss = 1− IoU

IoU loss function for bounding box prediction, which regresses the four bounds of a
predicted box as a whole unit.

(5) GIoU loss:

GIoU = IoU − |C − A∪B|
|C|

GIoU loss = 1− GIoU

C: The smallest enclosing convex object for A and B.
When two boxes intersect, GIoU takes into account not only the overlapping part but

also other non-overlapping parts, which better reflects the overlap of the two boxes.

(6) DIoU loss:

RDIoU =
ρ2(dpred ,dgt)

c2

DIoU = IoU − RDIoU
DIoU loss = 1− DIoU

DIoU takes into account not only the overlap area between the prediction box and the
ground truth, but also the central point distance.

(7) CIoU loss:

RCIoU =
ρ2(dpred ,dgt)

c2 + αν

v = 4
π2 (arctan wgt

hgt
− arctan w

h )
2

α = v
(1 − IoU) + v

CIoU = IoU − RCIoU
CIoU loss = 1− CIoU

CIoU loss takes into account the three geometric factors in bounding box regression:
overlap area, central point distance, and aspect ratio.

In this paper, the effects of different bounding box loss functions on model performance
are considered based on transfer learning, and the most suitable bounding box loss function,
SmoothL1, is selected by comparing the experimental results. See Section 3.5 for details.
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Table 2. Definitions of the symbols used in the bounding box function.

Symbol Explanation

x The difference between the predicted value and the true value
A Prediction box
B Ground truth
C For A and B, find the smallest enclosing convex object C

dpred Central point of A
dgt Center point of B
ρ Euclidean distance
c the diagonal length of the smallest enclosing box covering A and B
α positive trade-off parameter
ν Measure the consistency of aspect ratio

wgt The width of B
hgt The height of B
w The width of A
h The height of A

2.5. The Dataset

In research on cervical cells using deep learning methods, classification and segmen-
tation studies are the most common. Thus, available data sets used are also oriented
to these tasks (e.g., Herlev [26], Sipakmed [61], ISBI [62], and AgNOR [63]). In con-
trast, relatively few studies have performed detection tasks directly on cervical cells, and
the datasets are largely private [58]. The cervical cytology image data used in this study
were obtained from [35] publicly available datasets (https://github.com/kuku-sichuan/
ComparisonDetector (accessed on 12 January 2021)). The dataset includes a total of
7410 cervical microscopical images. There are 6666 images in the training set and 744 images
in the test set. The annotation work on the cell images was performed by experienced
pathologists. There are 11 categories: ascus (atypical squamous cells of undetermined
significance), asch (atypical squamous cells predisposed to high-grade squamous intraep-
ithelial lesions), lsil (low-grade squamous intraepithelial lesion), hsil (high-grade squamous
intraepithelial lesion), scc (squamous-cell carcinoma), agc (atypical glandular cells), trich
(trichomonas), cand (candida), flora, herps, and actin (actinomyces). Figure 3 shows the
number of instances of each category in the training and test sets and the number of images
occupied by each category. Figure 4 shows sample images with category annotations.
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2.6. Experimental Setups

The experiments were conducted based on MM [64]. A warmup strategy was used at
the beginning of the model training, and 500 steps were learned with a smaller learning rate.
The learning rate gradually increased linearly during the initial 500 iterations, after which
the learning rate changed to a pre-set learning rate of 0.0025. Using warmup to increase
the learning rate during the initial training steps of the new task, allowing the model to be
stabilized under the smaller learning rate. Next, we selected the pre-set learning rate for
training after the model was relatively stable, which allowed the model to converge faster
and function better. Here, the training epoch is 2× (1× is equivalent to 12 epochs), with
3× epochs of training used if necessary. The learning rate is set to 0.0025, and reduced by
a factor of ten after the 8th and 11th epoch, in that order. The batch size is 2, and weight
decay and momentum are 0.0001 and 0.9, respectively.

3. Results

All experiments were trained on 6666 training images, and the detection performance
was based on 744 test images.

3.1. Comparison of Transfer Learning for Different Source Data Domains

To determine which is better to use for network model initialization, COCO [43]
complete model weights or the ImageNet [42] pre-trained model, relevant experiments were
carried out. The experimental data are presented in Table 3. The data show that regardless
of whether the backbone is ResNet50 or ResNet101, the network model can obtain higher
model detection precision by using the COCO pre-trained model for initialization training.
However, when the backbone is ResNet101, the network model uses the COCO pre-trained
model to perform initialization training, the final detection result AR decreased slightly.
From the experimental result, we can find that AR is more than 20% higher than mAP
overall; therefore, here we focus on improving mAP. We choose a higher mAP when the AR
difference is not large. It is better to use COCO complete model weights for initialization
model detection.
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Table 3. Experimental results of using COCO and ImageNet pre-training. Here, “Faster_rcnn_r50_
fpn_1x.pth” represents the COCO pre-trained model weights; Faster_ rcnn is the detection algorithm;
r50 represents ResNet50; and x represents 1 × 12 epochs (1x = 12 epochs).

Backbone Initialization mAP (%) AR (%)

ResNet50 None 8.2 41.9
ResNet50 ImageNet 51.9 83.3
ResNet50 Faster_rcnn_r50_fpn_1x_coco.pth 58.4 84.1
ResNet50 Faster_rcnn_r50_fpn_2x_coco.pth 57.6 85.9
ResNet101 None 7.2 37.5
ResNet101 ImageNet 58.3 86.0
ResNet101 Faster_rcnn_r101_fpn_1x_coco.pth 58.5 84.7
ResNet101 Faster_rcnn_r101_fpn_2x_coco.pth 59.8 84.0

3.2. Multi-Scale Training

For experiments without multi-scale training, the default scale used is (1333,800). For
multiscale training based on transfer learning, the multi-scale set is [(1333,640), (1333,800)].
The experimental results are shown in Table 4. As shown in Table 4, when the backbone
is ResNet50, the best value for detection precision mAP is 60.9% after initialization with
COCO’s multi-scale pre-trained model and performing multi-scale training. Compared
to the best mAP without multi-scale training (58.7%), the model detection precision mAP
improved by 2.2%. The best mAP improved by 2.8 (62.2–59.4)% when the backbone was
ResNet101. Therefore, using multi-scale training can improve model detection performance.

Table 4. The detection results of the model for multi-scale training. “Faster_rcnn_r50 _fpn_mstrain
_3x_coco.pth” is the multi-scale pre-trained model of COCO; mstrain: multi-scale training.

Backbone mstrain Initialization mAP (%) AR (%)

ResNet50 n Faster_rcnn_r50_fpn_mstrain_3x_coco.pth 58.7 85.7
ResNet50 y Faster_rcnn_r50_fpn_mstrain_3x_coco.pth 60.9 87.2
ResNet50 y Faster_rcnn_r50_fpn_1x_coco.pth 60.0 86.3
ResNet50 y Faster_rcnn_r50_fpn_2x_coco.pth 60.5 86.4

ResNet101 n Faster_rcnn_r101_fpn_mstrain_3x_coco.pth 59.4 85.2
ResNet101 y Faster_rcnn_r101_fpn_mstrain_3x_coco.pth 62.2 86.9
ResNet101 y Faster_rcnn_r101_fpn_1x_coco.pth 61.3 88.2
ResNet101 y Faster_rcnn_r101_fpn_2x_coco.pth 61.7 87.3

3.3. Fine-Tuning

The previous experiments all used Frozen_stages = Stem + 1st by default, i.e., the
convolutional layer of Stem + 1st stages in the backbone network are frozen during training.
To find the setting that can achieve the optimal performance of the model, we conducted
fine-tuning experiments, freezing the convolutional layers at different stages of backbone
during training, respectively. The results are shown in Table 5. Analyzing the data in
the table, we can find that the model performance is optimal when Frozen_stages =Stem
+ 1st. Meanwhile, we conducted further fine-tuning experiments on network models of
different depths (ResNet101), and the results are shown in Table 6. The experimental results
show that, again, the model performance is optimal when Frozen_stzges = Stem + 1st.
The order of model detection performance in Table 6 is Frozen_stages = (Stem + 1st) >
(Stem + first 2) > Stem > no > (Stem + first 3) > (Stem + first 4), which is consistent with
the order presented in Table 5. It can be seen that the model detection performance law
in the fine-tuning experiments is consistent between network models of different depths.
Because the experimental performance when Frozen_stages = Stem + X (X = 2nd, 3rd, 4th)
shown in Table 5 did not exceed the performance when Frozen_stages = Stem + 1st, the
experiment using Frozen_stages = Stem + X (X = 2nd, 3rd, 4th) in ResNet101 (Table 6) was
not conducted anymore.
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Table 5. Fine-tuning experiments of the model with ResNet50 backbone were performed based on
transfer learning and multi-scale training.

Backbone Frozen_Stages mAP (%) AR (%) Params (M)

ResNet50 no 59.4 87.1 41.4
ResNet50 Stem 59.5 87.4 41.39
ResNet50 Stem + 1st 60.9 87.2 41.17
ResNet50 Stem + first 2 59.9 86.6 39.95
ResNet50 Stem + first 3 54.9 84.9 32.86
ResNet50 Stem + first 4 49.4 84.5 17.89
ResNet50 Stem + 2nd 59.4 87.4 40.17
ResNet50 Stem + 3rd 58.5 86.7 34.29
ResNet50 Stem + 4th 58.8 86.9 26.43

Table 6. Fine-tuning experiments of the model with the ResNet101 backbone were performed based
on transfer learning and multi-scale training.

Backbone Frozen_Stages mAP (%) AR (%) Params (M)

ResNet101 no 60.2 87.2 60.39
ResNet101 Stem 61.5 86.8 60.38
ResNet101 Stem + 1st 62.2 86.9 60.17
ResNet101 Stem + first 2 61.9 86.4 58.95
ResNet101 Stem + first 3 55.7 85.3 32.86
ResNet101 Stem + first 4 46.5 81.6 17.89

3.4. Only Initialize the Backbone Network Parameters

The previous experiments indicate that network model initialization training using
COCO complete model weights yields better model detection performance than the alter-
native. However, if other researchers were to modify the detection algorithm part of the
network model, the COCO complete detection model would not be useable. Considering
this factor, we extracted the backbone weight parameters of the COCO complete model
and used them to initialize the network model. To determine which works better, using
this parameter or using the ImageNet pre-trained model, corresponding experiments were
conducted. The experimental results are shown in Table 7. Analyzing the data in the table
indicates that the pre-trained network model offered better model detection performance
than those without pre-training, and initial training with the backbone weight parameters
of the complete COCO model offered better model detection performance than initial
training with ImageNet pre-training. This result also provides a reference for other re-
searchers. When some modifications to the detection algorithm in the network model make
it impossible to use the COCO complete model weights, then it is possible to use only
the backbone weight parameters of the COCO complete model to perform initialization
training in the network model for the current task.

Table 7. Initialization training of the network model backbone component using different pre-training
parameters (when conducting multi-scale training).

Backbone Initialization mAP (%) AR (%)

ResNet50 None 8.9 43.2
ResNet50 ImageNet 57.4 86.0
ResNet50 faster_rcnn_r50_fpn_mstrain_3x_coco_only_backbone.pth 57.5 86.5
ResNet101 None 8.4 42.7
ResNet101 ImageNet 57.9 87.0
ResNet101 faster_rcnn_r101_fpn_mstrain_3x_coco_only_backbone.pth 59.8 86.8
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3.5. Different Bounding Box Loss Experiments

Relevant experiments were performed on existing COCO pre-trained models with
different bounding box losses. The experimental data are shown in Table 8. The exper-
imental results indicate that the model detection precision is not improved by directly
replacing the loss function with IoU and GIoU loss. The highest model detection precision
is achieved when the loss function is SmoothL1. The pre-trained model “Faster_rcnn_r101
_fpn_mstrain_3x_coco.pth” is obtained when the bounding box loss is L1 loss, which is
used to optimize the four points of the prediction box. SmoothL1 loss combines the ad-
vantages of L1 loss and L2 loss, and also optimizes the object box as four independent
variables, whereas IoU and GIoU loss considers the prediction box as a whole. This method
uses the same bounding box loss function as the corresponding type of pre-trained model,
which helps improve the performance of model detection. Next, we conducted validation
experiments. Since IoU loss and GIoU loss had no corresponding COCO 3x (36epochs)
multi-scale pre-training model, for the sake of fairness, pre-training models used the COCO
1x (12epochs) pre-training model corresponding to the loss function. The experimental
data are shown in Table 9. The data in the table indicate that the model detection precision
is highest when the bounding box loss is GIoU. Here, the detection precision of the model
with SmoothL1 loss, IoU, and GIoU loss exceeds that of the model with L1 loss. Thus, the
network model uses a bounding box loss function of the same type as that of the pre-trained
model, which facilitates optimization of the network model and improves model detection
performance. IoU and GIoU do not have corresponding COCO multi-scale training models.
The data in Table 8 show that when multi-scale training is performed, the model detection
precision is highest when SmoothL1 is used for the bounding box loss function. Therefore,
we utilize the SmoothL1 bounding box loss function.

Table 8. To further improve the detection performance of the model, we set different bounding box
losses for the experiments. Bbox loss: Bounding box loss. (Conducting multi-scale Training).

Model Initialization Bbox Loss mAP (%) AR (%)

ResNet50 Faster_rcnn_r50_fpn_mstrain_3x_coco.pth L1 60.9 87.2
ResNet50 Faster_rcnn_r50_fpn_mstrain_3x_coco.pth SmoothL1 61.1 86.9
ResNet50 Faster_rcnn_r50_fpn_mstrain_3x_coco.pth IoU 60.4 87.3
ResNet50 Faster_rcnn_r50_fpn_mstrain_3x_coco.pth GIou 60.1 87.9

Table 9. Relevant experiments were conducted to verify whether using bounding box loss consistent
with the type of pre-trained model contributed to an improvement of model detection performance.

Model Initialization Bbox Loss mAP(%) AR(%)

ResNet50 Faster_rcnn_r50_fpn_1x
_coco.pth L1 58.4 84.1

ResNet50 Faster_rcnn_r50_fpn_1x
_coco.pth SmoothL1 59.2 84.3

ResNet50 Faster_rcnn_r50_fpn_iou_1x_coco.pth IoU 59.0 86.1
ResNet50 Faster_rcnn_r50_fpn_giou_1x_coco.pth GIou 59.7 84.8

3.6. Using Different Means and Stds for Multi-Scale Training

So far, all experiments have used ImageNet’s mean and std by default. To determine
which mean and std will result in the best model performance when normalizing the
input images, one method is to use the mean and std of the corresponding data set of the
pre-training, and the other method is to use the mean and std of the data set used in the
experiment. To determine which method is better, corresponding experiments were carried
out. The experimental data are shown in Table 10. By analyzing the results, we found that
the model performance performed best when using the mean and std from the cervical cell
data set used in the experiment.
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Table 10. Multi-scale training with the means and stds of different data. Initialization: using Faster_
rcnn_r50_fpn_mstrain_3x_coco.pth; Box loss: Bounding box loss; self: denotes the cervical cell data
set used for the experiments.

Backbone Box Loss Mean, std from Data mAP (%) AR (%)

ResNet50 SmoothL1 ImageNet 61.1 86.9
ResNet50 SmoothL1 coco 61.2 87.7
ResNet50 SmoothL1 self 61.6 87.7

When the backbone is ResNet50, the optimal mAP is 61.6% and the detection result
images are shown in Figure 5.
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3.7. The Results with State-of-the-Art Methods

Based on the state-of-the-art detection algorithm Faster R-CNN [48], we explored
the effects of the transfer learning of different source data domains, multi-scale training,
the fine-tuning strategy, the bounding box loss function, and different means and stds on
the detection performance of the model in cervical cells/clumps. Finally, the detection
performance of the model was significantly improved. To further validate the effectiveness
of the method used in our experiments, we applied the method to another state-of-the-art
algorithm, RetinaNet [56]. The results of the experiments are shown in Table 11. Other
experimental results are also listed in the table for the current data set. As shown in Table 11,
when using on both Faster R-CNN and RetinaNet, our method improved the detection
performance value of both mAP and AR.
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Table 11. The performance of different methods. The backbone is ResNet50. Initialization: The
initialization type used by the model.

Model Comparison
Detector [35]

Faster
R-CNN [46]

[45]

* Faster
R-CNN

RetinaNet
[56] * RetinaNet

Initialization ImageNet ImageNet COCO ImageNet COCO
mAP(%) 48.8 51.9 61.6 53.8 57.2
AR(%) 64 83.3 87.7 81.4 88.3

“*” indicates the test result after using our method.

4. Discussion

Based on a survey study of cervical cancer detection using deep learning, this study
explored using the COCO pre-trained model for initialization training of the network
model instead of the more commonly used ImageNet pre-trained model.

The important findings in our study are as follows. (1) With the current cervical cell dataset,
the network model offered better detection performance using COCO complete model weights
for initialization compared to using ImageNet for initialization. (2) The network model adopted
a multi-scale training approach, which was able to improve the robustness of the model to
cells at different scales and contribute to the improvement of the model detection performance.
(3) When the backbone weight parameters of the COCO complete model and ImageNet pre-
trained model were used, respectively, to initialize the parameters of the network model
backbone part, the former was found to offer better detection performance, which will also
provide a reference for other researchers. (4) Considering the impact of different bounding
box losses on network model performance and analyzing the impacts of different bounding
box losses on the experimental results, we found that using a bounding box loss function
consistent with the type of pre-trained model contributed to the model detection performance.
(5) Normalization of the input images using the mean and std of the cervical cell dataset used in
the current experiment resulted in better model detection performance.

In our study, the fine-tuning method was used to find the best performance of the
model. At the same time, to demonstrate that some conclusions in the experiment apply to
network models of different depths, we conducted experiments on network models based
on backbone ResNet50 and ResNet101. We also validated the effectiveness of our method
on another state-of-the-art detection algorithm, RetinaNet. The final model detection
precision based on backbone Resnet50 was 61.6% for mAP and 87.7% for AR, indicating
a 12.8% improvement in mAP and 23.7% improvement in AR compared to the previous
results of the dataset used in this study, and the model performance was greatly improved.
This study will have notable reference significance and value for other researchers.
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