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Abstract: Medical image classification is a novel technology that presents a new challenge. It is
essential that pathological images are automatically and correctly classified to enable doctors to
provide precise treatment. Convolutional neural networks have demonstrated their effectiveness in
classifying images in deep learning, which may have dozens or hundreds of layers, to illustrate the
relationship between them in terms of their different neural network features. Convolutional layers
consisting of small kernels take weights as input and guide them through an activation function as
output. The main advantage of using convolutional neural networks (CNNs) instead of traditional
neural networks is that they reduce the model parameters for greater accuracy. However, many
studies have simply been focused on finding the best CNN model and classification results from
a single medical image classification. Therefore, we applied a common deep learning network
model in an attempt to identify the best model framework by training and validating different
model parameters to classify medical images. After conducting experiments on six publicly available
databases of pathological images, including colorectal cancer tissue, chest X-rays, common skin
lesions, diabetic retinopathy, pediatric chest X-ray, and breast ultrasound image datasets, we were
able to confirm that the recognition accuracy of the Inception V3 method was significantly better than
that of other existing deep learning models.
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1. Introduction

Artificial intelligence (AI) can revolutionize the diagnosis of diseases by performing
classifications that are difficult for human experts and quickly providing large numbers
of images. CNNs have been used to classify medical images [1] and detect cancerous
tissue in histopathological images [2] from tissue microarrays (TMAs) of human tumors
based on chromatin patterns [3], extract predictors [4], and classified tumor nuclei. The
traditional classification approach involves manually segmenting images and then using a
classifier or a classifier trained by shallow neural computers to identify each segmentation
and classify the image [5]. However, methods for building and improving classifiers are
time consuming and computationally expensive [6–8].

The development of convolutional neural networks in recent years has significantly im-
proved the results of image classification [9,10]. Among them, transfer learning has proven
to be an extremely effective technique, especially when there are limited data [11–13]. The
main advantage of using CNNs instead of traditional neural networks is that they reduce
the model parameters for greater accuracy. CNNs use a convolutional neural network with
multiple processing layers to build the features of the images in each layer. After the feature
map has been generated, it can be used as the input for the next layer. This architecture
can process images in pixel form as input, and provide the desired classification as output.
Transfer learning involves the use of data from similar domains to compensate for the lack
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of localized data. Weights in lower layers that have been optimized are used to identify the
structure of general images and retrain weights in upper layers with backpropagation for
the faster identification of category-specific images.

The improvement of neural networks is a common research goal in deep learn-
ing, and most studies are focused on data augmentation [14–17], comparison of model
structures [18–20], or widely used regression loss functions [21,22]. This study aimed to
compare six common deep neural networks based on CNN models to identify the best-
performing deep learning technique for processing different medical images to accurately
and opportunely diagnose key pathologies. After conducting experiments on six publicly
available databases of pathological images, including colorectal cancer tissue, chest X-rays,
common skin lesions, diabetic retinopathy, pediatric chest X-ray, and breast ultrasound
image datasets. We further compared the adaptive moment estimation (Adam) optimizer
and stochastic gradient descent momentum (SGDM) optimizer, replacement mini-batch
size, and epoch to test the model. Therefore, this successfully demonstrates the wide
application of the Inception V3 model in classifying different medical images.

To achieve this goal, it is necessary to:

a. Compare the classification accuracy rate of different CNN models.
b. Find the best performing deep learning technique.
c. Compare it with the results of existing techniques and methods.

Deep learning and its applications in classifing pathological images are systematically
addressed in this paper. The relation to past studies of deep learning are reviewed in
Section 2, while the approach of deep learning models is described in detail in Section 3.
Section 4 contains the experiment and the paper is concluded in Section 5 with suggestions
for a possible future investigation of this field.

2. Related Works

Most of the past studies that were based on deep learning models that could be used
to automatically classify histopathological images had six deep learning network models
in common, i.e., VGG19, AlexNet, GoogLeNet, SqueezeNet, ResNet50, and Inception V3.
The current methods that are used to classify histopathological images are described below,
and the accuracy of their results is shown in Table 1.

Table 1. Research resources.

Literature Research Objective Classification Technique The Best Classification
Technique Accuracy Rate (%)

[14]
Predicting survival from colorectal cancer

histology slides using deep learning, a
retrospective multicenter study

VGG19, AlexNet,
SqueezeNet,

GoogLeNet, Resnet50
VGG19 98.7

[20]

ChestX-ray8 hospital-scale chest X-ray
database and benchmarks on weakly

supervised classification and localization of
common thorax diseases

AlexNet, GoogLeNet,
VGGNet-16, ResNet-50 ResNet-50 69.67

[23]
The HAM10000 dataset, a large collection of

multi-source dermatoscopic images of
common pigmented skin lesions

Inception V3 Inception V3 95

[9] Identifying medical diagnoses and treatable
diseases with image-based deep learning Inception V3 for Octmnist Inception V3 96.6

[9] Identifying medical diagnoses and treatable
diseases with image-based deep learning

Inception V3 for
Pneumoniamnist Inception V3 92.8

[24] Dataset of breast ultrasound images - - -

2.1. Predicting Colorectal Cancer Slice Categories

Kather et al. [23] used 100,000 histological colorectal cancer images (NCT-CRC-HE-
100K) for model training, including nine tissue classes. They then split the image dataset
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into three data stores, trained 70%, and tested and validated 15% each, without any over-
laps. After that, they used five different CNN models to train the dataset: VGG19 [25],
AlexNet [9], GoogLeNet [24], SqueezeNet [26] and ResNet50 [27]. All models were pre-
trained on the ImageNet database, and the network was trained using stochastic gradient
descent with SGDM after replacing the classification layers. The classification layer with
the best accuracy rate of 98.7% was replaced with VGG19 [23].

Additionally, they used an external validation set of 7180 images (CRC-VAL-HE-7K)
and achieved a best prediction classification accuracy of 94.3%. The main contribution of
VGG19 is that the architecture is composed of two convolutional layers using the ReLU
activation function, followed by a max-pooling layer. At the same time, the fully connected
layer also uses the ReLU activation function, and the last layer is a Softmax layer for
classification. VGG19 proved that the depth of the network was the key to achieving
classification accuracy and that CNNs could directly evaluate and predict tumors from
histopathological images.

2.2. Weakly Supervised Classification of Chest X-ray Diseases

As proposed by Wang [28], we used a framework composed of weakly supervised
multi-label image classification and pathology localization to detect the presence or absence
of one or more pathologies in X-ray images by training a multi-label DCNN classification
model. The ChestX-ray8 database consisted of 108,948 frontal X-ray images, 24,636 of
which contained one or more pathologies. The remaining 84,312 images were normal. We
randomly split the entire dataset into 70% training, 10% validation, and 20% testing via
stochastic gradient descent (SGD) for the pathology classification and localization tasks.
ImageNet [29,30] was used as a pretrained model, and AlexNet, GoogLeNet, VGGNet-16,
and ResNet-50 were used to omit the fully connected layer and the final classification layer.
A transition layer, global-pooling layer, and prediction layer were inserted and a loss layer
was placed at the end. Among these models, ResNet-50 achieved the best result of 69.67%
as a unified framework for the assessment and validation of disease classification and
localization in the ChestX-ray8 database.

2.3. Different Dermoscopic Images

Past studies of the diagnosis of pigmented skin lesions based on using artificial neural
networks were mainly focused on melanoma and moles due to the small range of training
data, while diverse types of non-melanocytic lesions in real-life data were ignored. To
facilitate research of the automatic diagnosis of dermoscopy images, Tschandl [31] released
the HAM10000 (“Human Against Machine with 10,000 training images”) dataset. The
Inception V3 [32] architecture is fine-tuned with weights pretrained on ImageNet4 data
using hand-labeled images as the training dataset. After training with stochastic gradient
descent for 20 epochs with a learning rate initialized to 0.0003 and a batch size of 64, the
images were classified according to their type with 95% accuracy.

2.4. Retinopathy Identification

Daniel [33] constructed a deep learning-based framework and proposed the use
of transfer learning to replace multiple steps of traditional methods. This architecture
could process images in a pixel format as input and provide the desired classification
as output. In this study, we took advantage of transfer learning due to limited data in
order to train a neural network with a small subset of data to identify specific image
features in retinal tomography OCT images. The model was trained using 108,312 OCT
images from 4686 patients (37,206 choroidal neovascularization, 11,349 diabetic macular
edema, 8617 drusen, and 51,140 normal). Among these, diabetic macular edema, which is
a vision-threatening form of diabetic retinopathy, is likely to increase in prevalence over
time due to an aging population and the global diabetes epidemic. The model was tested
with 1000 images (250 per class) of 633 patients. An accuracy of 93.4% was achieved in
a multiclass comparison between choroidal neovascularization, diabetic macular edema,
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drusen, and normal samples. A limited model was trained using 1000 images of 633 patients
(classified between the same four classes, 250 images each) to compare transfer learning
with limited data performance and large datasets, and 93.4% accuracy was achieved using
the same test images.

2.5. Detection of Pneumonia

To determine if the deep learning framework of Daniel [33] could diagnose common
diseases, the same transfer learning framework was applied to classify pediatric chest
X-rays, detect pneumonia, and distinguish between viral and bacterial pneumonia to
improve rapid referral. To train the model, 5232 pediatric chest X-ray images were collected
from 5856 patients and labeled. A total of 3883 of these images were described as pneumonia
(2538 bacteria and 1345 viruses) and 1349 were described as normal. The model was
tested with 234 normal images and 390 pneumonia images (242 bacteria and 148 viruses)
of 624 patients. An accuracy of 92.8% was achieved in experiments comparing chest
radiographs showing pneumonia with normal chest radiographs.

2.6. Detection of Breast Ultrasound Images

Walid [33] found that a combination of breast ultrasound images and machine learning
produced good results in terms of the classification, detection, and segmentation of breast
cancer, but it also contained a great deal of unimportant information. For the dataset to
be useful, the data needed to be preprocessed to remove duplicate images, which reduced
the number of images to 780. Firstly, 1100 raw images were collected and stored in a
DICOM format acquisition at Baheya Hospital, and the three common breast pathology
classifications frequently observed and diagnosed were listed as normal, benign, and
malignant. A folder was created for each category and images of each category were placed
in the designated folders. The image name included the category name and the image
number to construct and provide a public dataset of breast ultrasound images that are
useful for deep learning in future research.

3. Research Method

Deep learning has become extremely popular as a means of solving complex problems.
Six common deep neural network architectures based on CNN models [9,27,32,34–38] were
used in this study to compare the accuracy of different medical image classifications.

3.1. Experimental Steps

The CNN model recognition process can be divided into three stages, the first of which
is training the model, the second is collecting the necessary data, and the third is testing
the model.

3.1.1. Finding the Best Architecture

Six common deep neural networks based on CNN models were used in this study.

(1) AlexNet

AlexNet [9] is a widely applied deep convolutional neural network, which can still
achieve a competitive performance in terms of classification when compared to other
kinds of networks. In the training step of the AlexNet model, the input image is resized
to 224 × 224 pixels and fed into the network. The architecture of AlexNet firstly adopts a
convolutional layer to perform convolution and max pooling with local response normal-
ization (LRN), in which 96 different receptive filters of size 11 × 11 are used. Its operational
filters are performed in the second layer, and the max-pooling operations are performed
with 3 × 3 filters. The third, fourth, and fifth convolutional layers use 384, 384, and
296 feature maps. The output of the two fully connected (FC) layers is used as an extracted
feature vector, with dropout followed by a softmax layer at the end to classify problems.
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(2) ResNet

The accuracy of this model does not improve as the number of network layers increases
and a more complex feature extraction is performed because test and training errors
will significantly improve after the network deepens. Therefore, deeper models do not
necessarily achieve better results. ResNet [27] has a residual learning framework for ultra-
deep networks, and the residual function can alleviate the networks that do not disappear
due to the vanishing gradient problem. The main architecture of the ResNet network is
one input layer, four convolutional layers, and one output layer. The difference between
ResNet18 and ResNet50 networks is that there are many differences in the block parameters
and the number of intermediate convolutional layers.

(3) Inception V3

Inception V3 [32] is mainly focused on reducing computing power consumption by
modifying the previous Inception architecture. This idea was proposed in a paper in 2015
entitled “Rethinking the Inception Architecture for Computer Vision”. Several techniques
for optimizing the network are proposed in the Inception V3 model, including decom-
posed convolutions, regularization, dimensionality reduction, and parallel computing.
The 3 × 3 Convolution is decomposed into two one-dimensional convolution concate-
nations (1 × 3 and 3 × 1), which can accelerate the calculation further. It increases the
network depth, thereby increasing the nonlinearity of the network (ReLU is required for
each additional layer). Factorization, which decomposes the 7 × 7 convolution into two
one-dimensional concatenations, is a major improvement in Inception V3.

(4) DenseNet

The DenseNet [36] model is a dense mechanism that connects the front and back
layers, each of which accepts the previous layer as input, so that the input layer has more
connections. Moreover, DenseNet directly connects the feature maps of different layers,
and the reuse feature enables it to achieve a good performance with fewer parameters and
computational costs. This feature is the main difference between DenseNet and ResNet.

(5) MobileNet

MobileNet [37] is a lightweight network architecture that replaces the standard con-
volutional layers in VGG. There are two main types of convolutions: spatially separable
and depthwise separable. Spatially separable convolution turns one large convolution
kernel into two small ones, while depthwise separable convolution is a kind of factorized
convolution, which can be decomposed into two smaller operations: depthwise convolu-
tion and pointwise convolution. Separable convolution is applied in MobileNet V1, and
two hyperparameters are proposed to control the network capacity. The assumptions
behind this convolution are cross-channel and cross-spatial correlation. Depthwise separa-
ble convolution can save the number of citations and achieve fairly high accuracy while
maintaining acceptable model complexity on the mobile side. MobileNet V2 applies a new
unit: inverted residual with a linear bottleneck. The main features are the addition of a
linear-enabled output to the bottleneck and the transfer of the skip-connection structure of
the residual network to a low-dimensional bottleneck layer.

(6) XceptionNet

Xception [38], the extreme version of Inception, is another improvement to Inception
V3 that was proposed by Google after Inception. Its linear stacking contains depthwise
separable convolutional layers with residual connections. The main purpose of Xception
is not to compress the model, but to improve its performance by mainly replacing the
convolution operation in the original Inception V3 with a depthwise separable convolution.
Xception widens the network so that the number of parameters is similar to Inception V3,
thereby improving the model’s effect without increasing the complexity of the network.
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3.1.2. Data Availability

Firstly, we downloaded six different open histology image datasets and organized
their image numbers (Table 2). In the experiments, we split different partitions for training,
validation, and testing sets for fair comparison. Specifically, the training, validation, and
test sets are defined as follows:

Table 2. Histological image dataset.

Dataset Image Number Training Validation Testing Number
of Classes Image Size

NCT-CRC-HE-100K [14] 107,180 89,996 10,004 7180 9 224 × 224

ChestX-ray8 [20] 112,120 78,468 11,219 22,433 8 512 × 512

Human Against Machine with
10,000 training images [23] 10,015 7007 1003 2005 7 600 × 450

Optical coherence tomography
(OCT) images [9] 109,309 97,477 10,832 1000 4 512 × 496

Chest X-Ray Images [9] 5856 4708 524 624 2 944 × 940

Breast ultrasound images [24] 780 546 78 156 3 562 × 471

Training set: a training dataset is a dataset of examples used during the learning
process and is used to fit the parameters (e.g., weights) of, for example, a classifier.

Validation set: a validation dataset is a dataset of examples used to tune the hyperpa-
rameters (i.e., the architecture) of a classifier. An example of a hyperparameter for artificial
neural networks includes the number of hidden units in each layer.

Test set: a test dataset is a dataset that is independent of the training dataset, training,
validation and test sets cannot have any overlap. In this way, testing can really measure the
capabilities of the model.

(1) Colorectal Cancer Tissue

We used the open histology dataset of nine tissue classifications from NCT-CRC-HE-
100K (data available at https://doi.org/10.5281/zenodo.1214456, 7 April 2018) to train
the model in this experiment. The image dataset provided by Kather et al. [23] contains
86 hematoxylin and eosin-stained (H&E) slide tissues. Sample images of the nine tissue
categories are shown in Figure 1. The data were derived from histological images of the
available data on the NCT-UMM website, with all image dimensions 224 × 224 pixels
(112 × 112 µm). Because the number of each type in the original dataset was different, we
used the ratio of each type to obtain the corresponding number of training, validation, and
tissue classification to ensure that the scale was satisfied. We split it into a 70% training
dataset, 15% validation dataset, and 15% testing dataset, and presented the datasets to the
model network for training, validation, and testing.

(2) Chest X-ray

We used the “ChestX-ray8” dataset (ChestX-ray8, data available at https://nihcc.
app.box.com/v/ChestXray-NIHCC, accessed on 2 September 2017), which contained
108,948 images: 24,636 images that contained one or more pathologies and 84,312 images
that were normal. The images in the ChestX-ray8 dataset were resized to 1024 × 1024
without a significant loss in detail. Eight common chest disease labels were included in
the chest X-ray image, namely: (a) atelectasis, (b) cardiomegaly, (c) effusion, (d) infiltration,
(e) mass, (f) nodule, (g) pneumonia, and (h) pneumothorax (Figure 2). In our experiments,
we split the data into training (70%), validation (10%), and testing (20%) to identify eight
chest diseases.

https://doi.org/10.5281/zenodo.1214456
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
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Figure 1. Example images for each of the nine tissue classes represented in the NCT-CRC-HE-
100K datasets. (a) ADI: adipose tissue is composed mostly of adipocytes; (b) BACK: histological
image background; (c) DEB: the debris is widely used in histopathology and diagnosis; (d) LYM:
lymphocytes are the main type of cell found in the lymph; (e) MUC: mucus is produced by many
tissues in the body and has a protective function; (f) MUS: smooth muscle; (g) NORM: tissues of
the colon mucosa; (h) STR: stroma tissues of cancer-associated samples; (i) TUM: epithelium tissues
of adenocarcinoma.
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(3) Common skin lesions

Dermoscopy images are a standard source for training artificial neural networks to
automatically diagnose pigmented skin lesions. We used the HAM10000 (“Human Against
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Machine with 10,000 training images”) dataset (HAM10000, data available at https://github.
com/ptschandl/HAM10000_dataset, 4 June 2018), which consists of 10,015 dermoscopy im-
ages of different populations collected over 20 years from the Department of Dermatology
of the Medical University of Vienna, Austria, and the Skin Cancer Clinic of Queensland,
Australia. The dataset images are cropped from original images at 800 × 600 pixels. With
the exception of mole-related melanoma, the image dataset was divided into seven general
categories to exclude cases with indeterminate or ambiguous diagnosis classifications. Over
95% of all lesions encountered in clinical practice will fall into one of the following seven
diagnostic categories;

(a) Apiece: actinic keratoses (solar keratoses) and intraepithelial carcinoma (Bowen’s
disease) are common noninvasive variants of squamous cell carcinoma that can be
treated locally without surgery.

(b) Bcc: basal cell carcinoma is a common variant of epithelial skin cancer that rarely metastasizes.
(c) Bkl: horny growth, especially on the skin, is a generic class that includes seborrheic

keratosis and solar lentigo.
(d) Df: dermatofibroma is a benign skin lesion which is regarded as either benign prolif-

eration or minimal trauma.
(e) NV: melanocytic nevi are benign neoplasms of melanocytes.
(f) Mel: melanoma is a malignant neoplasm derived from melanocytes that may appear

in different variants.
(g) Vasc: vascular skin lesions.

(4) Diabetic retinopathy

A retinal OCT image is currently the most commonly used standard for retinal
pathology, with approximately 30 million OCT scans performed globally each year [26].
Clear cross-sectional images of OCT can assist physicians in the early detection, diag-
nosis, and treatment of the main causes of blindness: age-related macular degenera-
tion (AMD) and diabetic macular edema. The prevalence of these diseases is likely to
increase further over time due to aging populations and the global diabetes epidemic.
We passed an initial image quality review using Daniel [39] (OCT, data available at
https://data.mendeley.com/datasets/rscbjbr9sj/2, accessed on 1 January 2018), provid-
ing 108,312 OCT images (37,206 choroidal neovascularization, 11,349 diabetic macular
edemata, 8617 drusen, and 51,140 normal) from 4686 patients, which were divided into
training (70%), validation (10%) and testing (20%) sets to train and test our CNN model
network architecture.

(5) Pediatric chest X-ray

According to the World Health Organization (WHO), pneumonia kills about 2 million
children under the age of five (Chest X-Ray, data available at https://data.mendeley.com/
datasets/rscbjbr9sj/2, accessed on 6 January 2018). Bacterial and viral pathogens are the
two main causes in clinical cases of pneumonia [35], with bacterial pneumonia requiring
antibiotic treatment and viral pneumonia requiring referral for treatment. Therefore,
accurate and timely use of chest X-ray image data is very important to distinguish different
types of pneumonia. To this end, we used Daniel [39] to collect and label 5232 pediatric chest
X-ray images from 5856 patients, 3883 of which were described as pneumonia (2538 bacteria
and 1345 viruses) and 1349 normal, to train the model architecture. We tested our model
using 234 normal and 390 pneumonia images (242 bacterial and 148 viral) from 624 patients.

(6) Breast ultrasound image

Breast cancer is one of the most common causes of mortality in women worldwide, but
early detection can help to reduce it. The ultrasound breast cancer medical images provided
by Walid [33] were used in this study (BUSI, data available at https://data.mendeley.com/
datasets/rscbjbr9sj/2, accessed on 6 January 2018). The dataset consisted of 600 female
patients aged 25 to 75 years, with 780 preprocessed breast ultrasound images in a PNG
format. The average image size was 500 × 500 pixels and they were divided into three

https://github.com/ptschandl/HAM10000_dataset
https://github.com/ptschandl/HAM10000_dataset
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
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categories: normal (133 images), benign (487 images), and malignant (210 images). The data
were divided into training (70%), validation (10%), and testing (20%) sets to train and test
our CNN model network architecture in order to verify that breast ultrasound images can
be used to detect and classify breast cancer. This produced good results in segmentation.

3.1.3. Model Testing

To evaluate the performance of these CNN model network architectures, we firstly
compared two methods of training network optimizers. Stochastic gradient descent mo-
mentum (SGDM) is an optimizer that normalizes gradients using the magnitude of recent
gradients, while adaptive moment estimation (Adam) is an optimization algorithm that can
be used for classical stochastic gradient descent. We then further compared the replacement
mini-batch size and epoch to test the model.

3.2. Software and Tools Platform

In this study, the experiments were performed on a quad-core Intel(R) CPU i7-
11700K@3.60GHz processor server with NVIDIA GeForce RTX 3090 GPU and OS Windows
10 system. MATLAB version R2021a software was adopted, which provides the pretrained
deep neural network models including AlexNet, ResNet 50, Inception V3, DenseNet, Mo-
bileNet, and XceptionNet. Through the experiments, the training processes of the tested
models could be visually demonstrated with accumulated accuracy and loss evaluation.

4. Experimental Results

Six common convolutional neural networks (CNN) models, AlexNet, ResNet, Incep-
tion V3, DenseNet, MobileNet, and XceptionNet, were used in this study. Firstly, we
replaced the classification layer and used stochastic gradient descent momentum (SGDM)
with adaptive moment estimation (Adam) optimizers to train the network. We then used
our trained models to evaluate the performance of these network architectures on six
different kinds of open datasets of medical images. Next, we compared them with the
original paper’s experimental results to identify the model architecture that could best
identify images of different disease tissue types and collated the experimental results from
different datasets.

4.1. Colorectal Cancer Tissue

The data “NCT-CRC-HE-100K” of histological images for tissue training were used
first, including 100,000 images of nine different tissue categories. The accuracy of each
category is displayed by using a confusion matrix, as shown in Figure 3, and our experi-
mental results are organized in Table 3. When no further improvement in accuracy was
found after 150 epochs (iterations over the entire dataset), the training was stopped. In
terms of the accuracy of multiple models, the highest accuracy of 99.43% was achieved with
the Inception V3 model when using the adaptive moment estimation (Adam) optimizer
to train the network. The best result using the stochastic gradient descent momentum
(SGDM) optimizer was 99.19%, higher than the 98.7% accuracy obtained by Kather [23] in
the original paper using VGG19.

4.2. Chest X-ray

The results of the experiments validated the multi-label classification ROC curves
of eight chest disease categories using pretrained models with six CNN architectures,
AlexNet, ResNet, Inception V3, DenseNet, MobileNet, and XceptionNet. We used the
original image size (1024 × 1024) and increased the iteration size to accumulate gradients
for more iterations. For the above CNN model, after using the adaptive moment estimation
(Adam) optimizer to train the network, we set the batch size of the total number of training
iterations to 128, and set the epoch to 100 to prevent overfitting and achieve convergence.
The result obtained based on Inception V3 was 77.31%, as shown in Figure 4, which was
higher than the 69.67% accuracy obtained in the original paper by Wang [25] using ResNet-
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50, and the best stochastic gradient descent momentum (SGDM) optimizer was used. The
best result was 77.26%, and the experimental results are summarized in Table 4.
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Table 3. The best result of NCT-CRC-HE-100K.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 68.86% (395 min) 67.48% (412 min)
ResNet 50 99.39% (720 min) 99.01% (733 min)
ResNet 18 99.37% (422 min) 99.15% (458 min)

Inception V3 99.43% (2658 min) 99.19% (2683 min)
DenseNet 81.25% (1964 min) 81.07% (1990 min)
MobileNet 80.51% (508 min) 80.25% (533 min)

XceptionNet 81.49% (2643 min) 81.04% (2697 min)
Bold symbols represent the maximum values of each column in the tables.

4.3. Common Skin Lesions

We fine-tuned the Inception V3 architecture (weights pretrained on ImageNet4 data)
to classify images based on image type. After training the network using the adaptive
moment estimation (Adam) optimizer for 150 epochs with a learning rate initialized to
0.0001 and a batch size of 128, the accuracy was sufficient to accelerate the classification
process of the test dermoscopy images. We showed the experimental statistics of seven
classes using HAM10000 data by InceptionV3 in Figure 5. The confusion matrix visualizes
and summarizes the performance of the proposed classification algorithm. From Figure 5,
the table categorizes the predictions against the actual values and the statistics demonstrate
that the results are with high accuracy. Among these, the model based on Inception
V3 achieved the best result of 88.3%, as shown in Figure 6. The experimental results are
collated in Table 5. The best result using the stochastic gradient descent momentum (SGDM)
optimizer was 86.00%, which was slightly lower than the 95% accuracy obtained in the
original paper by Tschandl [26] using Inception V3. Even this study cannot yet repeat the
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high accuracy value of [26], and the authors still continue further to perform investigation
to match the result. Currently, Inception V3 still claims the best performance during the
literature review.
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Table 4. The best result of Chest X-ray8.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 76.99% (177 min) 76.91% (182 min)
ResNet 50 77.28% (447 min) 77.24% (430 min)
ResNet 18 77.89% (194 min) 77.84% (188 min)

Inception V3 77.31% (1256 min) 77.26% (1283 min)
DenseNet 75.18% (2025 min) 75.17% (2034 min)
MobileNet 75.25% (2018 min) 75.17% (2034 min)

XceptionNet 75.37% (2017 min) 75.17% (2034 min)
Bold symbols represent the maximum values of each column in the tables.

4.4. Diabetic Retinopathy

The retinal tomography (OCT) image classification was validated using a pretrained
model with a CNN architecture. After using the adaptive moment estimation (Adam)
optimizer to train the network, the entire dataset was iterated in the experiment. After
150 epochs, the learning rate was initialized to 0.0001 and the batch size was 64. As
the accuracy had not further improved, the training was stopped. The model based on
Inception V3 achieved the best result of 96.63%, as shown in Figure 7. The best result
using the stochastic gradient descent momentum (SGDM) optimizer was 95.35%, which
was higher than the 96.6% accuracy obtained in the original paper by Daniel [39] using
Inception V3. The experimental results are summarized in Table 6.
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Table 5. The best result of Human Against Machine with 10,000 training images.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 83.42% (45 min) 83.37% (53 min)
ResNet 50 86.6% (170 min) 86.42% (185 min)
ResNet 18 86.6% (170 min) 86.39% (193 min)

Inception V3 88.3% (481 min) 86.00% (497 min)
DenseNet 88.19% (473 min) 88.24% (495 min)
MobileNet 88.02% (468min) 88.13% (490 min)

XceptionNet 88.17% (502min) 88.21% (499 min)
Bold symbols represent the maximum values of each column in the tables.
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Table 6. The best result of Optical coherence tomography (OCT) images.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 93.11% (2651 min) 92.07% (2666 min)
ResNet 50 93.89% (1506 min) 93.68% (1532 min)
ResNet 18 94.24% (1831 min) 94.09% (1857 min)

Inception V3 96.63% (3383 min) 95.35% (3392 min)
DenseNet 68.12% (2473 min) 68.04% (2485 min)
MobileNet 68.31% (973 min) 68.18% (996 min)

XceptionNet 68.69% (2595 min) 68.26% (2657 min)
Bold symbols represent the maximum values of each column in the tables.

4.5. Pediatric Chest X-ray

We applied the transfer learning framework used to diagnose pediatric pneumonia
to investigate the generalizability of six different CNN architecture pretrained models
to diagnose common diseases. In comparing chest X-rays showing a normal level of
pneumonia, we found that using the Inception V3-based model with the stochastic gradient
descent momentum (SGDM) optimizer achieved an accuracy of 96.31%. This was higher
than the 92.8% accuracy obtained in the original paper by Daniel [39] using Inception
V3, and the best result using the adaptive moment estimation (Adam) optimizer was
96.27%. After the model iterated across the entire dataset for 100 epochs, the learning
rate was initialized to 0.0001, and the batch size was eight. The training was stopped due
to no further improvement in loss and accuracy (Figure 8). The experimental results are
summarized in Table 7.

4.6. Breast Ultrasound Image

We conducted experiments using six different CNN models. We used a breast ultra-
sound dataset of 780 images classified into three categories: normal, benign, and malignant.
After the adaptive moment estimation (Adam) optimizer was used to train the network, the
model iterated the entire dataset for 150 epochs. The learning rate was initialized to 0.0001.
The training was stopped after batch size eight, as there was no further improvement in loss
and accuracy (Figure 9). Because Walid [33] did not mention the experimental results in the
original paper, this paper only includes our experimental results. Based on the Inception
V3 model, we achieved an accuracy of 92.31%, and the best result using the stochastic
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gradient descent momentum (SGDM) optimizer was 92.17%. These results are summarized
in Table 8.
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Table 7. The best result of Chest X-Ray Images.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 85.29% (104 min) 85.22% (114 min)
ResNet 50 92.66% (141 min) 92.47% (167 min)
ResNet 18 90.84% (98 min) 90.64% (103 min)

Inception V3 96.27% (762 min) 96.31% (774 min)
DenseNet 90.21% (251 min) 90.20% (257 min)
MobileNet 88.12% (45 min) 88.03% (49 min)

XceptionNet 89.94% (130 min) 89.77% (145 min)
Bold symbols represent the maximum values of each column in the tables.
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Table 8. The best result of Breast ultrasound images.

Model
Accuracy Rate% (Times)

Adam SGDM

AlexNet 75.73% (12 min) 75.65% (14 min)
ResNet 50 81.88% (18 min) 81.67% (21 min)
ResNet 18 72.73% (14 min) 72.59% (17 min)

Inception V3 92.31% (29 min) 92.17% (33 min)
DenseNet 70.91% (27 min) 70.86% (30 min)
MobileNet 61.86% (6 min) 61.72% (7 min)

XceptionNet 72.11% (15 min) 72.03% (17 min)
Bold symbols represent the maximum values of each column in the tables.

4.7. Data Analysis Section

After conducting experiments on six publicly available databases of pathological
images, including colorectal cancer tissue, chest X-rays, common skin lesions, diabetic
retinopathy, pediatric chest X-ray, and breast ultrasound image datasets. The accuracy
alone is not enough to evaluate the performance of a model. We further compared the
other measures such as sensitivity, specificity, F1 score, balanced accuracy in Table 9. From
the data in Table 9, the experimental results demonstrate that our study can achieve high
accuracy and consistent superior performance for different medical image datasets.

Table 9. The sensitivity, specificity, F1 score, balanced accuracy of six dataset.

Dataset Sensitivity Specificity F1 Score Balanced Accuracy (%)

NCT-CRC-HE-100K 0.99 0.99682 1.8965 99.42

ChestX-ray8 0.76 0.64192 1.0143 76.98

Human Against Machine with
10,000 training images 0.97368 0.83333 1.3528 87.9

Optical coherence tomography
(OCT) images 0.96 0.96225 1.3018 96.62

Chest X-Ray images 0.96 0.96891 1.2541 96.34

Breast ultrasound images 0.95 0.95556 1.1339 93.59

5. Conclusions

In this paper, we used a series of experiments, parameter optimization, and different
deep learning parameter corrections to find a deep learning model that could produce the
best classification accuracy in recognizing images of different tissues. Different CNN-based
deep learning models were used to classify medical images. Six different histology images
were used as experimental datasets, and the six most commonly used deep learning network
models were compared to accurately identify the model that could best distinguish tissue
image classification. The Inception V3 model was found to have a high recognition rate
and outperformed other network models in the experimental results. In short, Inception V3
outperformed the techniques described in the literature. It achieved the best classification
accuracy and was tested on a ChestX-ray8 [28] dataset of chest X-ray images, reaching
77.31%, which was far more than using 69.67% of the original paper for ResNet50. On the
breast ultrasound image dataset, Inception V3 achieved an accuracy of 92.31%, exceeding
the 81.88% accuracy of the second-highest model, Resnet50. Therefore, this successfully
demonstrates the wide applicability of the Inception V3 model in classifying different
medical images, which can help physicians to enhance their critical thinking skills and
make the most appropriate decisions during the diagnostic process.

We used different CNN deep neural networks to obtain the best experimental results.
However, in many fields of clinical medicine, the technology of deep CNN still has two
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main obstacles: large amounts of data and well-annotated datasets are required, and these
datasets are difficult to obtain and annotate. Additionally, in a wide range of clinically
relevant situations, there are a lack of proposed results using the trained CNN model for
comparison and verification. Our research can serve as an objective recommendation for
clinical evaluation, and our proven best model approach can also be used to automatically
detect many more different histological image classifications and applications. Finally,
Table 10 summarizes the difference between our research and other existing works for six
medical image datasets.

Table 10. The difference between our research and other existing works in this area.

Existing Researches Our Research

Dataset Classification
Technique

The Best
Classification

Technique

Accuracy Rate
(%)

Classification
Technique

The Best
Classification

Technique

Accuracy
Rate (%)

NCT-CRC-HE-
100K [14]

VGG19, AlexNet,
SqueezeNet,
GoogLeNet,

Resnet50

VGG19 98.7

AlexNet,
ResNet 50,
ResNet 18,

Inception V3,
DenseNet,
MobileNet,

XceptionNet

Inception V3 99.43

ChestX-ray8 [20]

AlexNet,
GoogLeNet,
VGGNet-16,
ResNet-50

ResNet-50 69.67 Inception V3 77.31

Human Against
Machine with
10000 training

images [23]

Inception V3 Inception V3 95 Inception V3 88.3

Optical coherence
tomography

(OCT) images [9]
Inception V3 Inception V3 96.6 Inception V3 96.63

Chest X-Ray
Images [9] Inception V3 Inception V3 92.8 Inception V3 96.31

Breast ultrasound
images [24] - - - Inception V3 92.31
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