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Abstract: Purpose: The purpose of this study was to test the technical feasibility and the impact
on the image quality of a deep learning-based super-resolution reconstruction algorithm in 1.5 T
abdominopelvic MR imaging. Methods: 44 patients who underwent abdominopelvic MRI were
retrospectively included, of which 4 had to be subsequently excluded. After the acquisition of the
conventional volume interpolated breath-hold examination (VIBEStd), images underwent postpro-
cessing, using a deep learning-based iterative denoising super-resolution reconstruction algorithm
for partial Fourier acquisitions (VIBESR). Image analysis of 40 patients with a mean age of 56 years
(range 18–84 years) was performed qualitatively by two radiologists independently using a Likert
scale ranging from 1 to 5, where 5 was considered the best rating. Results: Image analysis showed
an improvement of image quality, noise, sharpness of the organs and lymph nodes, and sharpness
of the intestine for pre- and postcontrast images in VIBESR compared to VIBEStd (each p < 0.001).
Lesion detectability was better for VIBESR (p < 0.001), while there were no differences concerning
the number of lesions. Average acquisition time was 16 s (±1) for the upper abdomen and 15 s
(±1) for the pelvis for VIBEStd, and 15 s (±1) for the upper abdomen and 14 s (±1) for the pelvis
for VIBESR. Conclusion: This study demonstrated the technical feasibility of a deep learning-based
super-resolution algorithm including partial Fourier technique in abdominopelvic MR images and
illustrated a significant improvement of image quality, noise, and sharpness while reducing TA.

Keywords: MRI; deep learning; abdominal; pelvic

1. Introduction

In the last decades, magnetic resonance imaging (MRI) has become the first modality
of choice in the investigation of abdominal and pelvic pathologies such as chronic inflam-
matory bowel diseases, pathologies of the urogenital tract, and local tumor staging in
malignancies [1,2]. Due to the development of faster MRI sequences, the modality even
became an alternative to other modalities in certain emergency cases, especially in pregnant
women and children [3–5].

One of the biggest challenges in abdominopelvic imaging are motion artifacts [6].
Although conventional turbo spin echo (TSE) MRI sequences provide good image quality
with a good signal-to-noise ratio (SNR) in abdominopelvic imaging, motion artifacts still
represent a major issue, particularly in imaging of the upper abdominal organs [7]. One
approach to handle this problem (especially in contrast-enhanced imaging) is gradient echo
(GRE)-based MR imaging. GRE sequences use a much shorter repetition time (TR), and
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therefore allow a significant reduction of the acquisition time (TA) [8,9]. Limitations of
GRE imaging are the vulnerability to magnetic field inhomogeneity and the susceptibility
to artifacts [10]. Despite these issues, contrast enhanced, three-dimensional, T1-weighted,
GRE-based sequences have prevailed in clinical routine abdominopelvic imaging [11].

Nevertheless, for the image acquisition in GRE images, several breath-holds are
needed so that good cooperation from the patient during the examination has a significant
influence on the image quality. To tackle this problem, several free breathing approaches
have been developed to make MR image quality as independent as possible from breathing
commands which are, however, not yet established in clinical routine [12,13].

Conventional acceleration techniques, as parallel imaging, allow an acceleration of
GRE imaging with the disadvantage of SNR loss proportional to the square root of the
acceleration factor [14–17]. However, in the last decade, deep learning-based imaging
has been investigated for automatic image analysis as well as for further acceleration of
MRI [18–22]. Deep learning-based sequences have shown the potential to reduce TA while
maintaining good image quality. Nevertheless, only a few studies have tested the clinical
application of deep learning-based sequences. Therefore, clinical implementation of deep
learning-based MRI will require more time and research to gain further insights.

Another interesting deep learning approach that could be implemented more eas-
ily is deep learning-based postprocessing. Deep learning-based reconstructions allow
a further improvement of image quality compared to compressed sensing and parallel
imaging [23,24]. In former studies, we could show the possibility of theoretical acquisition
time reduction via postprocessing due to the application of partial Fourier method in GRE
imaging of the upper abdomen and the pancreas in particular [25,26]. As these studies
showed a significant improvement of image quality on the upper abdominal organs, in this
study we want to analyze the super-resolution algorithm on a whole abdominopelvic MRI
scan while also focusing on the pelvis and the intestine.

As former studies have primarily shown improvements in noise, our aim is to investi-
gate further image parameters that could be improved by the investigated super-resolution
reconstruction algorithm.

Therefore, we are presenting the technical feasibility of a novel super-resolution-based
reconstruction technique in abdominopelvic MR imaging including an evaluation of image
quality, noise, sharpness of the organs and lymph nodes, sharpness of the intestine, the
level of artifacts, and lesion detectability.

In our article, we illustrate the technique and implementation of the applied algorithm
in a clinical abdominopelvic MRI protocol including pre- and postcontrast sequences
of the pelvis. The results show the impact of the super-resolution algorithm on several
image quality parameters. Finally, we discuss the relevance of the novel super-resolution
technique and offer a short forecast for possible research opportunities.

2. Material and Methods
2.1. Study Design

This monocentric, retrospective, single institutional study was approved with a waiver
of informed consent by the local institutional review board. The study was conducted
following the ethical standards of the Declaration of Helsinki from 1964 and its latest
revision in 2013. n = 44 patients who received an abdominopelvic MRI examination with a
1.5 T scanner in our radiology department were retrospectively included in the study.

2.2. Acquisition Parameters

All MRI examinations were performed in a clinical routine setting using 1.5 T scanners
(Aera and Avantofit, Siemens Healthcare, Erlangen, Germany). Patients were examined in
a supine position using a 32-channel spine coil and an 18-channel body coil. The standard
clinical protocol comprised the following sequences: 1. Axial standard T1w VIBE (VIBEStd)
precontrast with fat suppression using the Dixon method. 2. Axial standard T1w VIBE
postcontrast with fat suppression using the Dixon method in the equilibrium phase ap-
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proximately three minutes after contrast agent application. 3. Axial T2w BLADE using the
periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)
technique. 4. Coronal T2w Half Fourier Single-shot Turbo spin-Echo (HASTE). 5. Axial
diffusion weighted imaging using two different b-values (0 and 1000 s/mm2).

MRI examinations were conducted using a body-weight-adapted intravenous contrast
agent injection (0.1 mmol/kg gadobutrol (Gadovist, Bayer Healthcare, Berlin, Germany))
with a flow rate of 1.5 mL/s and followed by a saline flush of 20 mL.

Axial VIBE pre- and postcontrast images were acquired using two composed acquisi-
tions with the following parameters: voxel size of 1.3 × 1.3 × 3 mm3, slice thickness of 3 mm,
number of slices of 88, a TR of 6.5 milliseconds, echo times (TE) of 2.39/4.77 milliseconds,
a flip angle of 10 degrees, a parallel imaging factor of 4, phase partial Fourier 7/8, slice
partial Fourier 6/8, and a TA of 13 s.

2.3. Deep Learning Super-Resolution Postprocessing

After the acquisition of the conventional VIBEStd sequence used in clinical routine, the
corresponding raw data were reprocessed on the MRI scanner using a prototypical recon-
struction integrated into the vendor’s processing pipeline that can be triggered manually.
The prototypical reconstruction was configured to omit data that are outside of a specified
range of phase-encoding steps so that shorter acquisitions could be simulated. Further, after
image creation in the pipeline, the intermediate images were fed into a super-resolution
network that was trained on input images with a network-specific amount of partial Fourier
sampling, resulting in the deep learning-based super-resolution dataset VIBESR. Training
data were generated with increased resolution in head and pelvic imaging in volunteers
with acquisition times ranging from one to three minutes. The employed network was
trained for a slice partial Fourier factor of 0.75 and corresponds to the network used in
Ref. [25] from our research group (Figure 1).
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shuffling is applied for reshaping channels into interleaved voxels for upsampling. Finally, the ob-
tained high-resolution image is filtered by three convolutions, and a data consistency projection is 
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Figure 1. Network architecture used in this work. The input image volume passes through a sequence
of ten convolutions (deep blue) followed by leaky rectified unit activations (light blue). Three skip
connections using concatenation (green) are inserted. After a subsequent convolution, pixel shuffling
is applied for reshaping channels into interleaved voxels for upsampling. Finally, the obtained high-
resolution image is filtered by three convolutions, and a data consistency projection is performed in
the Fourier domain.

2.4. Image Analysis

Image analysis was performed using a dedicated workstation (Centricity PACS RA1000;
GE Healthcare, Milwaukee, WI, USA). All images were rated qualitatively by two indepen-
dent radiologists with 2 and 7 years’ experience in MR imaging in a random blinded order
and without any access to the patient history or the original radiological report. Image
analysis was performed using a Likert-scale ranging from 1 to 5.

All images were rated for overall image quality (1, nondiagnostic; 2, highly reduced
image quality; 3, moderate image quality; 4, good image quality; 5, excellent image quality),
noise levels (1, nondiagnostic; 2, high noise; 3 moderate noise; 4, little noise; 5, almost no
noise), sharpness of organs, lymph nodes, and the intestine (1, nondiagnostic; 2, highly
reduced sharpness; 3, moderate sharpness; 4, high sharpness; 5, excellent sharpness),
artifacts (1, nondiagnostic; 2, high level of artifacts; 3, moderate level of artifacts; 4, low
level of artifacts; 5, almost no artifacts) and lesion detectability (1, nondiagnostic; 2, lesion
barely detectably; 3, moderate lesion detectability; 4, good lesion detectability; 5, excellent
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lesion detectability). The rating was performed using a Likert-scale ranging from 1 to 5,
whereas reading scores ≥ 3 were considered as sufficient for clinical use.

In all examinations, the lesion with the largest diameter was measured by both readers.

2.5. Statistical Analysis

Statistical analysis was performed using dedicated statistical programs MedCalc
Statistical Software version 18.10 (MedCalc Software bvba, Ostend, Belgium) and jmp
(jmp15, MP®, Version 15 SAS Institute Inc., Cary, NC, USA, 1989–2019). Both parametric and
nonparametric values are shown using median and interquartile range (IQR). Comparison
of the ordinal, qualitative data was performed using the Wilcoxon-signed-rank test. The
inter-rater reliability was tested using linearly weighted Cohens κ, whereas values ≤ 0
indicate no agreement, 0.01–0.20 were rated as none to a slight agreement, 0.21–0.40 as
fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement, and
0.81–1.00 as almost perfect agreement [27]. Wilcoxon-singed-rank test was used to compare
the numeric data. Inter-rater agreement was tested using the ICC-correlation coefficient
with values < 0.5 indicating a poor agreement, 0.5–0.75 indicating a moderate agreement,
0.75–0.90 indicating a good agreement, and 0.90–1.0 indicating a perfect agreement [28].

3. Results
3.1. Patient Cohort

n = 4 of the n = 44 patients retrospectively included patients had to be subsequently
excluded. In two patients, the abdominopelvic MRI was conducted as part of an MR
imaging with a different protocol: n = 1 patient received a whole-body MRI, and in n = 1
patient, the imaging was performed during an MR-angiography of the aorta. As the
imaging protocol and the acquired sequences differed from our study protocol, these
patients had to be excluded. In n = 2 cases, the sequences were incomplete, so the patients
were excluded from the study.

Of n = 40 patients, n = 36 patients underwent the MRI examination for a follow-up of
a histopathological proven malignancy, while n = 4 patients had unclear symptoms that
needed to be clarified by MRI. A detailed subdivision of the reasons for the examination
can be found in Table 1. The median age was 56 ± 17 years with a range from 18–84 years;
24 patients were female, and 16 patients were male.

Table 1. Patient characteristics.

Patients (Male/Female), n 40 (16/24)

Age, mean ± SD (range), y total: 56 ± 17 (18–84)
male: 57 ± 18 (29–84)

female: 55 ± 16 (18–79)

Diagnosis, n Neuroendocrine neoplasia, 12
Sarcoma, 6

GIST, 4
Melanoma, 4

Further diagnostic clarification of unclear symptoms, 4
Urothelial carcinoma, 3

Testicular cancer, 2
Breast cancer, 2

Ovarian/fallopian tube malignancy, 2
Lymphoma, 1

n = number; SD = standard deviation; y, year.

3.2. Image Analysis

The test for inter-rater reliability showed a substantial agreement (κ = 0.733). Thus, we
decided to discuss only the results of the first reader. The detailed results of both readers
are listed in Tables 2 and 3.
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Table 2. Results of the precontrast image analysis.

Precontrast Images Reader 1 Reader 2

VIBEStd
Median (IQR)

VIBESR
Median (IQR) p-Value VIBEStd

Median (IQR)
VIBESR

Median (IQR) p-Value

Image Quality parameters
IQ 4 (4–4) 5 (5–5) <0.001 4 (4–4.5) 5 (5–5) <0.001

Noise 4 (3–4) 5 (5–5) <0.001 4 (3–4) 5 (4–5) <0.001
Sharpness organs and lymph nodes 4 (3–4) 5 (5–5) <0.001 4 (4–4) 5 (5–5) <0.001

Sharpness intestine 4 (3–4) 5 (5–5) <0.001 4 (3–4) 5 (5–5) <0.001
Artifacts 4 (4–4) 5 (4–5) <0.001 4 (4–4) 5 (4–5) <0.001

IQ = image quality; DC = diagnostic confidence; IQR = interquartile range.

Table 3. Results image analysis postcontrast images.

Postcontrast Images Reader 1 Reader 2

VIBEStd
Median (IQR)

VIBESR
Median (IQR) p-Value VIBEStd

Median (IQR)
VIBESR

Median (IQR) p-Value

Image Quality parameters
IQ 4 (3–4) 5 (5–5) <0.001 4 (4–5) 5 (5–5) <0.001

Noise 4 (3.5–4) 5 (5–5) <0.001 4 (4–4) 5 (5–5) <0.001
Sharpness organs and lymph nodes 4 (4–4.5) 5 (5–5) <0.001 4 (4–5) 5 (4–5) <0.001

Sharpness intestine 4 (3–4) 5 (5–5) <0.001 4 (3–4) 4 (4–5) <0.001
Artifacts 4 (4–4) 5 (4–5) <0.001 4 (4–4) 5 (4–5) <0.001

IQ = image quality; DC = diagnostic confidence; IQR = interquartile range.

3.3. Qualitative Results of the Precontrast Images

Image quality, noise, sharpness of the organs and lymph nodes, sharpness of the
intestine, and artifacts were significantly better for VIBESR (each p < 0.001). The most signif-
icant differences between VIBEStd and VIBESR were found concerning noise, sharpness of
the organs and the lymph nodes, and sharpness of the intestine that were all rated with
a median of 4 (IQR 3–4) for VIBEStd and with a median of 5 (IQR 5–5) for VIBESR. An
example of the improvement of quality in VIBESR is shown in Figure 2.
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his blood samples. In the MR images which were made to exclude an extragonadal tumor, the noise,
organ sharpness, and sharpness of the intestine are better in the VIBESR (b,d) than in the VIBEStd (a,c).
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3.4. Qualitative Results of the Postcontrast Images

Corresponding to the qualitative results of the precontrast images, similar differences
were also found in the postcontrast images. The rating for the VIBESR was significantly
better in terms of image quality, noise, sharpness of the organs and lymph nodes, and
sharpness of the intestine (each p < 0.001). The biggest differences were found regarding
image quality, noise, and sharpness of the intestine. Image quality was rated with a median
of 4 (IQR 3–4) for VIBEStd and with a median of 5 (IQR 5–5) for VIBESR. Median for noise
was 4 (IQR 3.5–4) for VIBEStd and 5 (IQR 5–5) for VIBESR, and median for sharpness of
the intestine was 4 (IQR 3–4) for VIBEStd and 5 (IQR 5–5) for VIBESR. The image quality
improvement in VIBESR is displayed in Figures 3–5.
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a better SNR and sharpness, thus offering more thorough information about the local extension and
possible lymph node metastases than the VIBEStd (a).
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Figure 5. Staging of a 29-year-old male patient after surgical resection of an embryonal cell carcinoma
of the testicle. The images show a hypointense retroperitoneal lymph node metastasis (arrow). Due to
a higher SNR and a better sharpness of the lymph nodes, organs, and the intestine, the metastasis and
surrounding structures can be better differentiated and assessed in the postcontrast VIBESR image (b)
than in the VIBEStd image (a).

3.5. Lesion Assessment

In 31 of 40 MRI scans, a lesion could be detected. There was no difference between
the number of detected lesions in both readers. The evaluation showed no statistically
significant differences regarding lesion size between VIBEStd (11 mm (IQR 7–25 mm)) and
VIBESR (12 mm (IQR 7–26 mm)) for reader 1 (p = 0.173) and between VIBEStd (11 mm (IQR
7–25 mm)) and VIBESR (12 mm (IQR 7–26 mm)) for reader 2 (p = 0.625) for neither the
precontrast nor postcontrast images. Inter-rater reliability, tested with ICC, was 0.998 for
the VIBEStd and 0.999 for VIBESR. The detailed results of the lesion assessment are listed in
Tables 4 and 5.

Table 4. Lesion assessment precontrast images.

Precontrast Images Reader 1 Reader 2

VIBEStd
Median (IQR)

VIBESR
Median (IQR) p-Value VIBEStd

Median (IQR)
VIBESR

Median (IQR) p-Value

Lesion size (mm) 11 (7–25) 12 (7–26) 0.173 11 (7–26) 12 (7–26) 0.625
Lesion detectability 4 (4–5) 5 (4–5) <0.001 4 (4–5) 5 (5–5) 0.003

IQR, Interquartile Range.

Table 5. Lesion assessment postcontrast images.

Postcontrast Images Reader 1 Reader 2

VIBEStd
Median (IQR)

VIBESR
Median (IQR) p-Value VIBEStd

Median (IQR)
VIBESR

Median (IQR) p-Value

Lesion size (mm) 11 (7–25) 12 (7–26) 0.173 11 (7–26) 12 (7–26) 0.625
Lesion detectability 4 (4–5) 5 (5–5) <0.001 4 (4–5) 5 (5–5) <0.001

IQR, interquartile range.

3.6. Acquisition Time

Average acquisition time was 16 sec (±1) for the upper abdomen and 15 sec (±1) for
the pelvis for VIBEStd and 15 sec (±1) for the upper abdomen and 14 sec (±1) for the pelvis
for VIBESR.
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4. Discussion

This study investigated the technical feasibility and clinical applicability of a novel
deep learning-based super-resolution image technique fitted to partial Fourier acquisitions
of T1-weighted precontrast and postcontrast abdominopelvic GRE imaging. The study
shows an improvement of overall image quality, noise, sharpness of the organs and lymph
nodes, sharpness of the intestine, artifacts, and lesion detectability, while reducing TA.

GRE imaging such as the VIBEStd is a widely used and approved imaging technique in
abdominopelvic MRI. Nevertheless, these sequences show a high susceptibility to artifacts
as being very sensitive to magnetic field inhomogeneities [8]. Another problem of GRE-
based imaging is the necessity of several breath-holds, particularly in abdominopelvic MRI,
which can be a limiting factor for uncooperative patients, elderly patients, and patients
with respiratory preconditions. Therefore, much effort has been made to approach this
aspect via free-breathing GRE sequences, including a free-breathing 3D VIBE sequence that
can improve lesion conspicuity and lower the artifacts in MR images [29,30]. However,
free-breathing sequences often lead to an extension of TA. Thus, these sequences may
be an advantage for patients who cannot perform breath-holds due to health restrictions.
Nevertheless, these sequences are still no adequate solution for patients who are unable to
lie quietly for a longer time, for uncooperative patients, or for dynamic contrast-enhanced
imaging. In parallel imaging, the time required for the breath-holds and TA can be reduced
by subsampling the k-space at the expense of a lower SNR. Our study could show that the
used super-resolution algorithm can significantly improve image quality and sharpness
while reducing TA via partial Fourier technique.

Therefore, the presented deep learning-based super-resolution postprocessing ap-
proach might be a solution to the higher noise levels in parallel imaging. In contrast to
compressed sensing, which proved to be very useful in reducing time for breath-holds in
MRI, no advanced computational systems are necessary for this kind of postprocessing.
The postprocessing can be completed at the conventionally used MRI scanner directly after
acquisition. The advantage is, also compared to parallel imaging and compressed sensing,
that the standard examination protocol does not have to be changed. Another benefit
consists of the retrospective omission of acquired data. On the one hand, the application in
the clinical routine would therefore not imply any change of workflows for the medical
staff. On the other hand, the original data are always available for standard reconstruction,
and no data are lost. The partial omission of data via this super-resolution algorithm that is
mimicking more aggressive partial Fourier factors also leads to a reduction of breath-hold
time and motion artifacts associated with breathing which naturally occur more often in
longer breath-holds. Especially when assessing the bowel and the pelvis, motion artifacts,
caused for example by the bowel motility, can also be a major issue [31,32]. Our study has
shown a significant improvement of the intestinal sharpness and the level of artifacts by
the implementation of a new super-resolution algorithm that might facilitate the evaluation
of the intestine and adjacent structures, particularly in the small pelvis.

Former investigated reconstruction algorithms in abdominal or pelvic MRI mainly im-
proved noise and TA. The super-resolution algorithm additionally improves overall image
quality, sharpness, and lesion detectability, and, therefore, allows a further improvement
of MR imaging [24]. Published results of our recent studies testing the super-resolution
algorithm in MRI of the upper abdomen und the pancreas could be confirmed by this
study [25,26]. In addition, we could show the technical feasibility and image quality im-
provement in a whole abdominopelvic MRI scan, which is used more frequently in patients
with unclear findings and as staging modality in patients with malignant tumors.

While many of the current studies state that image quality of novel sequences or
reconstruction algorithms was slightly impaired or similar, the super-resolution algorithm
allowed a significant improvement in almost all image parameters and, therefore, proved
to be superior to VIBEStd [33,34]. Especially in pelvic imaging, there are only a few studies
investigating accelerated deep learning-based MRI reconstruction algorithms or sequences
that also focus mainly on noise reduction [35]. To the best of our knowledge, this is the
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first study investigating the use of deep learning-based algorithms in postcontrast MR
sequences of the pelvis. Furthermore, this study also focused on the assessability of the
intestine and could show an improvement of sharpness by implementing VIBESR.

The artifact-free and high-resolution imaging is of enormous importance, especially
in young adults and children, where MRI can be used as a radiation-free alternative, for
example, in the staging of soft tissue tumors or in the clarification of unclear conditions.
As GRE sequences are very sensitive to magnetic field inhomogeneities, VIBESR could
be a technically feasible solution to this problem and reduce the noise levels and thereby
improve image quality and sharpness. Furthermore, the reduction of TA and breath-hold
time, independently of the improved image quality, could improve the acceptance of MRI
examinations in older, multimorbid patients and children who often have difficulties with
long-lasting breath-holds. As the algorithm significantly improves the image quality of
the intestine and the pelvic organs, deep learning could facilitate the assessment of the
intestine in MRI despite bowel movements. In pelvic imaging in particular, radiologists
are often faced with complex situations due to the proximity of the pelvic organs. Thus,
a high degree of image resolution is necessary to adequately distinguish the respective
structures from one another. Due to an improvement in sharpness, small pelvic structures
and pathologies could be identified and assessed more accurately. As especially in pelvic
imaging there are still just a few studies investigating the utility of deep learning in MRI,
further studies will be necessary to confirm our findings. This could also include the
implementation of deep learning algorithms in MRI enterography and MRI defecography
where deep learning-based algorithms might be an alternative to the use of currently
necessary medications [36].

Limitations

Some limitations of the study have to be considered. Firstly, we did not further
evaluate the MRI findings regarding benign or malignant criteria, so no conclusions on the
impact of the specificity can be drawn. Secondly, all images were evaluated retrospectively.
Further investigations on the possibility of a further time reduction using different settings
of data omission via application of more aggressive partial Fourier factors and the impact
on the specificity will have to be performed. In addition, the study was performed on
a patient cohort of 40 patients with a variety of different underlying diseases. Further
research will be needed to confirm the results of this and recently published studies on the
practicality of this treatment for individual underlying conditions.

In conclusion, this study illustrated the technical feasibility of deep learning-based
super-resolution adapted to partial Fourier acquisition in 1.5 T T1-weighted GRE imaging
in abdominopelvic imaging and showed a significant improvement of the image quality,
noise, sharpness, level of artifacts, and lesion detectability, while reducing TA.
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