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Abstract: The novel coronavirus (nCoV-2019) is responsible for the acute respiratory disease in
humans known as COVID-19. This infection was found in the Wuhan and Hubei provinces of
China in the month of December 2019, after which it spread all over the world. By March, 2020, this
epidemic had spread to about 117 countries and its different variants continue to disturb human life
all over the world, causing great damage to the economy. Through this paper, we have attempted
to identify and predict the novel coronavirus from influenza-A viral cases and healthy patients
without infection through applying deep learning technology over patient pulmonary computed
tomography (CT) images, as well as by the model that has been evaluated. The CT image data used
under this method has been collected from various radiopedia data from online sources with a total
of 548 CT images, of which 232 are from 12 patients infected with COVID-19, 186 from 17 patients
with influenza A virus, and 130 are from 15 healthy candidates without infection. From the results
of examination of the reference data determined from the point of view of CT imaging cases in
general, the accuracy of the proposed model is 79.39%. Thus, this deep learning model will help
in establishing early screening of COVID-19 patients and thus prove to be an analytically robust
method for clinical experts.

Keywords: COVID-19; machine learning; pneumonia; deep learning model; location attention
network; convolution neural network

1. Introduction

In late 2019, a sudden outbreak of pneumonia was detected in Hubei, Wuhan, China,
which immediately triggered an unprecedented worldwide outbreak [1,2]. This surpris-
ing pneumonia used a deep sequencing probe that discovered evidence of a bat-origin
coronavirus known as the novel coronavirus (nCoV-2019) [3,4]. This type of infection is
also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2,5]. As of
12 March 2020, the outbreak of this infection has led to approximately 80,981 confirmed
cases in various research centers in 31 provinces of China, with approximately 15,741 se-
rious cases, 1972 fatal cases, and 6578 suspected cases [6]. Later, the pandemic covered a
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wide area across the world including countries such as the Republic of Korea, Japan, Italy,
Thailand, France, Iran, Spain, and the United States. As of 31 January 2020, the COVID
disease was declared a “Public Health Emergency of International Concern” by the World
Health Organization [7]. The process of high transmission of this infection has linked the
disease to previous 21st century outbreaks of the beta coronavirus, SARS-CoV [8,9] and the
Middle East respiratory syndrome coronavirus (MERS-CoV) [7,10].

This novel coronavirus has shown potential for production during person-to-person
transmission [11,12]. Initially, the mortality rate of people affected by this virus was very
low compared to SARS-CoV and MERS-CoV, but in recent months its effect has been
considered to be very dangerous due to its different variants, in which the death rate of
affected people has increased. Social distancing and sanitization have been found to be the
best way to avoid this virus so far. Many studies have been conducted by various research
centers and clinical trials around the world to achieve 100% eradication of this virus, but
none of the research has reached that benchmark. In view of the way this epidemic is
continuously changing its behavior, immense possibilities of research are being seen in this
pandemic. Prodromal dry cough and low body temperature are one of the main features
of SARS-CoV-2 infection [13]. Because symptoms similar to this virus are also found in
influenza A and influenza B viruses, the clinical diagnosis of COVID-19 pneumonia can be
difficult. For high volume detection of suspected COVID-19 cases, laboratory detection is
challenging and may not be accessible to everyone with the associated contamination and
those who can also be infected, due to the lack of a test package for SARS-CoV-2.

CT images play an important role in the analysis of COVID-19 pneumonia. CT images
are also considered as primary line imaging methods in deeply determined cases and are
useful for visualizing image changes during treatment. Therefore, it can be concluded
that CT images can be considered as an effective diagnostic analytical tool for persons
suspected of having COVID-19 with negative reactions of reverse transcription-polymerase
chain reaction (RT-PCR), and that they have the ability to identify individuals who are
exceptionally suspected of SARS-CoV-2 infection [6]. Findings on CT images may indicate
disease severity. Therefore, artificial intelligence based prognostic techniques may be
helpful in identifying COVID-19 pneumonia.

Deep learning techniques have demonstrated usefulness in fields that depend on
image-based data, e.g., radiology, pathology, dermatology and ophthalmology [14]. Instead
of regular subjective visual evaluation of images by trained practitioners, deep learning
optimization separates complex examples into resulting information and subsequently
provides assessment in a quantitative way. Conversely, when feature engineering is
approached, deep learning systems take automatic qualification and selection of features,
and thus hardly expect human interaction. Deep learning techniques have identified their
feature engineering counterpart’s in several tasks, including identifying mammographic
lesions [15], the prognosis for mortality [16] and multi-modal imaging enlistment.

Convolutional neural network (CNN) modeling is a class of deep learning techniques
that link imaging filters to simulated channels with artificial neural networks (ANNs)
through a series of progressive linear and non-linear layers. The CNN layers progressively
capture the most prominent levels of images, eventually mapping the approximate decision-
making of the images to the original desired output. CNN has shown exceptional handling
ability of photographic, pathological and radiographic images in order to classification [17],
detection [18], segmentation [19], registration [20] and reconstruction [21] as well. Pre-
trained associations are used in images from different regions with different approaches;
these approaches are known as transfer learning, as an alternative solution when the test
size is considered low. In some instances, classifiers are constructed using an ensemble of
deep learning and feature engineering.

The aim of this research is to explore the potential of deep learning networks, especially
3D CNNs, to measure chest CT features as claimed by the research center with the detection
of COVID-19 features. This research can help in the evaluation of suspected cases and
claimed cases of COVID-19. This structured research has a broad scientific agreement
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(Figure 1), in which 7 small and specific CT-based COVID-19 cases were analyzed. To
detect and validate the prognostic intensity of CNN’s model, it considers three classes
including COVID-19, influenza A viral pneumonia, and non-reflective healthy cases. We
compared the performance of the CNN model with models based on clinical parameters
and engineered features, as demonstrated by its robustness in test trials and user-variable
conditions. To enhance the understanding of the assets captured by the CNN model, we
map notable regions in the images according to their commitments to predict within and
outside COVID-19.
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Figure 1. (a) Concerned neural network with human deep learning module, (b) modeling of research structure, (c) a
convolutional neural network (CNN) model.

2. Related Works

Given the previous research work relating to statistics on 2019-nCoV data, there are
very few. This area, therefore, deserves the attention of researchers to contribute to the
better prediction of 2019-nCoV data. Researcher Beck et al. [22] proposed architecture for
prediction of drug-target interactions (DTIs) based on the concept of artificial intelligence
(AI) which is useful for controlling the rapid spread of these infectious diseases. In design-
ing the architecture, molecule transformer-drug target interaction (MT-DTI) has been used
to estimate the binding affinity value between commercially available antiviral drugs and
target proteins, in another study researcher Nesteruk [23] using a mathematical model to
estimate the characteristics of 2019-nCoV in China.

The authors used a time versus individual susceptible, infected, and removed (SIR)
model for objective prediction. The obtained results of the correlation coefficient are highly
appreciated, but because of some weak features of the method that estimate the suspect
requires additional analysis before making a decision. The researchers Majumder and
Mandl [24] proposed a model called incidence decay and exponential adjustment (IDEA)
of mathematics, which uses average serial interval lengths ranging from 6 to 10 days from
SARS and MERS to fit the IDEA model. Researcher Read et al. [25], proposed a mathemati-
cal transmission model assuming a latent period of four days and close to an incubation
period. For statistical calculations, this model uses venom distribution and then applies
a deterministic SEIR meta-population transmission model over daily time increments
with transmission rate = 1.94 and infectious duration = 1.61 days. Similarly in one other
study researcher Butt et al. [26] proposed a deep learning-based complementary diagnostic
method for frontline clinical doctors with 86.7% accuracy to classify symptoms into three
groups, including COVID-19, influenza A viral pneumonia, or healthy infected patients.

3. Materials and Methods
3.1. Source of Dataset and Description

For modeling purposes, we extracted the computed tomography images from the
publicly accessible COVID-19 cases data, which is accessible by radiopedia.

The research took into account a total of 548 cross-segment CT image samples that
have been collected online. Out of these 548 CT images, 232 images are of 12 patients
infected with SARS-CoV-2 infection, 186 CT images of 17 patients infected with influenza
A virus, while the remaining 130 CT images are of 15 patients found in the category of
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non-infected healthy candidates. All the COVID-19 infected patients were identified and
confirmed through a real-time polymerase chain reaction (RT-PCR) test package. During
this investigation, only those cases whose chest can be seen in the CT image are included.
The median age of patients with confirmed infection was 46 years (which ranged from
18–69 years), and of whom approximately 73% were male. Symptoms such as mild fever,
conjunctivitis, dry cough, skin rash, and fatigue were observed in most of the patients,
while 23% of the patients had symptoms of severe illness such as chest pain or pressure,
and difficulty in normal breathing.

According to this study, it suggests that there should be a gap of at least one day
between CT image data sets taken from the same patient to ensure different types of
growth of virus. Thus the 316 CT images under research were obtained from the First
Affiliated Hospital of Zhejiang University as a controlled analysis collection. Out of which
186 were collected from 17 patients infected with influenza A virus who have CT images,
including A(H1N1), A(H3N2), A(H5N1), A(H7N9), etc., and 130 CT test images were of
healthy candidates who were found non-infected during the test. The study revealed
that 232 (87.62%) and 186 (81.69%) cases of COVID-19 and influenza A respectively were
reported from the early or progressive stage, while the remaining 9.6% and 13.4% were
from the severe stage (p > 0.05). Additionally, cases of influenza A virus are being isolated
from cases of patients suspected of severe SARS-CoV-2 infection (e.g., cases considered in
Figure 2a,b currently worldwide).
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Figure 2. Different sections of the transverse on CT image; (a) on the novel coronavirus; (b) on influenza A viral pneumonia
(IAVP); (c) on a healthy candidate who is not infected with the virus.

3.2. Dataset Preprocessing

To promote COVID-19 recognition, the CT image was returned to keep the tone of the
CT image at 1 × 1 × 1 mm3 that followed the nearest neighbor insertion standard. At the
time, CT sets that were returned to create viable lung region cover were pre-processed to
place random locations before preparation for the deep learning model.

1. As the advanced grayscale image was ranging in pixel estimates (0, 255), the retuned
raw data of the CT image was appropriately transformed from the Hounsfield unit
(HU) to the aforementioned properties. The HU data frame was truncated to within
(−1200, 600) (any value other than this was set to −1200 or 600) and then standardized
to (0, 255), directly corresponding to the digital format as presented in Figure 3a.

2. A fixed range (−600) was used to remove or binarize the returned computed tomog-
raphy images, and delicate bones and tissues, e.g., nerves and muscles, were filtered
with considerable HU values Figure 3b.

3. Each associated segment smaller than 0.3 cm2 and more than 0.99 unpredictable was
ejected to remove some noise from high-brightness spiral imaging. The segment
(usually clothes and ancillary equipment other than the human body) was also evacu-
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ated with center point separation of the CT image over 7 cm. In addition, segments
with volumes of 450 and 7500 cm3 were retained, as seen in Figure 3c. In the current
investigation the range was increased to the contrary and those who announced the
discovery of the lung knob were 22, which ranged from 680 to 75% cm3. Knob detec-
tion study typically focuses on small spots, while viral infection can be progressively
for COVID-19 cases.

4. In step 3, the mask disintegrated into two separate regions and then expanded to the
original shape to remove the small black spots Figure 3d.

5. High-structure activity, i.e., convex hull operation was performed on the effective
region to include areas of viral disease associated with the external mass of the lung,
which had been removed from previous advances.

6. Image matrix data from step 1 was replicated by the exchanged masks from step 5 to
obtain the final powerful aspiration region for further preparation. The region outside
the mask was filled with 193, which was proportional to 0 when it returned to the HU
estimate as Figure 3f.
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Figure 3. Resulting images of the preprocessing steps: (a) re-sampling of CT images with normalization; (b) CT image
binarization with HU threshold ~600 estimated; (c) after the separation of unrelated areas; (d) after the application of erosion
and dispersion operation; (e) mask construction on the image via convex hull operation; (f) fusing image of (a) and mask (e)
to generate a valid pulmonary region.

3.3. Data Processing and Augmentation Process Segment

Big amounts of the uninfected region were also isolated for this examination using a
3D division model, including the fibrotic structure of incorrectly recognized pneumonic,
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calcification, or non-infected regions. Thus, an additional class was added for disease as a
non-infected region (NIR) apart from influenza A virus and COVID-19.

So, under this finding, an additional classification was added to group the disease as
n-infectious region (NIR) is added despite COVID-19 and influenza A viral pneumonia.
The examination included total 618 CT test images (having contribution of 278 cases of
COVID-19, 224 cases of influenza A viral pneumonia and 175 cases of NIR). Therefore,
3957 applicative 3D shapes were created from the 3D segmentation model; only this 3D
square structure had more outrageous information on the middle mark of progress closer
to the center. In addition, the central image with two neighbors of every 3D shape found
this district to address for a possible classification step. Then, at that time, all the patches
of the image were arranged by two specialist radiologists into two types: non-infectious
disease and pneumonia. The images were commonly viewed as COVID-19 or influenza A
viral pneumonia, depending on the results of clinical findings in the final classification.

Cumulatively, a total 548 patches of image were obtained and considered for final
experiment from the above propels, that includes 232 for COVID-19, 186 for influenza
A viral pneumonia and 130 for NIR or healthy candidates, which were found to be non-
infected. Based on the previous data indices, the data has been divided into 70% as training
and 30% as test dataset for model; individually, a total of 383 CT sample tests have been
included under training dataset, including 165 of COVID-19, 131 of influenza A viral
pneumonia, and 87 for healthy candidates. An additional 165 (30%) images were kept
somewhat different to the test dataset.

Currently, the possibility of testing for cases of COVID-19 and influenza A viral
pneumonia has been doubled to accommodate the number of simulated infection instances
to reduce the impact of disproportionate spread of the different types of images in the data
set. Additionally, non-specific information expansion tools, for example, random clipping,
flipping (left–right, and up–down), and reflection operations, extend the amount of test
preparation in samples and prevent information from being adjusted.

3.4. The deep Learning Model for Classification and Segmentation
3.4.1. Region-Based Classification Technique

A designed purposed by researcher Kanne [27] and Chung [28], considered three
distinct features of COVID-19: the presence of pleura-glass, marginal diffusion next to the
pleura, and there is usually more than one transition free focal region, the case as shown in
Figure 4.

Our model based on optimizing these results. The purpose of the image classification
model is to identify the presence and structure of transformed diseases. In addition, the
relatively sharp edge shape was used as an additional weight to familiarize the model with
the concern area data relative to the correction on the pneumonic image. The focal area of
infection found near the pleura was more likely to be considered as COVID-19.

Relatively sharp edge shapes of each arrangement were determined as follows:

a. Calculate the shortest separation from the mask for the middle of this classification
(the double head arrow displayed in Figure 4c).

b. A rectangular shape with minimum diagonal length is obtained from the target
image (as shown in Figure 4d).

c. Then, the normal area from the covered edge at that point is obtained from the
distance estimated from step 1 numerically divided by the inclination of step 2).



Diagnostics 2021, 11, 1735 8 of 15
Diagnostics 2021, 11, 1735 8 of 15 
 

 

  
(a) (b) 

(c) (d) 

Figure 4. (a) Four ground-glass focus of infection on the novel coronavirus image; (b) similarly, the ground-glass image of 
influenza A viral pneumonia focused on infection; (c) identification of the distance (minimum) between the mask and the 
center of the patch (presented with a two-headed arrow); (d) diagonal identification of the bounded rectangle (with the 
minimum length) of the pulmonary image. 

3.4.2. Applied Network Structure 
As per the widely used of 3D V-NET (Volumetric-Convolutional Network) in the 

field of medical imaging segmentation, we are going to use the VNET-RPN 
(Volumetric-Convolutional network) structure (as of Figure 5) in current work. 

It involves two forms of the system: contract and extension paths. In the first step 
images are fed into the contracting path to complete the down examination process for 
capturing configuration data. 

At that point, the precision-image up examination process completes in a balanced 
and extended way to obtain accurate image constraint data. Simultaneously, the features 
map with equivalent measurements of both paths are interconnected, which encourages 
maintaining the point-by-point of the neural network system of the contracting pathway 
during the production of information. 

The output layer of 3D V-NET must be suppressed, as they were originally intended 
to create image segmentation, while the focus of this research was to locate and classify 
the region of viral infection. This implemented evaluation model consisted of two 
sections: including the feature extraction section and the region proposal network (RPN) 
performance layer. The first section extracted the features, i.e., generated feather maps 
and allow the network to capture data at multiple scales. In the next section RPN’s 
performance settings allowed the system to offer resolutions (jump boxes for predicted 
regions) and classification directly. 

Figure 4. (a) Four ground-glass focus of infection on the novel coronavirus image; (b) similarly, the ground-glass image of
influenza A viral pneumonia focused on infection; (c) identification of the distance (minimum) between the mask and the
center of the patch (presented with a two-headed arrow); (d) diagonal identification of the bounded rectangle (with the
minimum length) of the pulmonary image.

3.4.2. Applied Network Structure

As per the widely used of 3D V-NET (Volumetric-Convolutional Network) in the
field of medical imaging segmentation, we are going to use the VNET-RPN (Volumetric-
Convolutional network) structure (as of Figure 5) in current work.

It involves two forms of the system: contract and extension paths. In the first step
images are fed into the contracting path to complete the down examination process for
capturing configuration data.

At that point, the precision-image up examination process completes in a balanced
and extended way to obtain accurate image constraint data. Simultaneously, the features
map with equivalent measurements of both paths are interconnected, which encourages
maintaining the point-by-point of the neural network system of the contracting pathway
during the production of information.

The output layer of 3D V-NET must be suppressed, as they were originally intended
to create image segmentation, while the focus of this research was to locate and classify the
region of viral infection. This implemented evaluation model consisted of two sections:
including the feature extraction section and the region proposal network (RPN) perfor-
mance layer. The first section extracted the features, i.e., generated feather maps and allow
the network to capture data at multiple scales. In the next section RPN’s performance
settings allowed the system to offer resolutions (jump boxes for predicted regions) and
classification directly.
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Through research, we structured and evaluated a 3D CNN system model, which has a
multi-feature extraction structure with a comparative RPN layer, with a V-NET backbone
as part of feature extraction, as it appears in Figure 5.

3.5. Analytical Report of Network
3.5.1. The Decision for Each Candidate Region

This artificial intelligence technique is inspired by the hypothesis of bagging produc-
tion algorithm based on the ensemble technique of machine learning. In it, a candidate
region is addressed through three patch images: origin image consist of two neighbors.
These three images decide the innovation with this whole region.

1. In the event that in any condition if two pictures were classified into a comparative
type, the image with the most extreme confidence level at that time was chosen.

2. Otherwise, image with maximum confidence level (not overwhelmed) was chosen.

In the next step, the region with a non-infected region for disease was neglected.
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3.5.2. Noise-OR Bayesian Classifier Function (Cause of Normal Reports)

One of the unique features of the spreading nature of COVID-19 is more than one
independent focal area of infection involved in the case of CT image test. It is sensible that if
a patient has two COVID-19 regions, the overall probability is more than half, meaning both
have being half-chances. As needed, the absolute transition confidence level (P) for disease
type was determined using a Noise-OR Bayesian classifier of probability (Equation (1)):

P = 1 − ∏
i
(1 − Pi) (1)

where, Pi presents the confidence level of the ith region.
In the same way, two types of P COVID-19 and P influenza A viral pneumonia, were

concluded, at this point, this CT test was categorized in the comparison group as indicated
by the estimated value of P.

In addition, procedures that were used for a sensible referral to clinical experts with
the reliability certainty of a complete CT test were:

1. In the event that both estimates of P were equal to 0, at this point there was a spot in
this CT test belongs to the non-infection founded case.

2. If one of the P estimates was equal to 0, then the second P estimate was directly
changed to the certainty of this CT test.

In addition, the softmax function was used to create two confidence levels.

Si =
ePi

∑ jePi
(2)

Softmax function operation standardized the sum of Si.

4. Results
4.1. Evaluation Phase

An Intel Core i7-eighth generation CPU with a practical 4 GB NVIDIA realistic graphic
card detail framework has been used to test the proposed model. The processing time is
deeply dependent on the number of image layers in a single CT image set. Normally it
is taken from preprocessing of information to report output under 30 for CT image set of
70 layers.

4.2. Model Training Process

Cross entropy was just used, as one of the more traditional lose function used in the
classification model. When the epoch number of model generation training cycles exceeded
500, the estimation of loss value was markedly decreased or increased, proposing that
the model may well be in a somewhat idealized state without a particular over-fit value.
Modeling training curves to the estimation of loss and accuracy for the two classification
models as in Figure 6. The framework contrast preparation of data collection with the
region-based system obtained an improved execution in the original ResNet.
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4.3. Model Performance of Test Dataset

The precision of the model decides how exact the qualities are assessed. The accuracy
decides the reproducibility of the gauge or the numbers of expectations are right. The
survey shows the number of right outcomes has been found. The f1-score utilizes a
combination of accuracy and adjustment to decide unbiased outcomes with average effect.
The equations from (3) to (6) show the most ideal approach to compute the performance
metrics of the model,

Accuracy (acc.)
= (True Positive+True Negative)

(True Positive+False Positive)(True Negative+False Negative)
(3)

Precision (prec.) =
True Positive

(True Positive + False Positive)
(4)

Recall (rec.) =
True Positive

(True Positive + False Negative)
(5)
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f1 − score =
2 × prec. × rec.
(prec. + rec.)

(6)

4.4. Segmentation

To test the model, a total of 20 CT sample images were arbitrarily selected from each
group of CT images, for example COVID-19, influenza A viral pneumonia, and healthy
candidate without infection. Following the standard that considered a person image (not
the owner of this CT) was included during the model training phase. In addition, the
VNET-IR-RPN segmentation model was coordinated to reduce the range of motion, so it
can be executed very well even in an increasing number of free regions in many specialized
areas. An example of a CT test in which a location was not divided, for example, COVID-19
or influenza A viral pneumonia, was incorrectly classified into a healthy candidate region
group, as shown in Figure 7. The contamination is hardly observable by an individual and
appears suspicious even for this evaluation to be considered by the model.
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4.5. Classification for a Single Image Patch

Total 165 patches of different images were obtained from 44 CT sample tests, which in-
cludes 69 images for COVID-19, 54 images for influenza A viral pneumonia and 42 images
for healthy candidates having no-infection. The design of each interaction was evaluated
using the actual and predicted values of confusion matrix. With including and disinclin-
ing the region-specific features structures of two models have been evaluated and their
corresponding confusion matrix computed in Tables 1 and 2.

Table 1. Computation of a 3 × 3 confusion matrix on three attributes as COVID-19, IAVP and a
healthy candidate without infection (HCI). The features specified in the presented areas of the V-NET
and VNET-RPN models are represented through V1 and V2.

Predicted Results

COVID-19 IAVP HCI
V1 V2 V1 V2 V1 V2

COVID-19 180 174 17 14 40 41
IAVP 33 31 193 187 49 53
HCI 54 51 45 42 587 608
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Table 2. Model performance evaluation metrics on recall, precision, and f1-score of both classification
models for COVID-19, IAVP, and a Healthy Candidate without infection (HCI).

Recall Precision f1−Score
V1 V2 V1 V2 V1 V2

COVID-19 0.65 0.64 0.58 0.58 0.59 0.61
IAVP 0.64 0.63 0.54 0.56 0.58 0.59
HCI 0.73 0.73 0.76 0.75 0.74 0.78

The average f1-score for both models was calculated to be 0.6393 and 0.6633, respec-
tively. Comparing the f1-scores of the models shows that the second models with better
performance which include a region specific feature model with the other model are not
included. In this sense, this model was used for the remainder of this research exploration.

Rulings for a specific region each image fix chooses to introduce the entire candidate
locale regions. An aggregate of 165 candidate cubic structures were perceived, including
69 of COVID-19, 54 of influenza A viral pneumonia, and 42 of healthy candidates without
infection. A confusion matrix of the decision results and performance metrics associated
accuracy, precision, recall, and f1-score showed up in Tables 3 and 4. The average f1-score
for the three order classification was 0.65 and contrasted with a 4.68% improvement from
the past advance.

Table 3. Confusion matrix of COVID-19, IAVP, and a Healthy Candidate without infection (HCI).

Predicted Results

COVID-19 IAVP HCI

COVID-19 42 16 7
IAVP 13 37 8
HCI 9 4 29

Table 4. Model performance evaluation metrics on recall, precision, and f1-score of both classification
models for COVID-19, IAVP, and a Healthy Candidate without infection (HCI).

Predicted Results

Recall Precision f1−Score

COVID-19 0.66 0.65 0.65
IAVP 0.66 0.64 0.64
HCI 0.66 0.69 0.67

4.6. Classification Results for CT Image Samples

The noise-or Bayesian classifier task was used to separate the predominant disease
types. In a previous report, three types of results were analyzed over three categories such
as COVID-19, influenza A viral pneumonia, and non-infected regions (NIRs). The results
obtained during test are summarized in Tables 5 and 6. Since the NIR for disease would
be ignored and not checked by Bayesian classification function, we only took an average
f1-score for the two onsets. They were 0.65 and 0.69 individually, indicating a growth of
6.16%. Furthermore, the general ordering accuracy for each of the three groups is 79.39%.

Table 5. Confusion matrix of COVID-19, IAVP, and HCI.

Predicted Results

COVID-19 IAVP HCI

COVID-19 56 8 5
IAVP 8 41 6
HCI 4 3 34
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Table 6. Model performance evaluation metrics on recall, precision, and f1-score of Bayesian classifi-
cation models for COVID-19, IAVP, and a healthy candidate without infection (HCI).

Predicted Results

Recall Precision f1−Score

COVID-19 0.82 0.81 0.82
IAVP 0.79 0.75 0.77
HCI 0.76 0.83 0.79

This research used the deep learning technique in order to identify and classify COVID-
19 from influenza A viral pneumonia. With respect to the structure of the system, traditional
V-NET was used to feature extraction. Then it tested with system models with and without
additional components of region specified features. Testing indicated that the component
described above could detect COVID-19 cases more effectively.

5. Conclusions

At present there are no excellent diagnostic kits for rapidly identifying COVID-19 and
professional doctors are also highly confused in differentiating between normal flu and
COVID-19, the unwanted virus that has created fear in every human without geographical
limitation. Currently, RT-PCR is the only exclusive option for identifying COVID-19. Here,
we utilize the deep learning technique that can be utilized for masses and could help to
control the pandemic by identifying COVID-19 patients in order to quarantine them as
needed. Our research presents a deep learning technique that could screen COVID-19
automatically. The model uses multicenter case studies for collecting the CT images as the
dataset. The region-specific feature mechanism promotes the model that can perform more
accurately to classify COVID-19 from chest radiography. The model overall accuracy rate
was found to be around 79.39% and to be promisingly advantageous with small sample
sizes due to the dearth of data indication techniques for leading clinical experts. However,
with an additional sample size in the future, the more accurate results may be produced
that will be helpful for researchers and the scientific community in predicting the cases as
well as in fighting back COVID-19 itself. In addition, this outcome will also help to identify
the other diseases post-SARS-CoV-2 infection and future public health emergency.
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