
diagnostics

Article

Diagnosis of Diabetes Mellitus Using Gradient Boosting
Machine (LightGBM)

Derara Duba Rufo 1 , Taye Girma Debelee 2,3 , Achim Ibenthal 4,* and Worku Gachena Negera 3

����������
�������

Citation: Rufo, D.D.; Debelee, T.G.;

Ibenthal, A.; Negera, W.G. Diagnosis

of Diabetes Mellitus Using Gradient

Boosting Machine (LightGBM).

Diagnostics 2021, 11, 1714.

https://doi.org/10.3390/

diagnostics11091714

Academic Editor: Dario Pitocco

Received: 8 August 2021

Accepted: 17 September 2021

Published: 19 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Engineering and Technology, Dilla University, Dilla 419, Ethiopia; derara2015duba@gmail.com
2 College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University,

Addis Ababa 120611, Ethiopia; tayegirma@gmail.com
3 Ethiopian Artificial Intelligence Center, Addis Ababa 40782, Ethiopia; worku.gachena2@gmail.com
4 Faculty of Engineering and Health, HAWK Universityof Applied Sciences and Arts,

37085 Göttingen, Germany
* Correspondence: achim.ibenthal@hawk.de

Abstract: Diabetes mellitus (DM) is a severe chronic disease that affects human health and has a
high prevalence worldwide. Research has shown that half of the diabetic people throughout the
world are unaware that they have DM and its complications are increasing, which presents new
research challenges and opportunities. In this paper, we propose a preemptive diagnosis method
for diabetes mellitus (DM) to assist or complement the early recognition of the disease in countries
with low medical expert densities. Diabetes data are collected from the Zewditu Memorial Hospital
(ZMHDD) in Addis Ababa, Ethiopia. Light Gradient Boosting Machine (LightGBM) is one of the
most recent successful research findings for the gradient boosting framework that uses tree-based
learning algorithms. It has low computational complexity and, therefore, is suited for applications in
limited capacity regions such as Ethiopia. Thus, in this study, we apply the principle of LightGBM
to develop an accurate model for the diagnosis of diabetes. The experimental results show that the
prepared diabetes dataset is informative to predict the condition of diabetes mellitus. With accuracy,
AUC, sensitivity, and specificity of 98.1%, 98.1%, 99.9%, and 96.3%, respectively, the LightGBM model
outperformed KNN, SVM, NB, Bagging, RF, and XGBoost in the case of the ZMHDD dataset.

Keywords: diabetes mellitus; detection; LightGBM; diabetes diagnosis

1. Introduction

Type 2 diabetes is the most common type of diabetes. As per the report by the
International Diabetes Federation (IDF) 9th edition, there are currently 351.7 million people
of working age (20–64 years) with diagnosed or undiagnosed diabetes in 2019, of which
about 90% are type 2 diabetes. The number of people affected by diabetes is expected to
increase to 417.3 million by 2030 and 486.1 million by 2045. The largest increase will take
place in low and middle-income countries. Consequently, DM has become a life-threatening
global health issue, which requires early detection and diagnosis to better prevent and
reduce its incidence.

In the last few decades, many advanced data mining algorithms and data analysis
techniques have been developed in the medical field, among others. Data mining tech-
nology has become an essential tool in the medical field for applications such as disease
prediction, assistant diagnosis, breast cancer detection, brain tumor detection, and treat-
ment [1–10]. Data mining technology extracts the knowledge and patterns hidden by
diseases by analyzing a large amount of medical diagnostic data. Thus, it provides accurate
decision-making for the diagnosis and handling of diseases. As the scale and complexity
of medical data increases, the detection of diabetes mellitus using data mining becomes an
important and interesting research problem.
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In 2017, about 318,000 mobile health applications were available to consumers through-
out the world [11]. This includes tools enabling diabetes self-management by mobile
devices such as mobile phones, tablets, or smart watches [12]. Some diabetes applications
differ in the choice of indicators to be tracked, such as blood glucose estimations, suste-
nance and sugar, physical movement and weight tracking, imparting information to health
and social workers, as well as providing patient information. However, most of these
existing diabetes-related mobile health applications are designed for users with a preceding
affirmative diagnosis of the disease status and accompanying factors, while this study is
dedicated to the early diagnosis of DM using machine learning algorithms.

There are several machine-learning-based diabetes assessment approaches; among
them, diagnosis, prediction, and complication analysis are the most researched ones.
In diabetes diagnosis [13–15], researchers used a patient’s diabetes history and physical
examination results such as plasma glucose concentration, diastolic blood pressure, body
mass index, age, weight, diet, insulin, water consumption, blood pressure, sex, etc. as input
to the machine learning algorithms. The most frequently used machine learning algorithms
are support vector machines (SVM), k-nearest neighbor (kNN), decision trees, Naive Bayes
(NB), and tree boosting algorithms such as XGBoost, Adaboost, and random forest (RF) [15].
Conventional algorithms such as kNN, SVM, NB, etc. result in low performance, whereas
ensemble algorithms such as XGBoost, Adaboost, and RF comparatively achieve a higher
level of accuracy. Since these ensemble learners are defined on a set of hyperparameters,
their design involves a global optimization task to combine a set of indicators into a reliable
classification model.

Ravaut et al. [16] performed large-scale machine learning studies with health record
datasets of patients in Ontario, Canada, provided by the Institute of Clinical Evaluative
Sciences (ICES) to predict the risk of diabetes in a range of 1–10 years ahead. The considered
dataset has about 963 total input features. The authors compared logistic regression, XG-
Boost, Highway Network, CNN-LSTM, and LSTM-Seq2Seq algorithms to predict the risk
of diabetes mellitus for a scope of 10 years. Based on experimental analysis, the XGBoost
model outperforms other algorithms. The most researched diabetes complications are
retinopathy, neuropathy, and nephropathy. In [17], logistic regression is used to predict the
involvement of retinopathy, nephropathy, and neuropathy at different time scenarios—3,
5, and 7 years from first diabetes reference. Input features are gender, hypertension, age,
glycated hemoglobin (HbA1c), smoking habit, time from diagnosis (how long after diabetes
diagnosis), and body mass index (BMI).

As discussed above, ensemble learning algorithms in many cases outperform other
machine learning approaches for disease diagnosis. Fundamentally, this is achieved by
combining multiple base classifiers (individual classifier algorithms) into an ensemble
model by learning the inherent statistics of the combined classifiers and, hence, outperform-
ing the single classifiers [18]. In this paper, we investigate LightGBM ensemble classifiers
for the early detection of DM. This research work aims at supporting health practitioners
in the diagnosis of DM.

LightGBM is an ensemble algorithm developed by Microsoft that provides an efficient
implementation of the gradient boosting algorithm [19]. The primary benefit of LightGBM
is a dramatic acceleration of the training algorithm, which, in many cases, results in a
more effective model. LightGBM is constructed on the top of decision tree algorithms,
employing nestimators numbers of boosted trees. Tree boosting algorithms outperform others
for prediction problems [20]. The LightGBM ensemble learning algorithm has been applied
in numerous classification and regression studies and achieved excellent detection results,
indicating that LightGBM is an effective classifier algorithm.

The proposed LightGBM model provides an optimized decision-support system for
users. The particularity of the proposed approach is in the procedure used to calculate
the number of decision trees, maximum depth of the trees, and number of tree leaves
to construct an optimal LightGBM model. Furthermore, the first local diabetes dataset
of Ethiopia has been prepared to design a CAD (Computer Aided Diagnosis) system for
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the early detection of DM. Thus, the purpose of this study is to develop an optimal and
accurate diabetes diagnosis model based on machine learning algorithms.

The remainder of this article is organized as follows: Section 2 discusses the related
existing work and accomplishments in the prediction and diagnosis of DM. Section 3
describes the materials used in the experiment, the research method, and the details of the
proposed diabetes detection model. Section 4 provides a discourse to the experimental
results and model evaluation, including a comparison to previous research approaches.
Section 5 states the study limitations and concludes the study with established guidelines
for future work.

2. Related Work

In general, we found that there are two categories of existing methods related to
diabetes prediction problems: machine learning viz. classification/detection [18,21–23]
and forecasting or forward prediction [16]. In this study we are interested in estimat-
ing the probability of diabetes positivity and to review relevant indicators and machine
learning methods.

From the existing publications, we generalized two main approaches related to
diabetes-related features. In the first approach, some indicators that were more relevant to
diabetes mellitus from the view of medicine are selected manually/systematically and used
for diabetes prediction or diagnosis [21–24]. In the second approach, all diabetes-related
available attributes are given to machine (deep) learning algorithms [16,25,26] and learning
models must recognize the important features [16]. Our investigations follow the first
approach by obtaining the expertise of physicians on diabetes indicators for data collection.
The proposed indicators are verified by their correlation to the class variable in Table 1 in
order to prove statistical relevance.

According to this survey, Deep Neural Networks (DNN) and Support Vector Machines
(SVM) achieve the best classification outcomes, followed by random forests and other
ensemble classifiers. For DM detection/prediction, the best-in-class method reported by
Chaki et al. applies SVM on oral glucose tolerance test data at an accuracy of 96.8% [27].
Hence, this is regarded as a performance landmark for our algorithmic studies based on
patient anamnesis data used to predict type 2 DM. Subsequently, we refer to studies on
comparable data.

Deberneh and Kim [28] investigated the problem if patients will develop type 2
DM one year after data elicitation of 12 features: (i.) fasting plasma glucose, (ii.) glycated
hemoglobin (HbA1c), (iii.) triglycerides, (iv.) body mass index, (v.) gamma-glutamyltranspep-
tidase (γ-GTP), (vi.) age, (vii.) uric acid, (viii.) sex, (ix.) smoking, (x.) drinking, (xi.) physical
activity, and (xii.) family history. They found that the prediction has an accuracy of up
to 73% for soft voting and random-forest-based approaches, while XGBoost performed
slightly less at 72% accuracy. In case the input data are elicited over a period of the past
4 years, the accuracy increased to 81%. On the one hand, this is significantly less than the
96.8% prediction accuracy reported in [27]; on the other hand, the merits are to predict the
occurrence of type 2 DM in the future and, hence, to allow for preventive treatment.

Chaki, J. et al. [29] systematically reviewed the art of machine learning and artificial
intelligence for diabetes mellitus detection and self-management. Their work focused on
four specific aspects: (i.) databases, (ii.) ML-based classification and diagnostic methods,
(iii.) AI-based intelligent assistants for patients with DM, and (iv.) performance metrics.

Alasaf et al. [30] proposed a system aimed at preemptively diagnosing DM in Saudi
Arabia. They retrieved data from King Fahd University Hospital (KFUH) in Khobar,
Saudi Arabia. The collected dataset contained 399 records, of which 191 instances were
diabetic and 208 instances were not diabetic with a binary target variable (diabetic or not).
Preprocessing techniques were applied to the data to identify relevant features, and 48
more relevant features were selected and prepared for the identification/classification
process. Four classification algorithms (SVM (LibSVM), ANN, NaiveBayes, and k-NN)
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Table 1. Description of ZMHDD Attributes.

Diabetes Indicators Description Unit Correlation to
(Attribute) Class Variable

Age patient age years −0.03
Gender patient gender male/female 0.014
Insulin hormone made by the pancreas organ that allows

human body to use sugar (glucose) from food
carbohydrates for energy conversion or storage

pmol/L 0.009

Systolic_BP systolic value of blood pressure: indicates
highest pressure exerted as blood pushes
through heart

mmHg 0.16

Diastolic_BP diastolic value of blood pressure: indicates the
pressure maintained by the arteries when the
vessels are relaxed between heartbeats

mmHg −0.045

BMI body mass index: a person’s weight in kilograms
divided by the square of height in meters

kg/m2 0.29

Total_Cholesterol Total blood cholesterol: accumulated figure
of all different blood fats (includes high-
density lipoprotein (HDL), low-density lipopro-
tein (LDL) and 20% of the total triglycerides)

mg/dL 0.34

Low_Density_Lipoprotein low-density lipoprotein (LDL) cholesterol: often
known as ‘bad cholesterol’, because it can build
up in blood vessels

mg/dL 0.11

Pulse_Rate a measurement of the heart rate, or the num-
ber of times the heart beats per minute; it also
can indicate the heart rhythm and strength of
the pulse.

bpm 0.19

FBS fasting blood sugar: blood sugar when a patient
has not eaten or consumed any calories in the
past 8 h (usually, this is done overnight)

mg/dL 0.37

Class observed diabetes status (0: nondiabetic,
1: diabetic)

– 1.00

were applied to predict the DM. As a result, ANN outperformed other algorithms with the
testing accuracy of 77.5%.

Faruque et al. [31] explored various risk factors related to diabetes mellitus using
machine learning techniques. They collected diabetes data of 200 patients consisting of
15 diabetes indicators (features): (i.) age, (ii.) sex, (iii.) weight, (iv.) diet, (v.) polyuria,
(vi.) water consumption, (vii.) excessive thirst, (viii.) blood pressure, (ix.) hypertension,
(x.) tiredness, (xi.) vision problems, (xii.) kidney problems, (xiii.) hearing loss, (xiv.) itchy
skin, and (xv.) genetics with one binary class variable (diabetic or not) from the diagnostic
of Medical Centre Chittagong, Bangladesh. Four machine learning algorithms (SVM, NB,
KNN, and C4.5 Decision Tree) were used to predict diabetic mellitus. Empirical results
showed that the C4.5 decision tree achieved a higher accuracy of 73.5% compared with
other machine learning techniques.

Xu and Wang [18] proposed a type 2 diabetes risk prediction model based on an
ensemble learning method using the publicly available UCI Pima Indian diabetes dataset
(PIDD). PIDD contains eight diabetes indicator attributes viz. (i.) number of times pregnant,
(ii.) plasma glucose concentration a 2 h in an oral glucose tolerance test, (iii.) diastolic
blood pressure (mmHg), (iv.) triceps skin fold thickness (mm), (v.) 2-h serum insulin
[µU/mL] [32] (vi.) body mass index (weight (kg)/(height (m))2), (vii.) diabetes pedigree
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function, and (viii.) age (years) with one binary class variable (diabetic or not). They
followed a two-step approach. Firstly, they developed a weighted feature selection algo-
rithm based on random forest (RF-WFS) for optimal feature selection; then, the extreme
gradient boosting (XGBoost) classifier was applied to predict the risk of diabetes mellitus
accurately. The experimental results showed that the model has a better accuracy of 93.75%
in classification performance than other preceding research results.

Nowadays, for classification and diagnosis problems, LightGBM outperforms other
state-of-the-art methods, cf. [33–40]. In these related works, LightGBM is not only selected
for its effective prediction performance, but also for its shorter computational time and op-
timized data handling technique. For instance, in [41], LightGBM and XGBoost algorithms
were employed to construct the prediction models for cardiovascular and cerebrovascular
diseases prediction based on different indicator elements (features) such as systolic blood
pressure (SBP), diastolic blood pressure (DBP), serum triglyceride, serum high-density
lipoprotein, and serum low-density lipoprotein. The LightGBM model achieved the lowest
least mean square error (LMSE) for all indicators.

From the above review, we observed that Ethiopian data have never been explored be-
fore in diagnosing diabetes using artificial intelligence (AI) technology. Hence, an important
goal of this project is to prepare a diabetes dataset for the application of machine-learning-
based diabetes diagnosis serving two purposes: (a.) decision support for physicians and
handling of potential diabetes conditions onset and (b.) improvement of DM detection
coverage in countries with low physician density. From the existing work, we observed
LightGBM and XGBoost ensemble classifiers are the most promising models for diabetes
detection and even for diagnosing other diseases. However, XGBoost has a lower speed
compared with LightGBM. The LightGBM algorithm features lower memory usage, higher
speed and efficiency, compatibility with large datasets over XGBoost, and better accuracy
than any other boosting algorithm [19]. LightGBM is almost seven times faster than XG-
Boost [19] and, hence, is a much better approach when working on large datasets. This
makes LightGBM an interesting candidate for DM detection.

3. Materials and Methods

According to the WHO (World Health Organization) 2019 report [42], four gold stan-
dards of DM diagnostic tests are recommended, which are fasting plasma glucose (fasting
blood sugar, FBS), 2-h post-load plasma glucose after a 75 g oral glucose tolerance test
(OGTT), HbA1c, and random blood glucose. Individuals with FBS values of ≥7.0 mmol/L
(126 mg/dL), OGTT ≥ 11.1 mmol/L (200 mg/dL), HbA1c ≥ 6.5% (48 mmol/mol), or a
random blood glucose ≥ 11.1 mmol/L (200 mg/dL) are considered to have diabetes. In the
case of Ethiopian hospitals, the majority of these diabetes diagnostics standards are prac-
ticed. Additionally, age, gender, body mass index (BMI), measured insulin, total cholesterol,
the systolic value of blood pressure, the diastolic value of blood pressure, and low-density
lipoprotein (LDL) cholesterol may be taken into account as optional attributes.

To achieve our goal, the study approach consists of five stages, which are (i.) overview
of proposed approach, (ii.) diabetes data collection with the relevant attributes of the pa-
tients, (iii.) data preprocessing (cleaning), (iv.) evaluation metrics, and (v.) comparison of the
proposed method with various machine learning classification techniques. Subsequently,
we briefly discuss these procedures.

3.1. Overview of Proposed Approach

The proposed approach workflow includes the following steps:

1. Problem statement: Identify and solve scientific challenges to diagnose diabetes by
machine learning in order to prevent or reduce its impact on physical and social
well-being.

2. Relevant data collection: diabetes-related data were collected from Zewditu
Memorial Hospital.
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3. Diabetes dataset: the collected diabetes data were converted to machine learning
model recognizable (tabular) format.

4. Data preprocessing: patterns underlying the data were visualized by box-plot and
correlation heat-map. Irrelevant data elements and column values were removed and
replaced, respectively. The correlation coefficient of each input variable (attributes)
to the dependent variable (diabetes or not) was calculated to identify the important
features. Each input variable has values in a different range; fast blood sugar (FBS) has
minimum 60 and maximum 200 values; whereas, gender has binary values (minimum
0 and maximum 1) but machine learning algorithms recognize patterns numerically,
meaning they give higher priority to attributes with large numerical values. By this
scenario, FBS has higher priority over gender, which is logically not always true.
To avoid such confusion, the attribute values were normalized in a common range
using the Min-Max normalization technique [43]. Finally, the preprocessed dataset
was split into training and test data samples.

5. Light Gradient Boosting Machine (LightGBM): the state-of-the-art LightGBM algo-
rithm has been proposed to predict diabetes mellitus. Here, the LightGBM was
optimized by calculating the optimal values of the hyperparameters using 10-fold
cross-validation. Finally, we developed other classifier models viz. KNN, SVM, NB,
Bagging (constructed on decision tree), RF, and XGBoost and compared the results
with the optimal LightGBM model.

The general framework of the proposed approach is summarized in Figure 1.

Diabetes dataset 

Data preprocessing

LightGBMOther 

algorithms

Calculation of optimal size 

of trees using cross-

validation 

Model 

Training test

Model 1 

(M1)
M2 Mn...

Evaluation and comparison of the proposed model 

with other models

Problem statement

Healthcare diabetes 

diagnostic data storage  

Relevant data 

collection

Figure 1. General framework of the proposed approach.
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LightGBM

Gradient Boosting Decision Tree (GBDT) is a common machine learning algorithm,
which has effective implementations such as XGBoost and parallel Gradient Boosted
Regression Trees pGBRT [44,45]. Although many engineering optimizations have been
adopted in these implementations, for high-dimensional feature spaces and large data sizes,
these implementations have comparably low efficiency and scalability. A major reason is
that for each feature, they need to test all the data records to estimate the information gain
of all possible split points, which requires very high computational time. Thus, to address
these problems, Ke et al. [19] proposed LightGBM.

LightGBM is a gradient boosting framework that uses tree-based learning algorithms.
It is designed to be distributed and efficient using two novel techniques: Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [19]. GOSS excludes
a significant proportion of data instances with small gradients, and only uses the rest to
estimate the information gain. Since the data records with larger gradients play a vital
role in the computation of information gain, GOSS can obtain quite an accurate estimation
of the information gain with a much smaller dataset. EFB is used for bundling mutually
exclusive features to reduce the number of features. LightGBM is prefixed as Light because
of its high speed. Compared to other existing Gradient Boosting Decision Tree algorithms,
LightGBM has the advantages of faster training speed, higher efficiency, lower memory
usage, better accuracy, being capability for handling large-scale data, and the support of
parallel and GPU learning. LightGBM is a fast, distributed, high-performance gradient
boosting framework based on a decision tree algorithm. It is used for ranking, classification,
and many other machine learning tasks.

One of the characteristics that makes the LightGBM algorithm differ from other tree
boosting algorithms is to split the tree leafwise as shown in Figure 2 with the best fit,
whereas other boosting algorithms split the tree depthwise or levelwise, see Figure 3, rather
than leafwise. So, when growing on the same leaf in LightGBM, the leafwise algorithm
can reduce much more loss than the levelwise algorithm and, henceforth, results in much
better accuracy, which is not met by any of the other boosting algorithms.

… 

Figure 2. Leaf-wise tree growth in LightGBM [19].

… 

Figure 3. Level-wise tree growth in other boosting algorithms (such as in XGBoost) [19].

For a small size of data, leafwise growing may lead to an increase in complexity and
result in overfitting [46]. To overcome this problem, we optimized the LightGBM algorithm
for our medium size data ZMHDD (2000+) by precalculating the optimal values of the
model’s hyperparameters to control the complexity of the LightGBM model. These are
(i.) the number of iterations, (ii.) the maximum depth of the trees, and (iii.) the number
of leaves. Hence, we retrieve the optimum number of trees, maximum depth of trees,
and number of tree leaves. Details on the optimization process are given in Section 4.
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3.2. Data Collection and Feature Selection

As of existing work studied in Section 2, Ethiopian data have never been explored
before in machine-learning-based diabetes diagnosis. The physical examination data of
1030 people with DM and 1079 nondiabetic people were collected from Zewditu Memorial
Hospital (administered under the city government of the Addis Ababa Health Bureau),
and we called it the Zewditu Memorial Hospital diabetes dataset (ZMHDD). The relevance
of the data was approved by the Ethical Clearance Committee of the city government of the
Addis Ababa Health Bureau. The collected data contain about 23 indicators; however, many
of these physical examination indicators had a weak correlation with DM. Researchers use
different diabetes indicators in different contexts, as the diabetes condition depends on a
societies’ food culture [18,30,31]. Hence, we consulted Ethiopian diabetologists about the
diabetes condition and indicators in order to prepare our diabetes dataset ZMHDD. Since
most of the collected diabetic data records are type 2 diabetes, we dropped the investigation
of type 1 and Gestational data records, focusing on type 2 diabetes in this study. ZMHDD
specifications are shown in Table 2 and selected indicators are shown in Table 1. From the
available indicators, we selected those being significantly relevant to DM from the view of
medicine and data correlation to the target variable (diabetic or not). We have considered
invasive diabetes indicators such as insulin and fast blood sugar/glucose because they
are commonly checked and accessible in Ethiopia. A future step for simplification may be
to focus on noninvasive indicators. This may be desirable for regions without laboratory
facilities and for broader risk assessments. The age of diabetic patients ranged from 12 to
90 years, and that of nondiabetic probands from 0.3 to 90 years.

Table 2. Parameters of the ZMHDD diabetes datasets.

Dataset #Instances #Indicators #Classes

ZMHDD 2109 10 2

3.3. Data Preprocessing

Although we have collected the diabetes physical examination dataset (ZMHDD)
carefully, several instances were missing one or two feature values. In most data analysis
studies, it is obvious to replace missing values by the mean of the corresponding feature
(e.g., the column mean value for tabular data). However, for small datasets, replacing these
missing values with the median of the corresponding features is better than replacing by
mean [18]. Thus, the median of the corresponding feature was used to fill the missing
feature values, which is a basic strategy. The median of diabetic and nondiabetic patients
was computed separately to render the replaced values more representative.

The range of the feature values lay on different intervals, which can affect the results
when building the machine learning model. Hence, the feature values are normalized
using the Min-Max Normalization technique [43] to bound the values of all features
between 0 and 1. Here, a given original feature set X = {x0, x1, . . . , xn−1} with n entries is
normalized by

x′i =
xi −min(X)

max(X)−min(X)
(1)

where i ∈ {0, 1, 2, . . . , n− 1}, min(X) is the minimum element of X, max(X) is its maxi-
mum element, and X′ = {x′0, x′1, . . . , x′n−1} is the normalized feature set with 0 ≤ x′i ≤ 1.

3.4. Evaluation

To measure how well our model performs, different standard performance evaluation
metrics [47]—i.e., accuracy, sensitivity, specificity, and the area under the receiver operating
characteristic (AUC) curve—have been used. We also used the k-fold cross-validation
method to split the dataset into k data subsets, with k− 1 data subsets used as training
sets and one of the subsets as the test set for one round of training. This allows for k
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constellations of model training and testing. Taking the average performance of the of
the k training runs gives an indication of the generalization capability of the model on
unknown data.

Specifically, the performance of the proposed model is evaluated on ZMHDD in
two phases. First, 10-fold cross-validation is applied to each grid-search point in a grid
search over three hyperparameters, as described in Section 4. This results in an optimum
hyperparameter set of the LightGBM algorithm, as per Figure 4, and hence, determines the
optimum model architecture. Since, due to cross-validation, the training of this architecture
is based on a smaller dataset, its parametrization can be further aligned to data statistics by
a training using the entire ZMHDD dataset separated into 80% training and 20% test data
samples. Results will be discussed in the following section.
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Figure 4. 3D visualization of grid search result over the investigated space of hyperparameters nest,
depthmax and nleaves. Bubble sizes implicate the validation score (the larger, the better); the color
indicates the required training time (the less, the better). The optimum configuration of a LightGBM
model is at nest = 150, depthmax = 3, and nleaves = 4 at a test accuracy of 0.9815 and a training time
of 0.624 s.

4. Experimental Results and Discussion
4.1. Experimental Results

The experimental analysis is carried out on the newly collected ZMHDD dataset.
Using 10-fold cross-validation, the mean performance of a given model is evaluated.
By variation over the hyperparameters, as listed in Section 3.1, the model architecture is
optimized with regard to performance following the five steps outlined below.

1. Number of trees: The number of boosted trees or estimators will influence the Light-
GBM performance. To decide on the optimal number nest in case of the ZMHDD
dataset, models with varying numbers of trees were constructed and evaluated.

2. Maximum tree depth: To avoid the occurrence of overfitting, we have to limit the
maximum depth depthmax of trees for tree-based models. This is especially important
for small- or mid-sized datasets.

3. The number of tree leaves: is the main parameter to control the complexity of the
tree model. Theoretically, we can set nleaves = 2depthmax to obtain the same number of
leaves as a depth-wise tree. However, this is not always true in practice. Because a
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leaf-wise tree is typically much deeper than a depthwise tree for a fixed number
of leaves. Unconstrained depth can induce overfitting [46]. Thus, when trying to
optimize the num_leaves, we should let it be smaller than 2depthmax .

4. LightGBM model optimization: Several LightGBM models at variation of the nest,
depthmax, and nleaves parameters were constructed using 10-fold cross-validation grid
search to define the optimal parametrization in the sense of a validation metric.
Following the grid search, our model achieved the best accuracy of 98.15% at the
configuration nest = 150, depthmax = 3, and nleaves = 4. The 3D visualization of the
10-fold cross-validation grid search result is shown in Figure 4. The size of the bullets
in Figure 4 indicates the validation score, the bubble colors indicate the training time.

5. Performance evaluation: Lastly, the performance of the designed LightGBM model is
evaluated on the test data (20% of ZMHDD) using a training and test data splitting
method [48]. Key metrics are given in Table 3 and Figure 5.

Table 3. Key metrics of the optimized LightGBM model.

Metric Value

Accuracy 0.98
Sensitivity 0.99
Specificity 0.96

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

AUC (area = 0.98)

Figure 5. ROC curve.

4.2. Comparison

To verify the effectiveness of LightGBM for the classification of diabetes mellitus,
LightGBM’s performance is compared with additional six machine learning algorithms,
namely, KNN, SVM, NB, Bagging (constructed on decision tree), RF, and XGBoost, applying
the same database (ZMHDD). We computed the accuracy of these methods on the ZMHDD
database. The comparison results are shown in Table 4.

Among these six additional methods, RF and XGBoost resulted a better accuracy of
96.9 and 96.5%, respectively. Conversely, the KNN method resulted in the lowest-in-class
accuracy of 78.4% compared with the others. The optimized LightGBM model outperforms
all other methods at 98.1% in terms of test accuracy.
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Table 4. Key metrics of the optimized LightGBM model.

Model Accuracy

KNN 0.784
SVM 0.908
NB 0.927
BG 0.953
RF 0.969

XGBoost 0.965
LightGBM 0.981

To further evaluate the performance of the LightGBM model on our dataset ZMHDD,
Table 5 compares the alternative methods with regard to accuracy, AUC, sensitivity, and
specificity. With values of 98.1%, 98.1%, 99.9%, and 96.3%, LightGBM turns out to be best-
in-class in all categories. Except for the significantly underperforming KNN, SVM, and NB
models, the computational complexity for training is smallest among the better performing
models. For testing, LightGBM has the fastest computation time among all models. This
indicates that—as expected—the LightGBM tree model is overall simpler compared with
the other ensemble learning methods. The effectiveness of the LightGBM-based approach
comes from the fact that Light gradient boosting classifiers are a combined method of
classifiers that can take advantage of the complementary manner of individual classifiers
to improve performance. From the obtained results, we can say that LightGBM constitutes
an important technique for the classification of medical data and, in particular, for the
diagnosis of diabetic patients.

Table 5. Summary of experimental results and computational time on ZMHDD.

Algorithms Accuracy AUC Sensitivity Specificity
Computation

Time/s
Training Testing

KNN 78.4% 77.8% 62.1% 93.6% 0.012 0.32
SVM 90.8% 90.4% 82.3% 98.6% 0.081 0.007
NB 92.7% 92.4% 85.2% 99.5% 0.05 0.006
BG 95.3% 95.2% 94.1% 96.3% 1.3 0.02
RF 96.9% 96.8% 93.6% 100% 2.5 0.011
XGBoost 96.4% 96.3% 92.6% 100% 2 0.004
LightGBM 98.1% 98.1% 99.9% 96.3% 0.624 0.0015

4.3. Limitations

A basic limitation of this study is imposed by restrictions in the availability of indica-
tors considered. Levels of 2-h postload plasma glucose after a 75 g oral glucose tolerance
test (OGTT) and HbA1c test is one of the recommended indicators of diabetes. However,
during data collection, we are unable to get enough OGTT and HbA1c test data due to the
expensiveness of these tests, which constrains the accuracy of this study. Our study also
considered some invasive diabetes indicators such as insulin and fast blood glucose, which
may limit its application to self-testing in comparison with clinical use. Finally, we only
have Ethiopia as a proxy for ethnicity. All of this affects our model’s detection capacity and
generalization capability.

5. Conclusions

In this study, Ethiopian medical data (ZMHDD dataset) have been explored for the
first time in the machine-learning-based diagnosis of diabetes mellitus. We have considered
the early detection of diabetes mellitus by taking into account the significant risk factors
related to DM. Mining knowledge from actual healthcare data can be useful to predict
diabetic patients. Correlation coefficient and other data analysis techniques were used for
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feature selection. To detect DM effectively, we were interested in the development of a light
gradient boosting machine (LightGBM) model for the classification of diabetic patients.
Several LightGBM models were constructed, by varying the number and complexity of trees
in the ensemble model, and evaluated according to their average accuracy by 10-fold cross-
validation. Hence, the optimal LightGBM model could be determined. Finally, this model
was compared to 6 reference models—KNN, SVM, NB, Bagging, RF, and XGBoost—in
terms of accuracy, sensitivity, and specificity. The experimental results show that LightGBM
outperforms these techniques for screening diabetes mellitus in all aspects. Therefore,
the developed LightGBM model is deemed to be very effective to support physicians in
the diagnosis of diabetes.

For the future, we aim to apply the proposed assistance system to real-time diabetes
diagnosis systems. The proposed LightGBM model can be applied to other medical
datasets to further validate the effectiveness and generalization capabilities of the model.
In addition, it is better to place more emphasis on noninvasive diabetes indicators to detect
diabetes in the general population.
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