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Supplementary Information 

 

Figure S1. Integrated perspective of the photonics and data science methodology applied in this 

study. 
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Figure S2. Brightfield image of the probes used to acquire the backscattered signal. Probes are 

polymeric structures built on the apex of a cleaved optical fiber (1); a dome-like structure (2) was used 

to protect the in-house produced polymeric lens (3). 

 

 Figure S3. Comparative performance of the machine learning severity prediction models. (A) 

PR plot showing the positive predictive value (precision) against the sensitivity (recall) for each model. 

(B) ROC curve showing the trade-off between sensitivity and specificity using each model. The diagonal 

dashed line represents a model with no discrimination. The AUROC with its 95% confidence interval is 

shown in the plot. Both PR and ROC curves were obtained from the test dataset. AUROC: area under 

the receiver operating characteristic curve; CI: confidence interval. 
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Figure S4. Distinguishing COVID-19 patients from non-COVID-19 patients with similar symptoms 

using optical fingerprinting. (A) Demographic features of patients included in the COVID-19 and non-

COVID-19 groups. (B) PR plot showing the positive predictive value (precision) against the sensitivity 

(recall) of the optical fingerprint model. (C) ROC curve showing the trade-off between sensitivity and 

specificity using the optical fingerprint model. The diagonal dashed line represents a model with no 

discrimination. The AUROC with its 95% confidence interval is shown in the plot. Both PR and ROC 

curves were obtained from the test dataset. (D) Statistical performance measures of the optical 

fingerprint model calculated in the testing dataset. Binomial (AUROC) or Clopper-Pearson (accuracy, 

sensitivity, specificity, and precision) confidence intervals were calculated in the testing dataset. (E) 

Correlation by linear regression between the optical fingerprinting numeric output and patient age. 

Spearman correlation coefficient was calculated.  (F) Association between optical fingerprinting numeric 

output and patient gender. IQR: interquartile range; AUROC: area under the receiver operating 

characteristic curve; CI: confidence interval; ns: non-significant. 
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Table S1. Time- and frequency-domain features extracted from the sample backscattered signal 

to generate the optical fingerprints 

Type  Group  Feature  

Time 
domain  

Linear 

Standard Deviation  

Interquartile range  

Kurtosis  

Skewness  

Mean  

Root mean square  

Signal power  

Entropy  

Root sum of squares level  

Area under the curve histogram  

Non- 
linear  

Approximate entropy  

Singular value decomposition entropy  

Petrosian fractal dimension  

Higuchi fractal dimension  

Detrended fluctuation analysis coefficient  

Hurst Exponent  

Hjorth complexity  

Hjorth mobility  

Frequency 
domain  

Transform 
domain 

1st – 30th DCT coefficient  

Number of DCT coefficients that capture 98 % of the original signal  

DCT Entropy  

Total DCT Area Under Curve  

1st – 10th Hilbert peak  

Number of Hilbert coefficients that capture 98 % of the original signal  

Haar Relative Power 1st level – 6th level  

Db10 Relative Power 1st level – 6th level 

Symlet Relative Power 2nd level - 6th level 

Db4 Relative Power 2nd level – 6th level 

Spectral 
domain 

Spectral contrast max  

Spectral roll-off frequency SD  

Spectral roll-off frequency mean  

Spectral roll-off frequency max  

Spectral flatness SD  

Spectral flatness mean  

Spectral flatness max  

Spectral centroid SD  

Spectral centroid mean  

Spectral centroid max  
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Table S2. Features used in age and comorbidities-based and age, comorbidities and laboratory-

based data models 

Type  Feature  Description 

Demographic 
Age  Numeric variable, years 

Gender  Categorical variable (0=male; 1=female) 

Clinical  

Kidney disease 
Numeric variable, count of kidney-related diseases 

reported in patient clinical records 

Cardiovascular disease 
Numeric variable, count of cardiovascular diseases 

reported in patient clinical records 

Immunosuppression 
Numeric variable, count of diseases mentioned in patient 

clinical records that might induce immunosuppression 

Diabetes 
Categorical variable, whether the patient suffers from 

diabetes (0=no diabetes; 1=diabetes) 

Respiratory disease 
Numeric variable, count of respiratory comorbidities 

reported in patient clinical records 

Obesity 
Categorical variable, whether the patient suffers from 

obesity (0=no obesity; 1=obesity) 

Number of comorbidities 

per patient 

Numeric variable, total number of comorbidities reported 

in patient clinical records 

C-reactive peptide 
Numeric variable, concentration of C-reactive peptide 

detected in blood 

Leukocyte count Numeric variable, count of leukocytes detected in blood 

Lymphocyte count Numeric variable, count of lymphocytes detected in blood  

IgG detection  
Categorical variable, IgG antibodies detection 

(0=absence; 1=present) 

 

 

Table S3. SVM model parameters tuned during classifier training stage for model optimization 

Parameters 
Model 

Optical fingerprinting Comorbidities, age Clinical data 

Kernel Linear Radial Basis Function Radial Basis Function 

Gamma 100.00 0.60 0.01 

C 0.22 0.01 0.22 

    

Coefficients Stacking Model  

Coefficient 0 4.03   

Coefficient 1  6.10  

 

 



6 

 

Table S4. Random forest model parameters tuned during classifier training stage for model 

optimization 

Parameters  

Method for sampling data points Bootstrap 

CCP alpha 0 

Class weight Balanced 

Criterion Gini 

Maximum number of levels in each decision tree 2 

Maximum number of features considered for splitting a node 6 

Minimum impurity decrease 0 

Minimum number of data points allowed in a leaf node 16 

Minimum number of data points placed in a node before the node is split 2 

Minimum weight fraction leaf 0 

Number of trees in the forest 120 
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Extended methods 

 

Description of the backscattered signal features 

 

1. Time-domain features 

Time domain linear features 

Time domain metrics such as mean, standard deviation, root mean square, signal power, root sum of 

squares level (RSSQ), skewness, kurtosis, interquartile range, and entropy were used, given its 

adequacy in differentiating types of periodic signals. Statistical time-domain parameters have been 

used to identify tumour cell clusters in cell lines and to identify different objects through the 

backscattered signal in underwater conditions.1,2 

For instance, skewness reflects the distribution symmetry degree, while kurtosis quantifies whether 

the shape of the data distribution matches the Gaussian distribution. Both have been widely used in 

several signal processing approaches, for quantifying how far, in statistical terms, the evaluated sample 

distribution is from a normal one.3 These features have been used as relevant markers for diagnosing 

mild cognitive impairment (MCI) by performing different mental tasks in patients, using functional near-

infrared spectroscopy (fNIRS). The parameter skewness revealed a significance difference for the brain 

regions analyzed.4 A similar study involving this technique was made to identify possible biomarkers of 

pain.2 

 

Time domain non-linear features 

Non-linear features are useful to describe the complexity and regularity of a signal and are often used 

to describe the phase behaviour of predominantly stochastic signals, such as EEG.5 A total of 8 non-

linear features were considered: approximate entropy, singular value decomposition (SVD) entropy, 

Petrosian fractal dimension, Hurst exponent, Detrended fluctuation analysis (DFA), Higuchi fractal 

dimension, Hjorth complexity and mobility. 

 Approximate entropy 

Approximate entropy is an indicator of the complexity of the time series, which have been useful to 

detect several pathological or physiological conditions.6-9 This technique quantifies the amount of 

regularity and the unpredictability of fluctuations over time-series data. 

 Singular value decomposition entropy 

SVD entropy is an indicator of the number of eigenvectors that are needed for an adequate explanation 

of the data set.10 In other words, it measures the dimensionality of the data. 

 ------------- 
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A fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern 

changes with the scale at which it is measured. It has also been characterized as a measure of the 

space-filling capacity of a pattern that tells how a fractal scales differently from the space it is embedded 

in; a fractal dimension does not have to be an integer. It is a highly sensitive measure for the detection 

of hidden information contained in physiological time series, because it performs well on turbulent and 

irregular time series data and has been widely used to extract quantitative features from biomedical 

signals, including imaging and EEG.11,12 

 Petrosian fractal dimension 

Petrosian's algorithm provides a fast computation of the fractal dimension of a signal by translating the 

series into a binary sequence. 

 Higuchi fractal dimension 

Higuchi is an algorithm for measuring fractal dimension of time series and is used to quantify complexity 

and self-similarity of signal.13 Higuchi’s fractal dimension originates from chaos theory and for almost 

thirty years it has been successfully applied as a complexity measure of artificial, natural, or 

physiological signals. Higuchi’s method has proven to be a good numerical approach for rapid 

assessment of signal nonlinearity and it may encompass all information about the dynamic data 

generation process. 

The Higuchi dimension has long been used in applications of clinical neurophysiology to measure the 

complexity of neuronal activity, or to measure the signal length of various biophysical signals, e.g., EEG 

and MEG.14-16 

 Detrended fluctuation analysis coefficient 

DFA is a method for quantifying fractal scaling and correlation properties in the signal. The main 

advantage of this method is that it distinguishes intrinsic fluctuation generated by the system from that 

caused externally.13 

 

 

 Hurst exponent 

The Hurst exponent measures the “long-term memory” of a time series. It can be used to determine 

whether the time series is more, less, or equally likely to increase if it has increased in previous steps. 

It originates from H.E. Hursts observations of the problem of long-term storage in water reservoirs.17 

 Hjorth complexity & Hjorth mobility 
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Bo Hjorth proposed a mathematical method to describe an EEG trace quantitatively, which has been 

widely applied to various EEG-based problems.18,19 The mobility parameter is the square root of the 

ratio between the variance of the first derivative and the variance of the signal.  The complexity 

parameter represents the changes of the signal frequencies. The Hjorth complexity is the ratio between 

the Hjorth mobility of the first derivative of the signal and the Hjorth mobility of the signal. This parameter 

is dimensionless and, due to the non-linear calculation of standard deviation, quantifies any deviation 

from the sine shape. The value converges to 1 if the signal is more similar. 

 

2. Frequency transform-domain features 

Regarding the frequency-domain analysis of the backscattered signal, three sets of features were 

extracted: Discrete Cosine Transform (DCT) parameters, Wavelet derived coefficients and spectral 

features. 

 

Discrete Cosine Transform  

The DCT, applied to each epoch of the backscattered signal, captures minimal periodicities of the 

signal, without injecting high-frequency artifacts in the transformed data. Besides being highly adequate 

to short signals, it is highly attractive for this type of problems which require to differentiate target 

classes, because DCT coefficients are uncorrelated. Thus, they can be used as suitable features for 

characterizing each peptide class. Additionally, the DCT is able to embed most of the signal energy into 

a small number of coefficients. The first n coefficients of the DCT of the scattering echo signal are 

defined by the following equation:20 

𝐸𝑖
𝐷𝐶𝑇[𝑙] = ∑

𝑁−1

𝑘=0

𝜀𝑖[𝑘] 𝑐𝑜𝑠 𝑐𝑜𝑠 [
𝜋𝑙(2𝑘 + 1)

2𝑁
] , 𝑓𝑜𝑟 𝑙 = 1, … , 𝑛 

where εi is the signal envelope estimated using the Hilbert transform. The following features were 

extracted from DCT analysis: the number of coefficients needed to represent about 98% of the total 

energy of the original signal, the first 30 DCT coefficients, the Area Under the Curve (AUC) of the DCT 

spectrum for all the frequencies before the modulation frequency (1 kHz) and, the entropy of the DCT 

spectrum. As an example, the DCT feature has been used in scattering data collected from different 

species of saltwater fish to capture approximately periodic structures in the echo envelope that may 

result from scattering from internal structures in the fish body.20 

 

Hilbert Transform 

A similar analysis to the DCT transform was conducted using the Hilbert transform. When applied to 

the signal, the Hilbert transform produces its analytical real-valued representation. The 10 highest 

amplitude peaks of the Hilbert transformed signal were used as features, as well as the number of 
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coefficients needed to represent about 98% of the total energy of the original signal. The first Hilbert 

coefficient corresponds to the highest peak in the analytic signal and can give important information 

about the phase of the signal.21 

 

Wavelet Transform 

Some parameters based on the information extracted from Wavelet analysis of each original signal 

portion were also considered as features, due to their simplicity and their successful application to 

decompose backscattered signals in underwater scenarios.20,22 By applying wavelet packet 

decomposition, it is possible to extract, in each frequency band, certain tonal information from the 

original signal depending on the frequency range and content of the backscattered signal.22 To achieve 

this, a suitable mother Wavelet is chosen to be used as a prototype to be compared with the original 

signal and extract frequency subband information.23 Four mother Wavelets – Haar, Daubechies (Db10 

and Db4) and Symlet - were selected to characterize the backscattered signal portions. The Haar 

wavelet was selected due to its simplicity and computational speed; the Daubechies wavelets display 

a better approximation of smooth functions;23 and, the Symlet wavelets have been used to decompose 

the signal into five time–frequency subbands to recognize epileptic EEG states. This feature can reduce 

the phase distortion in the analysis.24 

 

Frequency spectral-domains features 

Spectral features characterize the power spectrum of the signal, i.e., the distribution of power across 

the frequency components composing that signal. It is obtained using the Fourier Transform. Four 

measures were derived from the spectrum: spectral flatness, spectral centroid, spectral contrast, and 

spectral roll-off. A total of 12 features were calculated from these measures. 

 

 

 Spectral contrast 

Spectral contrast is defined as the difference between valleys and peaks that compose the spectrum. 

The spectrogram is divided into sub-bands. For each sub-band, the energy contrast is estimated by 

comparing the mean energy in the top quantile (peak energy) to that of the bottom quantile (valley 

energy). High contrast values generally correspond to clear, narrow-band signals, while low contrast 

values correspond to broad-band noise.25 Three features were derived from this measure: the mean, 

the maximum, and the standard deviation of the spectral contrast. 

 Spectral roll-off frequency 

The roll-off frequency characterizes the inclination of the signal’s spectrum.26 This feature is defined as 

the centre frequency for a spectrogram bin such that at least 85% of the energy of the spectrum is 
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contained in this bin and the bins below. Three features were computed using this measure: the mean, 

the maximum and the standard deviation of the spectral roll off frequencies. 

 Spectral flatness 

Spectral flatness quantifies how tone-like a signal is, as opposed to being a noise-like signal.27 A high 

spectral flatness (closer to 1.0) indicates the spectrum is similar to white noise. Three features were 

calculated using this measure: the mean, the maximum and the standard deviation of the spectral 

flatness. 

 Spectral centroid 

The spectral centroid indicates the location of the centre of mass of each frequency bin in the 

spectrogram.28 For each one of these measures three features were calculated: the mean, the 

maximum and the standard deviation. 
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