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Abstract: Introduction: Coronavirus disease 2019 (COVID-19) led to a global pandemic. Although
reverse transcription polymerase chain reaction (RT-PCR) of viral nucleic acid is the gold standard
for COVID-19 diagnosis, its sensitivity was found to not be high enough in many reports. As
radiomics-based diagnosis research has recently emerged, we aimed to use computerized tomography
(CT)-based radiomics models to differentiate COVID-19 pneumonia from other viral pneumonia
infections. Materials and methods: This study was performed according to the preferred reporting
items for systematic review and meta-analysis diagnostic test accuracy studies (PRISMA-DTA)
guidelines. The Pubmed, Cochrane, and Embase databases were searched. The pooled sensitivity
and pooled specificity were calculated. A summary receiver operating characteristic (sROC) curve
was constructed. The study quality was evaluated based on the radiomics quality score. Results: A
total of 10,300 patients were involved in this meta-analysis. The radiomics quality score ranged from
13 to 16 (maximum score: 36). The pooled sensitivity was 0.885 (95% CI: 0.818–0.929), and the pooled
specificity was 0.811 (95% CI: 0.667–0.902). The pooled AUC was 906. Conclusion: Our meta-analysis
showed that CT-based radiomics feature models can successfully differentiate COVID-19 from other
viral pneumonias.

Keywords: COVID-19; radiomics; meta-analysis

1. Introduction

Coronavirus disease 2019 (COVID-19) led to a global pandemic featuring a highly
contagious disease which has led to millions of deaths worldwide. Although reverse
transcription polymerase chain reaction (RT-PCR) of viral nucleic acid is the gold standard
for COVID-19 diagnosis [1], its sensitivity was found to not be high enough in many
reports [2–4].

On the other hand, chest x-ray (CXR) and computerized tomography (CT) are helpful
in the diagnosis of COVID-19 pneumonia [5–7]. According to recent experience, lung image
findings are observed earlier than clinical manifestations, highlighting the importance of
image exams for screening pneumonias [8]. Early diagnosis can also reduce disease
transmission risk and prevent the endemic of COVID-19 [9]. CXR is convenient, easily
accessible, and can avoid cross contamination between users. Although the sensitivity of
CXR is lower than CT in diagnosing COVID-19 pneumonia. With artificial intelligence
machine learning model assistance, CXR can achieve an improved COVID-19 diagnostic
rate [10–12].

However, the power of generalization is low when the machine learning model was
trained on sets of heterogeneous images. The absence of an adequate evaluation protocol
also limited the artificial intelligence assistance in CXR and its utility in clinical settings [13].
Nonetheless, CXR is useful to monitor disease progression in unstable patients.

In previous studies, computerized tomography (CT) had noninferior sensitivity to
the RT-PCR test in diagnosing COVID-19 pneumonia [2,5]. However, CT images have an
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inevitable misdiagnosis rate of COVID-19 if they are evaluated by humans [14]. Radiomics,
a non-invasive machine learning technology, as evaluated by computerized quantitative
analysis, can extract the statistics, shape, or texture features of images. Previous studies
showed that radiomics plays an important role in tumor diagnosis and treatment [15,16].
Recently, radiomics models on CT images were shown to be helpful in predicting COVID-19
prognosis, hospital stay, and disease severity [17–19].

Previous studies showed that artificial intelligence (AI) could distinguish COVID-
19 pneumonia from pneumonias caused by other pathogens [3,20,21]. However, most
published reports did not individually compare COVID-19 with other viral pneumonia
infections. The differentiation of COVID-19 and other viral pneumonia infections is chal-
lenging in clinical practice. Pneumonia caused by viral infections presents similar clinical
symptoms [22–24]. Furthermore, the CT image features are also similar in COVID-19 and
other viral pneumonia infections [25]. In contrast, radiomics can transform conventional
medical images into quantitative and high-dimensional data analysis [26]. CT radiomics
can be useful to discriminate COVID-19 from other pulmonary ground-glass opacity le-
sions [27]. However, there are no meta-analyses comparing the differentiation of COVID-19
from other viral pneumonias using radiomics. Therefore, in this meta-analysis, we aimed
to use CT-based radiomics models to differentiate COVID-19 pneumonia from other viral
pneumonia infections.

2. Materials and Methods
2.1. Study Protocol and Literature Search

This study was performed according to the preferred reporting items for systematic
review and meta-analysis diagnostic test accuracy studies (PRISMA-DTA) guidelines [28].
Three databases (Pubmed, Cochrane Library, and Embase) were independently searched by
two authors for articles published before 26 February 2021 using the following keywords:
(“COVID-19” OR “SARV-COV-2”) AND (“radiomics” OR “artificial intelligence”) AND
“computerized tomography”.

The inclusion criteria were as follows:
Studies using radiomics methods to differentiate COVID-19 and other viral pneumonia

infections according to CT scans:

1. Articles written in English;
2. Full text available.

The exclusion criteria were as follows:

1. Studies using only deep learning features;
2. Conference papers or studies with only the abstract available.

2.2. Workflow of the Radiomics Study

In the selected studies, the radiomics-based machine learning process was similar.
First, the CT images acquisition and region-of-interest segmentation were performed by
radiologists. Next, the radiomics feature extraction, model training and cross validation
were performed by artificial intelligence. Finally, the data analysis and clinical application
was evaluated by clinicians.

2.3. Data Extraction

The main outcome was set as the highest area under the curve (AUC) in the val-
idation dataset. In the absence of an external validation set, we chose the value from
the cross-validation process or hold-out dataset. We also extracted the true positive (TP),
false positive (FP), true negative (TN), and false negative (FN) values from the literature.
Furthermore, we gathered the name of the first author, the nation of the first author, the
publication year of the study, the region of interest (ROI), the patient number, and other
characteristics from the selected studies.
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2.4. Statistical Analysis

Pooled analysis was carried out using a random effects model. The pooled sensitivity
and pooled specificity were calculated. A forest plot and summary receiver operating
characteristic (ROC) plot were created. The heterogeneity was assessed using the chi-square
test. The statistical analysis was performed with the R language using R studio.

2.5. Bias Assessment

The publication bias was assessed using a funnel plot. Egger’s test was only conducted
if the number of included articles was more than 10. The statistical analysis was performed
with the R language using R studio.

2.6. Quality Assessment

The RQS (radiomics quality score) was used to evaluate the chosen studies [29]. Two
authors independently scored the table. Any inconsistencies between the authors were
resolved by consensus.

3. Results
3.1. Literature Collection

First, we collected a total of 348 articles. After duplicate removal, 283 publications
were selected for meticulous evaluation. After assessment of the title and abstracts, ten
publications were selected, and their full texts were retrieved. One observational study [30]
without radiomics application in the research and two observational studies [31,32] with
a repetitive patient population were excluded. After the article selection process, seven
articles were used in the qualitative analysis [33–39], and six articles were further used in
the meta-analysis. The PRISMA flowchart is provided in Figure 1. Details of the selected
studies are listed in Table 1. Only the six studies were used in the meta-analysis [33–38].
Wang’s study [39] was excluded due to the predictions being made on the basis of the CT
slice number. A total of 10,300 patients were involved in this meta-analysis. Among them,
3587 patients had COVID-19 pneumonia.
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Table 1. Details of the chosen studies.

Author
Nation, Year

Study
Type ROI Dataset Training set Internal

Validation
External

Validation
Highest

AUC
(95% CI)

Zheng [33]
China, 2020

Retrospective
observational Pneumonia COVID-19/IP 78 10-fold

cross-validation No 0.87 (0.77–0.93)

Jin [34]
China, 2020

Retrospective
observational Pneumonia COVID-19/IP 2688 2688 2539 + 1110 0.9585

(0.9413–0.9813) *

Fang [35]
China, 2020

Retrospective
cross-sectional Pneumonia COVID-19/VP 239 90 No 0.955

(0.899–0.995)

Huang [36]
China, 2020

Retrospective
observational Pneumonia COVID-19/VP 126 55 No 0.956

Chen [37]
China, 2020

Retrospective
observational Pneumonia COVID-19/VP 114 23 No 0.968 (0.911–1.000)

Liu [38]
China, 2021

Retrospective
observational Pneumonia COVID-19/VP 379 131 40 0.93

Wang [39]
China, 2020

Retrospective
observational Pneumonia COVID-19/VP 9573 # 1209 + 1219 # 3799 # 0.87

Note: COVID-19, coronavirus disease 2019; ROI, region of interest; AUC, area under the receiver operating characteristic curve; CI,
confidence interval; IP, influenza pneumonia; VP, viral pneumonia.* The highest AUC in Jin’s study was based on a smaller cohort (n = 50)
comprising only COVID-19 and influenza patients. # The number listed in Wang’s study is the CT scan slice number; thus, the results were
not included in the meta-analysis.

3.2. Quality Assessment and Workflow of the Radiomics Study

The RQS table is provided in Table 2. The score range of included studies was 13
to 16 (maximum score: 36). None of the evaluated articles performed a phantom study,
discussed biological correlates, conducted the study in a prospective design, or performed
a cost-effectiveness analysis. The radiomics-based machine learning process workflow was
shown in Figure 2.
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3.3. Statistical Analysis

Only six studies were included in the meta-analysis. The pooled sensitivity was 0.885
(95% CI: 0.818–0.929), and the pooled specificity was 0.811 (95% CI: 0.667–0.902). The
heterogeneity of sensitivity was low (p = 0.434), whereas the heterogeneity of specificity
was high (p = 0.000661). The pooled AUC was 0.906. The forest plots for sensitivity and
specificity are provided in Figure 3. The sROC curve is shown in Figure 4.
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Table 2. Radiomics quality scores of the included studies.

Study Criteria
Zheng

[33]
2020

Jin
[34]
2020

Fang
[35]
2020

Huang
[36]
2020

Chen
[37]
2020

Liu
[38]
2021

Wang
[39]
2020

Image protocol quality +1 +0 +1 +1 +1 +1 +1

Multiple segmentations +1 +0 +0 +0 +1 +1 +1

Phantom study on all scanners +0 +0 +0 +0 +0 +0 +0

Imaging at multiple time points +0 +1 +0 +0 +0 +0 +0

Feature reduction or adjustment for multiple testing +3 +3 +3 +3 +3 +3 +3

Multivariable analysis with non-radiomics features +0 +0 +1 +1 +1 +1 +0

Detect and discuss biological correlates +0 +0 +0 +0 +0 +0 +0

Cutoff analyses +1 +1 +0 +1 +1 +0 +0

Discrimination statistics +2 +1 +2 +2 +2 +2 +1

Calibration statistics +1 +0 +2 +1 +0 +1 +0

Prospective study registered in a trial database +0 +0 +0 +0 +0 +0 +0

Validation +2 +4 +2 +2 +2 +2 +2

Comparison to “gold standard” +0 +2 +2 +0 +0 +2 +0

Potential clinical utility +2 +2 +2 +2 +2 +2 +2

Cost-effectiveness analysis +0 +0 +0 +0 +0 +0 +0

Open science and data +0 +1 +0 +0 +0 +0 +1

Total score (Maximum:36) +13 +16 +15 +13 +14 +15 +13
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3.4. Bias Assessment

As shown in Figure 5, the publication bias was assessed using a funnel plot. The funnel
plot result was symmetrical, indicating no obvious publication bias in this meta-analysis.
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3.5. Review of Prediction Feature

According to the International Symposium on Biomedical Imaging (ISBI), radiomics
features can be classified as shape-based features, first-order features, gray-level run-length
matrix (GLRM) features, gray-level co-occurrence matrix (GLCM) features, gray-level
distance-zone matrix (GLDZM) features, gray-level size-zone matrix (GLSZM) features,
neighborhood gray tone difference matrix (NGTDM) features, or neighboring gray-level
dependence matrix (NGLDM) features [40]. Three studies used shape-based features, while
all studies used first-order and second-order features. The details of used features are listed
in Table 3. The number of the studies in which the radiomics type was used was shown
in Figure 6.



Diagnostics 2021, 11, 991 7 of 11

Table 3. Features used in the prediction models.

Author
Nation, Year Radiomics Feature Non-Radiomics Feature

Zheng [33]
China, 2020

Shape-based, first-order,
GLRM, GLDZM, NGLDM Nil

Jin [34]
China, 2020

First-order, GLCM, GLSZM, GLRM,
NGTDM, GLDM * Nil

Fang [35]
China, 2020 First-order, GLCM Lesion distribution, pleural effusion, maximum lesion range,

mediastinal and hilar lymph node enlargement,

Huang [36]
China, 2020

Shape-based, first-order, GLCM, GLDM *,
GLSZM, GLRM

Halo sign, ground glass opacity (GGO), intralobular
interstitial thickening (IIT)

Chen [37]
China, 2020 Shape-based, first-order, GLSZM

Number of lesions with pleural thickening, white blood cell
count, platelet count,

number of lesions with crazy paving appearance

Liu [38]
China 2021 first order, GLCM, GLDM*, GLRM age, lesion distribution, neutrophil ratio, CT score,

lymphocyte count

Note: GLRM, gray-level run-length matrix; GLCM, gray-level co-occurrence matrix; GLDZM, gray-level distance-zone matrix; GLSZM,
gray-level size-zone matrix; NGTDM, neighborhood gray tone difference matrix; NGLDM, neighboring gray-level dependence matrix.
* The gray-level dependence matrix (GLDM) is not listed by the International Symposium on Biomedical Imaging (ISBI).
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3.6. Review of Prediction Models

Four studies used least absolute shrinkage and selection operator (LASSO) regression,
one study used logistic regression, and one study used support vector machine (SVM)
models with a radial basis function kernel. The details of the used models are listed
in Table 4.
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Table 4. Prediction models used in the collected studies.

Author
Nation, Year Prediction Model

Zheng [33]
China, 2020 LASSO regression

Jin [34]
China, 2020 LASSO regression

Fang [35]
China, 2020 LASSO regression

Huang [36]
China, 2020 logistic regression

Chen [37]
China, 2020 SVM models with a radial basis function kernel

Liu [38]
China,2021 mRMR, LASSO regression

Note: LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; mRMR: minimum
redundancy and maximum relevance.

4. Discussion

This meta-analysis is the first to explore CT-based radiomics features for the differ-
entiation of COVID-19 from other viral pneumonias. The advantage of conducting this
meta-analysis is that a large number of patients were included. A total of 10,300 patients
were included in this meta-analysis, increasing the robustness of our results. The prediction
performance was fascinating with a pooled AUC of 0.906.

Among the studies that included viral pneumonia comparisons, two studies included
only influenza infections [33,34]. Other studies included influenza and other viral pneu-
monia infections [35–39]. Considering that influenza also represents a highly contagious
disease with a high prevalence of adult viral pneumonias [41,42]. We included the two
studies which compared COVID-19 with influenza pneumonia in this meta-analysis [33,34].

The sensitivity of RT-PCR for COVID-19 diagnosis varied from 59 to 71% depending
on viral load and test sample quality [2,5]. That is to say, an RT-PCR negative result was
still shown in some COVID-19 infected patients [5,43]. Therefore, chest CT played a crucial
role in the early diagnosis of COVID-19 pneumonia for the RT-PCR negative patients [44].
The identification of COVID-19 pneumonia on chest CT depended on radiologists’ in-
terpretation. However, radiologists qualified only moderate sensitivity in differentiation
COVID-19 from other viral pneumonia on chest CT [14]. With artificial intelligence assis-
tance, radiologists achieved higher sensitivity in diagnosis of COVID-19 pneumonia [3,45].
In this meta-analysis comparing COVID-19 with other viral pneumonia under CT-based
radiomics assistance, the pooled sensitivity was 0.885.

The radiomics quality scores in the included studies ranged from 13 to 16 points.
The maximum RQS is 36 points. However, none of the collected studies were conducted
prospectively, which led to a loss of 7 points. Thus, future studies should be conducted
prospectively to achieve better-quality results.

Among the six studies included in the meta-analysis, four of them used LASSO
regression. LASSO regression is a commonly used feature selection algorithm in the data
science discipline. It is a logistic regression method with L1 regularization, which renders
the prediction model more prone to noise, thus increasing its robustness [46]. One study
used traditional logistic regression, whereas another used SVM. The SVM algorithm works
well in the high-dimensional space, making it popular in machine learning.

First-order features, shape-based features, and second-order features were used in the
prediction models. The power of radiomics features was displayed in many cancers [47–49].
However, this meta-analysis showed that radiomics features are useful not only in cancer,
but also in other diseases, such as COVID-19 pneumonia.
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The limitation of this meta-analysis is that all the studies were retrospective and
conducted in China. However, there was no other suitable article that met the inclusion
criteria in the three databases (Pubmed, Cochrane Library, and Embase) search process
by two authors. One selected article was conducted in China but some of the involved
patients were collected in the USA [39]. In the future, prospective and multinational studies
should be conducted to validate the effectiveness of radiomics in COVID-19 detection
using CT scans.

5. Conclusions

Our meta-analysis showed that CT-based radiomics feature models can successfully
be used to differentiate COVID-19 from other viral pneumonias.
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