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Abstract: Accurate localization and analyses of functional liver segments are crucial in devising
various surgical procedures, including hepatectomy. To this end, they require the extraction of a
liver from computed tomography, and then the identification of resection correspondence between
individuals. The first part is usually impeded by inherent deficiencies, as present in medical images,
and vast anatomical variations across subjects. While the model-based approach is found viable to
tackle both issues, it is often undermined by an inadequate number of labeled samples, to capture all
plausible variations. To address segmentation problems by balancing between accuracy, resource
consumption, and data availability, this paper presents an efficient method for liver segmentation
based on a graph-cut algorithm. One of its main novelties is the incorporation of a feature preserving
a metric for boundary separation. Intuitive anatomical constraints are imposed to ensure valid
extraction. The second part involves the symmetric conformal parameterization of the extracted
liver surface onto a genus-0 domain. Provided with a few landmarks specified on two livers, we
demonstrated that, by using a modified Beltrami differential, not only could they be non-rigidly
registered, but also the hepatectomy on one liver could be envisioned on another. The merits of the
proposed scheme were elucidated by both visual and numerical assessments on a standard MICCAI
SLIVER07 dataset.

Keywords: liver surgery; hepatectomy; preoperative simulation; computer-assisted intervention;
conformal parameterization

1. Introduction

Subject-specific modeling of 3D organs plays a crucial part in computerized diagnosis
and therapeutic intervention. The process consists of digitizing a geometric representation
of the organ from medical images, and performing its simulation in a clinically relevant
setting [1]. Generally, the former involves the separation of objects of interest from the
background, while the latter provides a platform where the user can interact with a
virtual environment. In particular, simulation on virtual organs allows physicians to
devise appropriate planning and to evaluate prognostic outcomes prior to the actual
procedure. In living donor liver transplantation, for example, the accurate localization of the
interested region and measurement of their future remnant volumes (FLRV) are among the
determining factors of success in hepatic surgery. Thus far, the structure of a liver is not only
complex but also greatly varies across individuals. Therefore, both 3D liver segmentation
and its modeling remain important areas of investigation in biomedical research.

Despite rapid progress in artificial intelligence (AI) and image analysis, accurately
determining specific anatomical structures from medical images remains challenging and
is an open problem. This is primarily due to the fact that the task involves segmenting
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natural objects that greatly vary in both shape and size across individuals. In addition, the
underlying imaging data are often of relatively low contrast. This results in a fuzzy edge
and hence an indefinite object boundary. Furthermore, with certain imaging protocols and
scanning planes, overlapping between objects could be present. Therefore, segmentation on
a medical image remains highly dependent on the specific scenario and applications [2,3].

Recent advances in computer-assisted intervention (CAI) have so far enabled preop-
erative planning and simulation prior to an actual procedure, by modeling an organ of
interest reconstructed from computed tomography (CT). Preoperative liver surgery, for
example, has attracted much interest from the biomedical research community in recent
decades. The liver is the biggest abdominal organ, and plays a crucial part in filtering and
releasing toxic waste from the bloodstream. Consequently, it is particularly prone to vari-
ous diseases such as hepatitis and cancer [3]. Therefore, in addition to surgical applications,
segmenting a liver is considered a primal step toward many computer-aided procedures,
e.g., diagnosis (CAD), chemical treatment, and other therapeutic interventions [4–6].

However, due to the highly complex anatomical arrangement in the abdominal area,
a CT scan of the liver always includes other adjacent organs, such as the stomach, small
and large intestines, pancreas, gallbladder, major vessels, and in some imaging studies,
parts of cardiovascular structures. Due to such complexity, a liver may lie far from the
focused region and alternately with other organs, whose tissue densities and thus pixel
intensities are quite similar to those of the liver. Moreover, disease-induced morphological
changes may as well alter the appearances of this already inhomogeneous structure [7–11].
It was widely acknowledged in the literature that these adverse factors contribute to
poor accuracy and thus ineffective liver segmentation. While manually segmenting a
liver by an experienced radiologist is tedious, time-consuming, and prone to observer
variability, several computerized alternatives still rely, to some extent, on domain experts
for the location, size, and general shape of a liver [9,12,13]. Nonetheless, an extensive
investigation [14] on image segmentation has revealed great success in a range of modern
clinical practices. While in general, those computerized methods offered accurate results
and enabled much effective communication between physicians, others remain largely
debatable whether an automatic or semi-automatic approach is the most suitable for a
given problem.

Over the years, numerous techniques for segmenting a 3D liver from CT have been
proposed. These techniques relied on different features being extracted from imaging data,
and can be generally classified into those based on thresholding [11,15], region growing
(RG) [13,16,17], graph processing [5,18–22], machine learning [23,24], level-set [25], and
deformable model [26]. Detailed survey and discussion on the state of the art are presented
in [27,28] and summarized as follows:

One straightforward approach was taken in [11], where thresholding was applied to
an underlying image, and a liver was then estimated as the largest connected component
(LCC). Subsequently, Bayesian classification was used to label individual pixels as either
liver or non-liver a posteriori, based on their inferred type. Similarly, in [15] a single block
linear detection algorithm (SBLDA) was proposed. The image was first preprocessed
by median filter and morphological operator, whereby the block values and confidence
matrix were respectively computed. Finally, the edges of the liver were extracted based
on this matrix. Their major drawback was a high dependency on empirical thresholds,
estimated from a limited dataset. To avoid such dependency, RG was chosen in some studies.
Chen et al. [16] proposed liver segmentation from CT based on enhanced RG. Firstly, the
image was preprocessed by a feature-preserving anisotropic filter. Then, a Gaussian mixture
model (GMM) was utilized to estimate liver and non-liver statistics. Given seed points
and their intensities as obtained from the previous slice, both regions were grown with
respect to the GMM. Unfortunately, quantitative evaluation was not presented in that study.
Kumar et al. [17] automatically specified a seed point as the centroid of binarized LCC,
based on its grayscale histogram. Instead of relying on seed point priors, Lu et al. [13]
introduced a quasi-Monte Carlo (QMC) method for seed point selection, thus improving



Diagnostics 2021, 11, 852 3 of 21

the RG criteria. The segmented region was later post-processed by morphological operators,
Canny edge detection, and the flood–fill algorithm. An alternative to thresholding and RG
is the Graph Cut (GC) algorithm, introduced by Boykov et al. [29] for optimal boundary
and region segmentation of an object via energy minimization. Later, the method was
further enhanced by employing max-flow/min-cuts algorithms in minimization [30], and
has since been widely received by many studies. Taking advantage of these state-of-
the-art algorithms, Chen et al. [21] proposed combining the active appearance model,
live wire, and GC for segmentation of the liver, kidneys and spleen. In liver analysis,
Liao et al. [5] incorporated intensity and appearance models into the energy function of
GC, to remove noise and highlight the region of interest (ROI). After that, the bottleneck
detection algorithm was employed to refine the extracted liver boundary. Instead of
bottleneck detection, another work [18] presented a vessel compensation method based on
border marching in post-processing. Taking diseased samples into account, Peng et al. [19]
considered a liver as multiple subregions, including those with a tumor. A proper region
appearance constraint for each subregion was imposed onto the GC, in both boundary and
region terms, and selected based on its geodesic distance. Their method, however, required
the user initialization of cylindrical shapes, applied separately for healthy and diseased
tissues. Alternatively, Wu et al. [20] proposed a super voxel-based GC method. After the
usual preprocessing, maximum intensity projection (MIP) was used to estimate the volume
of the abdominal region (VOA). Thresholding and morphological operators were then
applied to extract the volume of interest (VOI). Finally, a simple linear interactive clustering
algorithm was employed to construct, from this VOI, super voxels, on which the GC was
optimized. Recently, Le et al. [22] highlighted a three-dimensional liver region based on
multivariable normal distribution (MND). The resultant probabilistic map was enhanced by
relaxation labeling before GC was employed to separate the liver from its background. In
that work, the extracted contours were asserted by anatomical constraints. Deep machine
learning has recently attracted considerable interest in the community. For instance, Lu
et al. [23] adopted a three-dimensional convolution neural network (3D CNN) to build a
liver probability map. Then, region appearance propagation (RAP) was used to model the
intensity range of a liver. Based on this 3D CNN model, GC was finally used to segment the
liver. Provided there was a sufficient manually delineated dataset, a deformable model such
as level-set was found to be reliable and efficient [24,25]. Chartrand et al. [26] segmented
a liver from CT and magnetic resonance imaging (MRI) based on this model, using a
Laplacian mesh optimization scheme. With their method, an approximated 3D model of
a liver was manually created via the graphical user interface (GUI). The model was then
deformed toward an unseen liver instance by means of iterative non-rigid registration. An
interactive correction, however, was needed for a user to interpret the results by imposing
additional constraints on shape evolution.

The literature reviewed above may be categorized by the algorithm involved in their
key steps. Nonetheless, a retrospective benchmarking of these methods is by no means
trivial, due to large discrepancies among imaging modalities, datasets, empirical and
environmental settings, and evaluation metrics. Table 1 summarizes the most recent liver
segmentation methods, characterized by method, data involved, results, and automation.

Unlike MRI, imaging tissue with CT often exhibits ambiguous boundaries between
adjacent organs, due to similar X-ray absorption. Priors on liver shape and size could
very well offer a spatial cue in segmentation. Therefore, several studies exploited gradual
variation across consecutive slices, covering the anatomical structure [5,16,18,20,26], to
improve segmenting accuracy. For instance [5,18], localization from the previous slice was
incorporated into the GC energy function to limit the search space. Meanwhile, spatial
information within neighboring slices was exploited to seek suitable seed points [16], to
determine VOI [20], or to build a 3D model from user-defined contours [26].
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Table 1. Summary of the recent liver segmentation methods in the literature.

Reference Method Data Results Auto

Chen et al.,
2009 [16]

Region growing
(RG) Private Visual assessment No

Kumar et al.,
2011 [17]

Largest connected
region and RG Private

Average absolute volume
error: 1.52%,

Mean spatial overlap ±
standard deviation: 0.98 ± 0.01

Yes

Chen et al.,
2012 [21]

AAM, Live wire,
Graph cut (GC)

MICCAI
(Labeled) VOE: 6.5 ± 1.8% Yes

Lu et al.,
2014 [13]

Quasi-Monte Carlo
(QMC) 2D images Visual assessment No

Yang et al.,
2014 [25] Level-sets

MICCAI
(Unlabeled)

Private

Score: 78.9
SI = 97.6% No

Peng et al.,
2015 [19]

Multiple region
appearances and GC

MICCAI,
Private

Score: 83.4 and 83.4
DSC: 97.5% ± 0.4% No

Huang et al.,
2016 [15] SBLDA 3Dircadb1 VOE: 7.84 ± 2.95% Yes

Liao et al.,
2016 [5]

GC and bottleneck
detection

MICCAI,
XHCSU14

VOE: 5.8 ± 3.3%
VOE: 5.8 ± 0.7% No

Wu et al.,
2016 [20]

Simple linear
iterative clustering
(SLIC) and super
voxel-based GC

MICCAI Score: 75.2 and 71.4 Yes

Mohamed
et al., 2017

[11]

Largest connected
component (LCC)

and Bayesian model
Private DSC: 95.5% Yes

Liao et al.,
2017 [18]

GC and border
marching

MICCAI,
XHCSU14

VOE: 5.8 ± 3.2%
VOE: 5.4 ± 0.7% Yes

Lu et al.,
2017 [23] 3D CNN and GC MICCAI,

3Dircadb1
Score 77.8

VOE: 9.36 ± 3.34% No

Zheng et al.,
2017 [24] Random walk MICCAI

(Labeled) VOE: 7.8%, Score: 76 Yes

Chartrand
et al., 2017

[26]

Deformation model
using Laplacian

mesh optimization
scheme

MICCAI,
Private

VOE: 5.14 ± 1.02%
VOE: 5.1 ± 0.6%

VOE: 7.62 ± 1.35%
No

Le et al., 2021
[22]

MND, GC and
anatomical
constraints

MICCAI VOE: 7.8 ± 1.5%
VOE: 8.0 ± 1.1% No

Despite several attempts to accelerate the process by automatic seed-point
selection [17,18,20], if an underlying CT image includes multiple regions, its localization
may be less accurate or even lie completely in non-liver areas (e.g., tumor, or dark object). It
was, therefore, pointed out in [13] that interactive methods and those based on a statistical
deformable model outperform their automatic counterparts, especially those without a
prior model. Nonetheless, due to the particularly diverse morphology of a liver, a uni-
versal model would require a prohibitively large collection of training samples. On the
other hand, with a limited number of known liver samples, higher interaction would be
required on the user’s part. Depending on the specific purpose and expected degree of
confidence, care must be observed when balancing these requirements and devising a liver
segmentation scheme.
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The remainder of this article is organized as follows. Section 2 presents the materials
involved in this study and proposes a novel liver segmentation method. Section 3 describes
in detail the experiments to evaluate this method. Then, Section 4 reports and discusses
the findings. Finally, Section 5 offers concluding remarks and future works.

2. Materials and Methods

This study proposes an efficient semi-automatic approach toward liver segmentation
and its modeling from CT, consisting of the following steps. Firstly, local statistics (i.e.,
mean intensity, and standard deviation) within the neighborhood of each voxel were com-
puted. Meanwhile, local orientation patterns (i.e., eigenvectors) and anisotropic metrics
were also evaluated, at each voxel. A Gaussian mixture model (GMM) of tissue distribution
was subsequently estimated from local pixel statistics. To minimize the inhomogeneity
present in imaging data, and thus enhance multivariate probability estimation, iterative
multi-slice relaxation labeling (MRL) was applied to this GMM. Later, both the enhanced
probabilistic model and anisotropic metrices were incorporated into GC energy functions.
Geometrical processing was then performed to remove any remaining anatomically unfaith-
ful curve segments of the extracted contours, from which a 3D surface of a liver was finally
reconstructed. Provided with the liver surfaces of different individuals, correspondence
between their hepatectomy was established by using constrained conformal harmonic
mapping. This process was summarized as a diagram in Figure 1.
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cross-individual modeling of hepatectomy (b).

In this paper, the extension and improvements of a previous work [22] are presented.
Specifically, the MND model was built from multiple seed points (instead of one) to
better capture the inhomogeneity of pixel intensities. Moreover, RL was extended to
multiple slices, i.e., MRL (instead of within a slice), to improve the reliability of class
assignments. Most importantly, a new feature-preserving metric was introduced and
incorporated into the GC boundary term. Accordingly, the main contributions of this
study are threefold. Firstly, the probability distribution of abdominal tissues, vital to
most existing methods, was simply computed with no learning of features from other
samples involved, but enhanced by contextual information, efficiently determined by MRL.
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Secondly, the local orientation pattern of underlying texture, instead of a generic Euclidean
distance, was seamlessly incorporated into GC minimization, hence robustly reinforcing
the morphological definition of a liver. Finally, and most importantly, the correspondence
of hepatectomy between different subjects was determined by using conditioned conformal
mapping of the extracted liver surfaces. This correspondence is potentially useful for
functional cross-subject analyses, such as preoperative planning and the simulation of liver
transplantation. Detailed analyses and treatments of the proposed method are described in
the following subsections.

2.1. Probabilistic Model

Most existing studies exploited the probability distribution of an element based on
extracted features. In [5,18] for example, an appearance model of a liver was built by
means of principal component analysis (PCA), directly from pixel intensity. Instead of
using this feature, other works derived a local binary pattern (LBP), a local variance of
intensity (VAR) [19,23], or a GLCM [24] from an image pixel and its neighbors. With
this approach, the extracted features were invariant to intensity level and local rotation.
Similarly, our approach characterized each pixel with local statistical features, namely,
means (µ) and standard deviations (σ) of multivariate Gaussian distribution. Given a seed
point p placed inside a liver, a local patch Ωp centered at p was first located. Then, for each
pixel q ∈ Ωp, local statistics, i.e., µq and σq, were computed within its local neighborhood,
Ωq, and associated with q. Subsequently, a bivariate Gaussian model was created from
these attributes around the seed point, Ωp, as given in Equation (1) [22]:

P
(
Fq
)
=

1

2π|Σ|1/2 exp

(
−1

2

(
Fq −

¯
F
)T

Σ−1
(

Fq −
¯
F
))

(1)

where Fq is a feature vector at point q, i.e., Fq =
[

µq σq
]T ,

¯
F is its average over a local

patch Ωp, and Σ is a covariance matrix of these attributes. Thus, a total of (N + N − 1)2

pixels were involved in building the model for a seed point, where N is the width (or
height) of Ωp,q [22]. As pointed out in earlier studies, the liver interior in a typical CT
exhibits inhomogeneity, and hence results in an uneven probability map. To remedy this
issue, we created separate distributions Pi (F) from k seed points, all within the liver. Then
the probability of pixel q being associated with the liver is the maximum among these
k distributions, i.e., P∗

(
Fq
)
= max

(
P0
(
Fq
)
, . . . ,Pk−1

(
Fq
))

. A background pixel would
always have a low value, regardless. It is also worth noting that, while the inclusion of
Ωq suppressed imaging noise (e.g., quantum mottle), the inclusion of Ωp tried to capture
inhomogeneity, causing imaging artifacts and tissue variability. Increasing liver classes (k)
could improve the robustness of the model, but at the cost of user interaction and optimal
model selection. However, this model was used initially to normalize and highlight the
liver appearance. This would be enhanced and classified in the subsequent modules. Thus,
decisive intensity modeling was not particularly imperative at this stage. It was found from
a preliminary experiment that Ωp,q of 9× 9 pixels and k = 2 (i.e., a total of 2 × 17 × 17 = 578
pixels being evaluated) alleviated the abovementioned deficiencies and a balance between
user interaction, the performance of model calculation and the reliability of the subsequent
process, and was thus assumed in the experiments.

2.2. Relaxation Labeling (RL)

As its name suggests, relaxation labeling (RL) iteratively assigns class labels to object
elements based on their contextual information [31]. Provided with a set of initial member-
ship estimates, its probabilities of belonging to specified classes are gradually adapted to
the surrounding compatibilities and supports, until convergence. Considering both spatial
and probabilistic contexts, RL is hence among the most robust post-processing methods for
various classification problems. To name a few, it was integrated into enhancing line and
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curve estimation [32], edge detection [33], image segmentation [34,35], point matching [36],
and many others [37,38]. The formulation of an RL framework is described as follows.

Let an object element p ∈ P be labeled, at a given iteration, t, to a class a ∈ C, with a
probability, Prt

p(a) ∈ [0, 1], where ∑
a∈C

Prt
p(a) = 1. This probability will be updated at the

next iteration, t + 1, following the expression in Equation (2) [31]:

Prt+1
p (a) =

Prt
p(a)

(
1 + Sp(a)

)
∑b∈C Prt

p(b)
(
1 + Sp(b)

) (2)

where Sp(a) is the support for an object p being assigned to a class, a. It was in turn
expressed as a weighted sum among the compatibilities between object element p and its
neighbors, q, being assigned to classes a and b, respectively, that is:

Sp(a) = ∑
q∈Np

wpq ∑
b∈C

rpq(a, b)Prt
q(b) (3)

where the weight, wpq, satisfying ∑q∈Np wpq = 1, is the contribution of q on p, and rpq(a, b)
is a compatibility between p and q (neighbor of p) being assigned to classes a and b,
respectively. It returns 1 (fully compatible) if both p and q were assigned to the same class
(i.e., a = b), and −1 otherwise (incompatible). Note that the denominator in (2) ensures
the unity sum of all probabilities. A detailed discussion of the accuracy and convergence
properties of these values can be found in [37].

2.3. Multislice Relaxation Labeling (MRL)

Motivated by previous works [5,16,18,20,26], where 3D information gathered from
consecutive slices was exploited to remedy the ambiguity found in an individual CT image,
this study took a multi-slice approach to RL (MRL). Since the liver is the largest abdominal
organ, a gradual change of its morphology across adjacent slices may be incorporated into
labeling contexts to improve the effectiveness of RL. To this end, it is simply expressed as
an inverse Euclidean distance between voxel p and q, as in Equation (4):

wpq =
[(

xp − xq
)2

+
(
yp − yq

)2
+ D2(sp − sq

)2
]−1/2

(4)

where s and D are the slice index and the distance between consecutive slices, respectively.
In this study, 26-neighbor (9 + 8 + 9) connectivity was considered for each voxel, p.

The slice distance, D, can be found in DICOM metadata. It can be noted in Equation (4)
that as objects become further apart, the weight gets weaker and hence there are fewer
supports between them. In addition, as emphasized in [31], the weight wpq, must be
normalized over all neighbors so that it satisfies ∑q∈Np wpq = 1. To further speed up the
calculation, all possible weights for 26 neighbors were precomputed and stored in a look-up
table (LUT). The implementation of MRL was similar to [31], except for the calculation of
multi-slice weight.

Figure 2 illustrates some soft labeling examples, comparing between results obtained
by a non-RL, and homogeneity improvement made by MRL.

It is evident that the liver boundaries are refined, while artifacts are reduced. Unlike
other similar works, MRL was used in this study only as preprocessing, and thus definitive
binary classification was not fully committed as yet. Therefore, instead of continuing the
updates until convergence, these examples were obtained after only five iterations.
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of improvement, which are of a refined boundary and much more homogeneous regions.

2.4. Local Orientation and Anisotropic Measure

A CT image has unique textural inhomogeneity, which contributes to artifacts in
segmentation. Several methods commonly resolve this issue by applying a low-pass filter
or morphological operator, but inevitably smoothing out parts of the anatomical feature.
Advanced feature-preserving filters were also proposed to remedy this shortcoming. Yang
et al. [39], for example, proposed structural adaptive anisotropic filters to remove these
artifacts, without much scarifying of image fidelity. With this technique, a convolution
kernel was created specifically for an individual pixel, so that its orientation and shape
were adaptive to those of the underlying pattern. Given an image f : R2 → R, the kernel
at a pixel p, located at (x, y), is oriented along the local intensity pattern at an angle, θ, as
given in Equation (5):

θ(p) =
1
2

atan

 s
Np

2 fx fydxdy
s
Np

(
f 2
x − f 2

y

)
dxdy

+
π

2
(5)

where fx and fy are the 1st order partial derivatives of the image, f, with respect to x and y
coordinates, respectively. The local neighborhood of p is denoted as Np.

Then, the anisotropic measure and corner strength, used to estimate the kernel shape
is given for each pixel, p, respectively, as follows:

g(p) =

(s
Np

(
f 2
x − f 2

y

)
dxdy

)2
+
(s
Np

2 fx fydxdy
)2

(s
Np

(
f 2
x + f 2

y

)
dxdy

)2 (6)

c(p) = (1− g(p))|∇ f (p)|2 (7)

where the partial derivatives are defined as in Equation (5) and∇ f (p) is an image gradient
at pixel p. Finally, the shape kernel is defined by an ellipse, whose major and minor axes
are denoted by s1 and s2, respectively, as expressed in Equations (8a) and (8b):

s1(p) =
r

1 + c(p)/λ
(8a)
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s2(p) = (1− g(p))s1(p) (8b)

where r is the support radius of a kernel, which is set to three in this paper, and λ is a factor
controlling the importance of the imaging feature. The latter is normally set to 75% (0.75).
For an isotropic region, s1 = s2 and g ≈ 0, then the kernel shape is circular, whereas for a
structured region, s1 > s2 and 0 < g ≤ 1, then the kernel is elliptical.

It is worth emphasizing that, unlike in most previous works, the anisotropic metrices
derived here were not intended to construct a smoothing or noise removal filter but were
incorporated into GC energy functions for structural adaptive segmentation. Their detailed
treatment and analysis are given in the following subsection.

2.5. Graph Cut Algorithm

Graph Cut (GC) poses the segmentation problem as graph optimization. Consider an
undirected graph G = {V , E}, where V is a set of vertices and E is that of edges connecting
pairs of vertices, each by a positive weight, w. A minimum-cut (or min-cuts) scheme
partitions V into 2 disjoint subsets, i.e., V1 and V2 (V1 ∪ V2 = V ∧ V1 ∩ V2 = ∅), such that
a cost function | K| = ∑e⊂K we, defined on edges, is minimized, where K ⊂ E .

In image segmentation, V and E correspond to pixels (P) and their adjacent links,
respectively. An additional two special terminals, representing object and background are
added to this graph, and thus are referred to as s (source) and t (sink), respectively. A link in
this graph is categorized into either an n-link or t-link, whether it connects adjacent pixels
or these pixels with terminals, respectively. Let p be a pixel within an image P , whose size is
||P||. A pixel p is assigned with a binary label lp, i.e., lp ∈ L = {0, 1}, where 0 and 1 denote
the object and background classes, respectively. An efficient min-cut/max-flow [30] solves
this min-cut problem by minimizing the combinational energy, given optimal labels, i.e.,

E(L∗) = α ∑
p∈P

R
(
lp
)
+ (1− α) ∑

p∈P , q∈N
B(p, q)× T

(
lp, lq

)
(9)

where α is an empirical weight balancing between region (R) and boundary (B) terms,
empirically set to 0.6 in the experiment. The greater the value, the more emphasis is placed
on the former. The former is defined by the likelihood of specific labeling, while the latter is
computed from the functional (i.e., intensity) and spatial differences between two adjacent
pixels, i.e., the function T returns 1 if lp 6= lq, or 0 otherwise. One of the main contributions
of this study is introducing local pattern compatibility to enhance the differences in the
boundary. It is characterized by an underlying structural adaptive measure, F, between
two pixels. Accordingly, the region and enhanced boundary terms of GC energy are given
in Equations (10a) and (10b), respectively:

R
(
lp
)
= 1− Pr

(
lp
∣∣ p
)

(10a)

B(p, q) = exp

(
−F(p, q)× |I(p)− I(q)|2

2δ2

)
× 1
||p− q|| (10b)

where I ( · ) is the image intensity function, δ is the noise standard distribution, and || · || is
the Euclidean norm in a Cartesian space. The symmetric structural adaptive measure of
pixels p and q is the maximum anisotropic function (Equation (6)) between the two, that is,

F(p, q) = max(g(p), g(q)) (11)

2.6. Post Processing of Extracted Contours

Segmenting a liver based on pixel-wise information is robust against imaging noise.
Thus far, it does not take into account the anatomical contexts. To address the issue, this
study incorporated prior knowledge on liver shape into post-processing. A set of parallel
contours were first extracted from the probability maps, by using Otsu’s method, and
had its contours extracted. Provided with these contours, two relevant constraints were
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imposed, i.e., a gradual transition between adjacent slices and, most importantly, a singly
connected curve with no excessive nodule. The latter was usually contravened by a fuzzy
boundary adjoining other abdominal organs. Their detailed analyses and treatments are
described in the subsections below.

2.6.1. Bottleneck Detection

A small nodule folded on a contour is characterized as a bottleneck (BN) [40] and
on the 2D space can be identified by a pair of points (pi, pj) on a contour C for i 6= j,
that satisfies:

ε =
||pi − pj||

MIN
(∮ pj

pi
C(s)ds,

∮ pi
pj

C(s)ds
) < Tb (12)

where ε is the bottleneck ratio, || · || is the Euclidean norm, contour integrals are evaluated
both clockwise and counterclockwise, and Tb is a threshold. In addition, to prevent
mistaking fissures for ligamentum teres and venosum for BN, only pairs (pi, pj) whose
distances were greater than 60 pixels were considered.

It differed from [5] that, we adopted an outer angle criterion (Tc) to limit the search
space [22]. A point p whose outer angle was less than Tc would be discarded from potential
BN, and hence not detected by Equation (12). In the following experiments, Tb and Tc were
empirically set to 0.6 and 135◦, respectively. Moreover, a contour was first decimated by
polygonal approximation, prior to being detected for BN to reduce processing time.

2.6.2. Interslice Contour Constraint

The previous BN was intended for small knot removal, based on in-plane angles
and distances. A slight deviation from empirical thresholds could lead to inconsistent
removal between slices. Thus, to further improve the robustness of contour post-processing,
we introduced interslice constraint. It imposed the minimum overlap ratio between two
consecutive contours, to ensure natural transition along the liver cross-sections.

Starting with a slice k, containing contours with the largest total areas, S (Ck) =

∑i S(cki), where cki is the ith contour in that slice and S ( · ) is an area function. While
traversing along the z-axis in ascending order, let Ci = {ci1, ci2, . . .} and Cj =

{
cj1, cj2, . . .

}
be the set of contours (with BN removed) in current (i) and previous (j) slices, respectively. A
contour, cis in Ci, was maintained only if there existed cjt in Cj that the ratio between the area
of their intersection, S

(
cis ∩ cjt

)
, and the minimum area between them, min

(
S(cis), S

(
cjt
))

,
were greater than a specified threshold, Ts. Following [22], the threshold, Ts, was set to
0.8–0.05 (D − 1), where D was the slice distance, as defined in Section 2.3. The process was
also repeated, while also traversing in descending order along the z-axis.

2.7. Conformal Parameterization of a Liver Surface

The parameterization of a discrete surface defines a one-by-one mapping of 3D tri-
angular mesh onto a topological homeomorphism, such as a plane or a unit sphere. This
mapping must hold two characteristics, i.e., minimized distortion and (relative) area preser-
vation [41]. Mesh parameterization has been used in a range of applications in image
analyses and computerized graphics, e.g., texture mapping, occlusion completion, mesh
compression, and shape metamorphosis [42]. In medical imaging, it is useful in analyzing
and comparing biological materials, such as the brain, carotid artery and hippocampus [43],
and the modeling of muscles, such as those of the levator ani [44] and face [45,46]. It has
been commonly accepted that conformal mapping minimizes the angular distortion of
surface elements, and thus their geometrical formation [47,48]. It has been demonstrated
elsewhere [42,47,48] that, when provided with a mesh with specified topology, it can
be mapped onto a structure with the same diffeomorphism, regardless of its geometry.
However, particularly for anatomical shapes, a conformal mapping between two genus-0
surfaces is not unique but forms a Möbius group. Moreover, the alignment of their salient
features is not necessarily guaranteed. To resolve this uncertainty, optimized Möbius
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transformation by explicit landmark matching or by modified mesh energy function was
proposed [49,50]. While they both created conformal mapping with correspondences, the
latter is superior in terms of alignment error, and was hence adopted in this study.

To define an optimal mapping between two liver surfaces S1 and S2, let K denote
a triangular simplex of a liver surface and [u, v] be an edge connecting two vertices,
u and v. Then, let fs : Ss → S be the conformal map of a surface Ss,(s=1,2) onto a unit
sphere; pi,i=1...n, and qi,i=1...n are landmarks defined on both surfaces, respectively, where
pi corresponds to qi. Following [49,50], the harmonic energy function that minimizes both
distortion and landmark differences is given by Equation (13):

E( f1) = ∑
[u,v]∈K

kuv|| f1(u)− f1(v)||2 + γ ∑
1≤i≤n

|| f1(pi)− f2(qi)||2 (13)

where kuv = cot α + cot β with α and β are the opposite angles of an edge [u, v]; γ is a
balancing factor. The correspondence, which registered S1 to S2, is given by g = f−1

2 ◦ f1.
It may be observed that Equation (13) can be scaled to different mesh sizes, ||K||, and does
not depend on physical coordinates. Therefore, this mapping could handle variability in
both the shape and size of the liver.

It was pointed out [51] that with conventional approaches, numerical instability
may occur near the spherical poles (where a large number of vertices are mapped onto a
small region), and near the landmarks. These result in severe distortion and even loss of
bijection. To resolve these issues, a Gauss map [48] was first applied to initialize uniform
distribution, then the Fast Landmark Aligned Spherical Harmonics (FLASH) proposed by
Choi et al. [51] were utilized. This linearized Equation (13), based on the north-south poles
iterative model, while adjusting the Beltrami differential to recover bijective mapping. The
detailed implementation of FLASH can be found in [51].

In this study, a liver surface was assumed topologically spherical and hence, of genus-
0 form. Thus, it was possible to determine a conditioned conformal map, when provided
with a few anatomical landmarks, that aligned two corresponding liver surfaces (e.g.,
that of donor and recipient). The potential application of such low-distortion mapping is
demonstrated in a simulation by faithfully projecting functional resections of one liver onto
another during a preoperative hepatectomy.

3. Experiments
3.1. Liver Dataset

To elucidate its merits, the proposed scheme was validated on the standard MICCAI-
SLIVER07 dataset. This dataset comprised 20 CT scans of 3D livers with ground truth [12].
All scans were acquired by different scanners, but at the same 512 × 512 pixel resolution.
Depending on volumes of interest, the number of slices and their distances (D) varied
from 64 to 502 and from 1.0 to 3.0 mm, respectively. In-plane resolution (i.e., pixel spacing)
varied from 0.55 × 0.55 mm2 to 0.8 × 0.8 mm2.

3.2. Evaluation Metrics

To benchmark against state-of-the-art methods, the extracted liver was evaluated by
means of five standard metrices, i.e., volumetric overlap error (VOE) [%], relative volume
difference (RVD) [%], average symmetric surface distance (ASD) [mm], root means square
symmetric surface distance (RMSD) [mm], and maximum symmetric surface distance
(MSD) [mm]. VOE and RVD measured the volumes of intersection and of difference
between the reference and segmented livers. The latter could have negative or positive
values, depending on whether a liver was under- or over-segmented. ASD, RMSD, and
MSD measured the average, root means square, and maximum distances between a point
on the reference liver to the segmented one and vice versa. For all the metrics, the lower the
value, the higher the performance. It should be noted that zero ASD does not necessarily
mean that both reference and segmented liver had 100% overlap, but it should be used in
combination with other metrics. For comparison purposes, each error metric was converted
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to a score of 100 by using Equation (13), where ε and ε are the error and its average of a
given metric, respectively [12]:

∅ = max
(

100− 25
ε

ε
, 0
)

(14)

3.3. Implementation and System Environment

The proposed method was written in C/C++ languages and executed on an Ubuntu
Linux system, equipped with an Intel Core i7 CPU and 16 GB RAM. Basic image processing
operations, e.g., Otsu’s method, filtering, and morphology, etc., relied on OpenCV [52].
Similarly, geometrical operations and displays relied on Visualization Toolkit (VTK) [53].

4. Results and Discussion

The distribution of VOE, RVD, ASD, RMSD, MSD metrics, and the overall score for all
20 segmented livers are plotted in Figure 3. The average overall score was 75.69 ± 5.388.
The lowest and highest scores were 65.3 and 83.1, respectively. Out of 20 instances, 11 in-
stances gave scores higher than the average.
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Figure 3. Sample distribution of VOE (a), RVD (b), ASD (c), RMSD (d), MSD (e) metrics, and overall
score (f) for all 20 segmented livers from MICCAI SLIVER07.

Subsequently, the evaluation metrics, obtained by the proposed method, for 20 MIC-
CAI images, as well as their processing times, were also compared against those obtained
by state-of-the-art methods. The comparisons are listed in Table 2.

Table 2. Benchmarking on five standard metrics and processing time, among different methods.

Metrics VOE RVD ASD RMSD MSD Running
Time

Methods [%] [%] [mm] [mm] [mm] [min]

Liao et al. [18] 5.8 ± 3.2 −0.1 ± 4.1 1.0 ± 0.5 2.0 ± 1.2 21.2 ± 9.3 4.7
Chen et al. [21] 6.5 ± 1.8 −2.1 ± 2.3 1.0 ± 0.4 1.8 ± 1.0 20.5 ± 9.3 6.0
Wu et al. [20] 7.5 ± * 4.2 ± * 1.0 ± * 1.9 ± * 18.5 ± * 0.4

Zheng et al. [24] 7.8 ± * 5.1 ± * 1.1 ± * 1.4 ± * 11.1 ± * *
Proposed method 7.2 ± 1.3 1.4 ± 1.4 1.1 ± 0.3 2.2 ± 0.6 20.9 ± 4.6 1.4

Note: Fields denoted with * are those not reported in the corresponding works.

It is evident that Liao’s method outperformed the rest and ranked first on VOE, RVD
and ASD. Their technique took 4.7 min to segment a liver on average. Meanwhile, Zheng’s
work performed best on RMSD and MSD, but worst on RVD and VOE. These findings
suggested that the former performed well on volume overlapping, while the latter did so
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on point-to-surface distance. In terms of processing time, the proposed method was faster
than Liao’s and Chen’s, and second only to Wu’s works. However, it gave better VOE
and RVD. The improved processing time in our method was primarily due to efficient and
intuitive feature extraction. In addition, another key advantage of the proposed method
was the lowest standard deviation, which implies the most consistent performance. Its
average score was also higher than the reported user (manual) score. This indicates that
the proposed method was highly reproducible and could be applied in clinical practice.

In addition to the numerical assessments, Figure 4 demonstrated selected instances of
highly accurate (Figure 4a) and inaccurate results due, for example, to a low contrast boundary
(Figure 4b), and mistakenly including the inferior vena cava (IVC) (Figure 4c), respectively.

Diagnostics 2021, 11, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 4. Selected examples of accurate (a) and erroneous segmentation, due to an undefined 

boundary (b) and inclusion of the IVC (c). Green and orange contours are those of the ground truths 

and of the livers segmented by the proposed method, respectively. 

It should be noted that, without statistical priors on anatomically plausible shapes, it 

remained challenging to faithfully extract a liver from CT. In addition to vague boundary 

definition, the mistaken inclusion of the IVC also played a vital part in these errors. By 

definition [12], vasculature should be included only if it was completely surrounded by 

the liver. Unfortunately, this was not always the case in a typical dataset, especially for 

the IVC. In some instances, it was correctly discarded by BN detection, whereas in others, 

the IVC was gradually merged with the liver and was hence included by interslice con-

sistency constraint. Meticulously fine-tuning the parameters to balance this tradeoff, so as 

to have the IVC completely removed, is possible but impractical for typical settings. Be-

sides, the inclusion of the IVC merely lessened the performance metrics but did not un-

dermine the quality of the overall shape in many applications. That being said, if a com-

plete separation between a liver and its vasculature is needed, particularly in functional 

resection and surgical simulation, the IVC can be manually removed on a few 2D slices, 

before interslice consistency assertion, provided that it was detected as a BN. Figure 5 and 

Table 3 demonstrate visual and numerical results, before and after manual IVC removal, 

from a selected example. It was evident that the segmentation was significantly improved 

after trivial user intervention. 

 

Figure 5. Example of manual IVC removal. Overlaid on an original image (a) are the segmented 

(green) and ground truth (orange) contours. The segmented liver before and after IVC (seen as BN) 

removal are shown in (b,c). Compared with the ground truth liver surface (d), the one with the IVC 

removed (e) exhibited lower errors [–14.7, 10.6] than did that without (f) [–17.4, 19.4]. 

 

Figure 4. Selected examples of accurate (a) and erroneous segmentation, due to an undefined
boundary (b) and inclusion of the IVC (c). Green and orange contours are those of the ground truths
and of the livers segmented by the proposed method, respectively.

It should be noted that, without statistical priors on anatomically plausible shapes, it
remained challenging to faithfully extract a liver from CT. In addition to vague boundary
definition, the mistaken inclusion of the IVC also played a vital part in these errors. By
definition [12], vasculature should be included only if it was completely surrounded
by the liver. Unfortunately, this was not always the case in a typical dataset, especially
for the IVC. In some instances, it was correctly discarded by BN detection, whereas in
others, the IVC was gradually merged with the liver and was hence included by interslice
consistency constraint. Meticulously fine-tuning the parameters to balance this tradeoff,
so as to have the IVC completely removed, is possible but impractical for typical settings.
Besides, the inclusion of the IVC merely lessened the performance metrics but did not
undermine the quality of the overall shape in many applications. That being said, if a
complete separation between a liver and its vasculature is needed, particularly in functional
resection and surgical simulation, the IVC can be manually removed on a few 2D slices,
before interslice consistency assertion, provided that it was detected as a BN. Figure 5 and
Table 3 demonstrate visual and numerical results, before and after manual IVC removal,
from a selected example. It was evident that the segmentation was significantly improved
after trivial user intervention.

Table 3. The metrics and overall scores of the above example, before and after removing IVC.

Metrics VOE
[%]

RVD
[%]

ASD
[mm]

RMSD
[mm]

MSD
[mm]

Overall
Score

Before IVC removal 6.9 3.2 0.9 1.8 19.4 76.7
After IVC removal 6.4 2.7 0.8 1.4 14.7 80.6
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Figure 5. Example of manual IVC removal. Overlaid on an original image (a) are the segmented
(green) and ground truth (orange) contours. The segmented liver before and after IVC (seen as BN)
removal are shown in (b,c). Compared with the ground truth liver surface (d), the one with the IVC
removed (e) exhibited lower errors [–14.7, 10.6] than did that without (f) [–17.4, 19.4].

In addition, to elucidate the merits of the proposed cross-subject correspondence of
liver resection, a pair of extracted liver surfaces were selected and denoted as source (S1)
and target (S2). After segmentation, these surfaces were first preprocessed by the MeshFix
tool [54], to remove degenerated and self-intersecting triangles, to fill holes, and to smooth
their vertices. Without a loss of generalization ability, each processed mesh was resampling
to contain 12k vertices (to reduce mesh elements to a manageable size, while maintaining
visual appearance). Subsequently, functional resection was performed on each liver [55],
resulting in eleven landmarks. A description of these landmarks is summarized in Figure 6.
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Figure 6. Landmark annotations. LHV, MHV, and RHV refer to the resection paths along the left,
middle, and right hepatic veins, respectively; LPV and RPV refer to those along the left and right
portal veins, respectively.

Out of these landmarks, three anatomical points (1, 2, and 6) were explicitly detected
on the gallbladder fossa and falciform ligament [55], while the other six points (3–5 and
7–9) were intersections of resection paths; the last two points (10, 11) lay on the virtual
paths along the left and right portal veins (PV) passing through the liver surface, where it
exhibited the highest curvature.

Example localization of these landmarks and the respective mapping are illustrated in
Figure 7. It is revealed by the distortion plots with a slight deviation from 0 degrees that,
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by using the FLASH algorithm, stabilized and bijective conformal mapping was obtained.
The corresponding source to target registrations are shown in Figure 8.
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Figure 8. The registration (S’1) of source (S1) to target (S2) in anterior view (a), posterior view (b), and the overlaid error
distance (c). The errors of this example were between –1.2 × 10−3 to 8.1 × 10−5.

To evaluate the correspondence between source and target resections, the resection on
the target liver (L2), based on its interior vasculature [55] was projected onto the registered
source liver,

(
S′1
)
, denoted as

(
L′1
)
. Subsequently, the Hausdorff distance between this

projected resection and that actually performed on the source (L1) was computed by using
MeshLab, developed by the Visual Computing Lab of the ISTI-CNR based on the VCG
library [56]. Figure 9 depicts the resection on source and target livers [55], their conformal
parameterizations, and the projected resection by symmetric correspondences.

Table 4 lists the maximum, minimum, mean and root mean square errors of the
Hausdorff distances between the correct (determined from its actual vasculature) and
projected resection on the source liver.
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Figure 9. The resection of source (a) and target livers (d), based on hepatic vascular network, their
respective conformal mapping (b,e), and the projection of target resection (c) onto the registered
source liver (f), by using symmetric correspondence.

Table 4. The Hausdorff distance between the correct and projected hepatectomy with 11 landmarks.

Resection Paths Max
[mm]

Min
[mm]

Mean
[mm]

RMS
[mm]

LHV 33.12 0.15 13.03 15.50
MHV 38.53 0.45 18.52 21.54
RHV 72.77 0.36 30.77 36.32
LPV 24.10 0.23 13.09 14.32
RPV 62.12 1.06 40.55 43.56

Average 46.130 0.452 23.192 26.249

It is evident from Table 4 that the projections of LHV and LPV exhibited the least error,
which implies they are the most consistent between the projected and correct hepatectomy.
In which case, when provided with resection paths on the target liver, that one source could
be sufficiently determined by conformal correspondence, without the extraction of the
entire hepatic vascular network. On the contrary, those on the right hemi-liver exhibited
larger errors. This was due to a greater variation of the corresponding segments (e.g.,
segments IV and VIII) [55].

It is thus worth emphasizing that the cost function given in Equation (13) is aimed
at balancing between minimized distortion and landmark alignment. This implies that
exact alignment was not necessarily guaranteed. In fact, in the original FLASH implemen-
tation, six sulci, each of which consisted of multiple vertices in a cerebral cortex, were
imposed to evenly distribute errors. However, since the liver is much morphologically
diverse, localized alignment is suggested. To demonstrate this proposition, five anatomical
landmarks relevant to LHV and LPV (i.e., 1, 2, 3, 4, and 10) were imposed as constraints.
The corresponding errors between the correct and projected resection are shown in Table 5.
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Table 5. The Hausdorff distance between the correct and projected hepatectomy with 5 landmarks.

Resection Paths Max
[mm]

Min
[mm]

Mean
[mm]

RMS
[mm]

LHV 7.85 0.12 4.05 4.44
MHV 39.18 0.16 21.54 23.81
RHV 31.27 0.31 16.94 19.48
LPV 5.13 0.34 1.94 2.09
RPV 85.42 0.39 40.92 48.27

Average 33.707 0.266 17.074 19.618

Figure 10 compares these min, max, and mean resection errors between imposing 11
and 5 landmark constraints. It is evident that, by localizing the constraints, the landmarks
and hence the relevant resection, i.e., LHV and LPV, were more consistent. However,
it could lead to greater errors in other segments, e.g., MHV and RPV paths. Therefore,
care must be observed when selecting anatomical landmarks, as they play a vital role in
resection consistency.
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Unlike [55], the reconstructed segments were no longer limited to planar separation
and were hence much more flexible to the actual morphology of an underlying shape. To
lessen estimation errors, a statistical atlas of the livers may be built over a training set, and
then its mean shape (instead of an arbitrary instance) may be used as a reference [57], while
regulating Equation (13) by plausible variation, only found in this set. Its detailed analyses
and discussion, however, fall out of the current scope and are left for future investigation.

5. Conclusions

Segmenting a liver from a 3D CT image has remained a challenging area of research.
This is mainly due to the inherent characteristics of this imaging modality that impede
it from rendering clear separation between the liver and connective abdominal parts.
In addition, the inhomogeneity of interior voxels has often contributed to erroneous
liver extraction.

According to the recent survey, model-based and interactive methods offered by far
the most promising results. However, anatomical variations across the subject population
and high geometrical resolution call for a prohibitively large, annotated dataset for realistic
model construction. On the one hand, given a model that captures all plausible variations, a
deformable model approach can be adopted to automatically segment a liver. On the other
hand, without such priors, user intervention or empirical knowledge is often required, for
example, to initialize seed points, estimate rough contours, or make small adjustments to
segmented results.

This research proposed a semi-automatic method for segmenting a liver from CT
images. Its main contribution was to balance between robustness, accuracy, processing
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time, while keeping user interaction minimal. The presented method was extended from a
previous attempt [22]. More specifically, the probabilistic model of pixel statistics was first
built from a user-defined seed point and then enhanced by multi-slice RL. Subsequently,
the liver was extracted using the GC algorithm. During graph optimization, a novel local
texture compatibility function called anisotropic measure was integrated into boundary
energy to enhance its robustness. Finally, BN detection and contour constraints [22]
were employed to resolve the remaining under- and over-segmentation. The experimental
results, both visual and numerical, reported herein demonstrated that the proposed method
not only gave comparable segmentation accuracy to state-of-the-art methods, but was also
faster and more consistent than the majority in its class. It is also worth emphasizing that
this favorable performance relied neither on any statistical model nor specific anatomical
priors of the liver. It can thus be readily applied to other similar abdominal organs, such as
the spleen.

The proposed virtual resection scheme could be integrated with other computerized
therapeutic interventions. For example, percutaneous radiofrequency ablation (RFA) is
another prospective area of application. This non-invasive treatment first locates the tumor
and then precisely destroys it by heat through a needle. To this end, Egger et al. [58]
constructed a 3D spherical graph at a seed point. Subsequently, max-flow min-cuts was
used to segment the ablation zone from the background. An automatic approach was
taken by Wu et al. [59]. With their method, fuzzy c-mean clustering and cyclic morphology
were employed to extract and then refine the ablation zone. Having this zone extracted (or
during the procedure), the proposed scheme could be applied to determine the enclosing
liver and functional segments, to gain a comprehensive view of the overall treatment.

Thus far, there remain limitations with the proposed method worth investigating
in the future. One of them is complete IVC removal, which is vital for preoperative
planning and computerized surgical simulation. This can be done by segmenting the
liver and its vasculature simultaneously. Furthermore, errors may be propagated during
post-processing. A novel user experience (UX) and interface (UI) design could help make
manual editing much more intuitive and efficient. Lastly, the proposed method did require
a seed point from a user. To fully automate the segmentation, the seed point may be chosen,
such that the resultant probabilistic map virtually covers an estimated VOI.

After that stage, we demonstrated that the parametric functional segments of a liver
could be reconstructed by a conformal mapping of its extracted surface on a genus-0
domain. Its potential application was in estimating functional resection on one liver when
provided with that on another, and with a few landmarks specified on both shapes. Such
symmetric correspondence would be useful, for instance, in a preoperative simulation
of a living donor liver transplant. With the proposed scheme, a partial hepatectomy
between individuals could be rapidly determined, based on explicit biomarkers and the
conformal properties of relevant shapes. Since the resection was no longer limited by
planar intersections, as imposed in previous works, they were much more adaptive to liver
morphology. In the future, we plan to build an atlas of plausible functional segments, for
much more reliable and robust correspondences against pathologies.
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