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Abstract: The performance of deep learning algorithm (DLA) to that of radiologists was compared in
detecting low contrast objects in CT phantom images under various imaging conditions. For training,
10,000 images were created using American College of Radiology CT phantom as the background. In
half of the images, objects of 3–20 mm size and 5–30 HU contrast difference were generated in random
locations. Binary responses were used as the ground truth. For testing, 640 images of Catphan®

phantom were used, half of which had objects of either 5 or 9 mm size with 10 HU contrast difference.
Twelve radiologists evaluated the presence of objects on a five-point scale. The performances of the
DLA and radiologists were compared across different imaging conditions in terms of area under
receiver operating characteristics curve (AUC). Multi-reader multi-case AUC and Hanley and McNeil
tests were used. We performed post-hoc analysis using bootstrapping and verified that the DLA is
less affected by the changing imaging conditions. The AUC of DLA was consistently higher than
those of the radiologists across different imaging conditions (p < 0.0001), and it was less affected
by varying imaging conditions. The DLA outperformed the radiologists and showed more robust
performance under varying imaging conditions.

Keywords: deep learning; tomography; X-ray computed; phantoms; imaging; artificial intelligence

1. Introduction

The increasing role of imaging in diagnostic processes, along with technological
advances facilitating access to imaging, has resulted in an unprecedented amount of
clinical workload for radiologists [1,2]. This has led to increasing interest in the medical
society in developing techniques for automated imaging analysis that may improve the
efficiency of radiological diagnosis [3]. Deep learning (DL) based on a convolutional
neural network (CNN) has particularly gained attention from both the research community
and start-up endeavors as a state-of-the-art technique for computer vision tasks such as
automated imaging analyses [4,5].

An area of active research in DL-based imaging analysis has been the development of
techniques for object detection on computed tomography (CT). Although these techniques
have shown promising performance in previous studies [6–9], more research should be con-
ducted on validating their robustness before they could be utilized in daily clinical practice.
Existing studies have largely focused on high-contrast objects (ones that have a consider-
able attenuation difference with the background), such as lung nodules or calcifications in
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mammography. Clinical practice, particularly when it comes to the abdomen and pelvis,
involves detection of low-contrast objects such as pancreatic cancer or metastasis in the
liver [10]. While it is well known that performance of radiologists is affected substantially
by changes in imaging conditions, such as radiation dose, object size, or the reconstruction
algorithm used [11–14], more research is demanded regarding whether and to what degree
the performance of DL techniques is affected by such variations in imaging conditions.

To this end, we used images of a CT phantom acquired under varying radiation
dose settings, reconstruction algorithms, and object sizes to measure and compare the
performance of a deep learning algorithm (DLA) with that of 12 radiologists in the detection
of low-contrast objects across various imaging conditions. Using the CT phantom images,
we could isolate the influence of varying imaging conditions of interest while controlling
the other factors.

2. Materials and Methods

No IRB approval was required for this phantom study. The data regarding the per-
formance of the 12 radiologists were obtained from a previous study [15], which were
aimed at comparing images denoised by a DLA with those reconstructed using advanced
modeled iterative reconstruction (ADMIRE) and filtered back projection (FBP), in terms
of the physical properties and radiologist performance in object detection. We used a
DLA based on the deep residual learning framework [16]. The model consists of seven
levels of residual blocks. Batch normalization layer follows each convolution layer in the
residual block for stable training and is activated by the rectified linear unit. The number
of convolution filters in each block is 64, 128, 256, 512, 1024, 2048, and 4096. For each level,
max-pooling operation that reduces the input size in half is attached at the residual block.
A fully-connected layer is applied to the end of the model and is activated by the softmax
function that produces the probabilities of the presence of an object. The model is trained
from scratch with initial learning rate of 0.0001. Our model architecture can be found at
https://github.com/siniphia/PhantomDetectability (accessed on 27 February 2021).

2.1. CT Phantom and Protocol for Training Set

For training the DLA, we used the CT image of American College of Radiology
(ACR) CT accreditation phantom (model 464, Gammex–RMI) acquired under 100 kVp
and 200 mAs and reconstructed using the FBP. We used a single CT machine (SOMATOM
Definition Edge, Siemens Healthcare, Erlangen, Germany) (Table 1). For the generalizability
of our DLA, it seemed practical that the algorithm be trained with images that could be
acquired easily. Thus, we selected the radiation dose and reconstruction algorithm that
are most prevalently used in daily practice. Moreover, we used a single fixed imaging
condition for the training, to prove that our DLA can also perform well for testing set
images acquired under different imaging conditions. We cropped the image to a size
of 5 × 5 cm2 and used it as a homogeneous background, and then artificially generated
objects of varying size (ranging from 3 to 20 mm) by increasing the pixel values (ranging
from 5 to 30 HU) at random locations (Figure 1). We created 10,000 images in total, half of
which had a single object present, while the remaining half did not have any object. We fed
the binary response (object present or absent) as the ground truth.

https://github.com/siniphia/PhantomDetectability
https://github.com/siniphia/PhantomDetectability
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Table 1. Computed tomography (CT) scan and reconstruction parameters for the training and testing
of the DLA.

Parameter Data

Reference Tube Current-Time Product of Training set 200
Reference Tube Current-Time Product of Testing set 200, 100, 50, 26

Tube potential (kVp) 100
Collimation (mm) 128 × 0.6

Section thickness (mm) 4
Rotation time (s) 0.5

Pitch (mm) 0.6
Scan field of view (cm) 60

Display field of view (cm) 50
Reconstruction in Training set FBP
Reconstruction in Testing set Both ADMIRE-3, FBP

Kernel for FBP I40f, B40f
DLA = deep learning algorithm, FBP = filtered back projection, ADMIRE = advanced modeled iterative recon-
struction.
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Figure 1. Representative images for the training set. CT phantom images with an artificially generated object of (A). 12 mm
size at the left lower quadrant with a 10 HU difference to the background, and (B). 7 mm size object at the right lower
quadrant with a 10 HU difference to the background, and (C). an image without any object.

2.2. CT Phantom and Protocol for Testing Set

For the testing of the DLA, we used CT images of Catphan® low-contrast phantom
module (CTP 515) acquired under various doses (100 kVp; 200, 100, 50, 26 mAs) using
a single CT machine (SOMATOM Definition Edge, Siemens Healthcare) (Table 1). We
cropped the images to a size of 5 × 5 cm2 so that an object would either be absent or
present at random locations rather than just at the center (Figure 2). We used supra-slice
objects of either 9- or 5-mm size with +10 Hounsfield unit difference with respect to the
background. Leaving only a single object of choice, we hid other unnecessary objects by
covering them with object-absent image patches. We reconstructed all the images using
both ADMIRE and FBP. As mentioned previously, these images were originally created
for a previous study [15]. We tested a total of 640 images (40 images (20 images with and
20 images without an object) × 2 reconstruction algorithms (i.e., ADMIRE and FBP) × 4
different radiation doses × 2 different object sizes).
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2.4. Performance of Radiologists in the Testing Set 

Figure 2. Representative images for the testing set. (A). We cropped the images of CT phantom to 5 × 5 cm2 size (red box)
so that an object of 9-mm or 5-mm size with +10 Hounsfield unit difference would either be absent or present in random
locations. We hid unnecessary objects by covering them with object-absent image patches (i.e., a patch of the background as
indicated by the yellow circle), leaving only a single object of choice. (B). The final image.

2.3. Performance of the DLA in the Testing Set

The DLA produced probabilities of binary classes (0 for absence and 1 for presence)
per each object using the softmax function. We acquired heat maps (Figure 3) using
gradient-weighted class activation mapping (Grad-CAM), which is a class-discriminative
localization technique that can render visual explanations to make CNN-based models
more interpretable [17].
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weighted class activation mapping. (A). CT phantom image acquired under 100 kVp, 200 mAs, reconstructed with ADMIRE,
with a 9 mm object, as (B). localized in a red circle. (C). Corresponding class activation map highlighting the activation in
the left upper quadrant.
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2.4. Performance of Radiologists in the Testing Set

To test the performance of radiologists, we used the graphical user interface (GUI)
using a Python programming toolkit (Tkinter), where we set the default display to a
window level of 70, which was the mean Hounsfield unit value of the image background,
and a window width of 100 [15]. We numbered the images in random order and displayed
the even-numbered images on the left side of the screen, and odd-numbered images on
the right side of the screen. This was to minimize bias caused by change detection in the
flicker paradigm [18–20].

Twelve radiologists with varying degree of experience (six attending radiologists from
three different institutions with 6–24 years of clinical experience each, and six radiologists in
training from a single institution) evaluated the presence or absence of objects on a five-point
confidence scale (1: definitely absent, 2: probably absent, 3: indeterminate, 4: probably present,
and 5: definitely present). Before the review, the radiologists underwent two sessions of
tutorials, each of which consisted of ten questions and instant feedback on correct answers.
After the tutorial, each radiologist independently reviewed the 960 images: 40 images (half of
which had an object present) × 3 reconstruction methods (FBP, ADMIRE, DL-based denoising
algorithm) × 4 radiation doses (100 kVp; 200, 100, 50, 26 mAs) × 2 object sizes (5 and
9 mm). As this image review was originally intended for a previous study, where we tested
the performance of a DL-based denoising algorithm, we only used 640 images out of the
960 images (excluding the images reconstructed with the DL-based denoising algorithm)
for the current study. We asked the radiologists to use a display calibrated to the DICOM
standard and minimize reading room light as much as possible.

2.5. Performance Using Classic Computer Vision Approach–Template Matching

We focused on deep learning algorithm instead of a classic computer vision approach
in this study. As deep learning frameworks can be re-trained using a custom dataset for
other uses, deep learning renders more flexibility in diverse applications compared to
classic computer vision algorithms that tend to more domain-specific. Nevertheless, classic
computer vision approach is not obsolete, and there are cases where such approaches
are more efficient while simpler than deep learning algorithms. Thus, we also applied
a computer vision algorithm to our dataset. We specifically used the template matching
method, which uses a moving template image to scan the target image, calculates similarity
scores per step, and finds the most similar object compared with the template.

2.6. Statistical Analysis

The sample size was determined from a previous study [15], with the aim of prov-
ing noninferiority of the DL-based denoising algorithm to ADMIRE in low-contrast object
detection.

We measured and compared the area under the ROC curve (AUC) of DLA and 12 radiol-
ogists, first irrespective of the imaging conditions, and then across various imaging conditions.
We used the multi-reader multi-case (MRMC) AUC to pool the data of the radiologists.
We conducted the Hanley and McNeil test for [21] the comparisons of the AUCs. We cor-
rected the familywise type-I error via Benjamini & Hochberg correction and considered a
p-value < 0.00625 as statistically significant.

For our secondary analysis by object sizes, we repeated the comparisons as described
above, separately for 9 mm and 5 mm objects. Low-contrast object detection is clinically
more relevant for objects of at least 9 mm size than for objects as small as 5 mm.

Based on our secondary analysis, we noted that the performance of the DLA in
detecting the 9 mm objects seemed more stable across various imaging conditions in
comparison with that of the 12 radiologists. To statistically prove our hypothesis that the
DLA is relatively more robust to varying imaging conditions than the radiologists, we
performed post-hoc analyses as follows. We compared the performances of the DLA and
radiologists in terms of the (1) reduction in the AUC across radiation doses (e.g., reduction
in the AUC from 200 mAs to 26 mAs, or that from 200 mAs to 50 mAs), and (2) reduction
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in the AUC across ADMIRE and FBP. For the comparisons, we performed bootstrapping
of 2000 replications with replacement. For example, we made 2000 measurements for the
reduction in the AUC from 200 mAs to 26 mAs, for both DLA and for the 12 radiologists. As
the measurements followed a standard normal distribution, we used the z-tests to compare
the AUC reduction between the DLA and the 12 radiologists. We did not perform the same
analysis for the 5 mm objects, as the AUCs of the 12 radiologists were mostly below 0.6
across all the imaging conditions, and therefore, the apparent stability of the AUCs across
the imaging conditions did not bear any clinical significance. We corrected the familywise
type-I error via Benjamini & Hochberg correction and considered a p-value < 0.0125 as
statistically significant.

To calculate the AUC in detecting the 9 mm and 5 mm objects via template matching
method, we applied ten thresholds having fixed intervals from 0 to 1.

We performed all the statistical analyses using iMRMC, software version 4.0.0 (Divi-
sion of Imaging, Diagnostics, and Software Reliability, OSEL/CDRH/FDA) and R, version
3.5.2 (The R Foundation for Statistical Computing).

3. Results
3.1. Primary Analysis

The AUC of the DLA was significantly higher than that of the 12 radiologists (0.886
vs. 0.678; difference, 0.208 (95% CI, 0.205–0.213); p-value < 0.0001) (Table 2, Figure 4). The
AUC of the DLA was consistently and significantly higher than that of the 12 radiologists
across different radiation doses, reconstruction methods, and object sizes (p values were all
less than 0.0001) (Table 2).

Table 2. Primary analysis.

- DLA Radiologists Difference (95% CI) p-Value

Total 0.886 (0.859–0.912) 0.678 (0.638–0.717) 0.208 (0.205–0.213) <0.0001

Radiation Dose
26 mAs 0.825 (0.759–0.890) 0.570 (0.526–0.614) 0.255 (0.248–0.264) <0.0001
50 mAs 0.789 (0.719–0.859) 0.613 (0.561–0.664) 0.176 (0.168–0.183) <0.0001
100 mAs 0.926 (0.882–0.970) 0.725 (0.671–0.778) 0.201 (0.188–0.211) <0.0001
200 mAs 0.982 (0.966–0.998) 0.812 (0.760–0.864) 0.170 (0.166–0.180) <0.0001

Reconstruction
FBP 0.885 (0.849–0.921) 0.653 (0.611–0.695) 0.232 (0.227–0.241) <0.0001

ADMIRE 0.904 (0.870–0.904) 0.705 (0.658–0.752) 0.199 (0.195–0.204) <0.0001

Object Size
5 mm 0.763 (0.711–0.816) 0.581 (0.549–0.613) 0.182 (0.177–0.190) <0.0001
9 mm 0.979 (0.965–0.993) 0.776 (0.720–0.833) 0.203 (0.196–0.211) <0.0001

Data are the AUC with 95% CIs in parentheses. p-value < 0.00625 was considered as statistically significant. AUC = area under
receiver operating characteristics curve, CI = confidence interval, DLA = deep learning algorithm, FBP = filtered back projection,
ADMIRE = advanced modeled iterative reconstruction.

3.2. Secondary Analysis by Object Size

The AUC of the DLA was significantly higher than that of the 12 radiologists in the
detection of both 9 mm objects (0.979 vs. 0.776; difference, 0.203, 95% CI, 0.159–0.247;
p-value < 0.0001) and 5 mm objects (0.763 vs. 0.581; difference, 0.182, 95% CI, 0.179–0.185;
p-value < 0.0001) (Table 3). The superior AUC of the DLA was consistently observed across
the different imaging conditions, for both 5 mm and 9 mm object sizes. In the detection of
9 mm objects, the AUC of the DLA was 0.945 or higher under all the imaging conditions
(Table 3). In the detection of 5 mm objects, the AUC of the DLA was 0.956 under the
200 mAs dose but 0.658 under the 26 mAs dose. In the detection of 5 mm objects, all the
AUCs of the 12 radiologists were 0.599 or below, except when the radiation dose was 200
mAs (Table 3).
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Figure 4. Receiver operating characteristic curves of the deep learning algorithm and the 12 radiol-
ogists. Radiologists R7–R12 are residents, whereas R1–R6 are attending radiologists. AUC = area
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Table 3. Secondary analysis by object size.

- DLA Radiologists Difference (95% CI) p-Value

For Detection of 9 mm Objects

Total 0.979 (0.965–0.993) 0.776 (0.720–0.833) 0.203 (0.159–0.247) <0.0001
Radiation Dose

26 mAs 0.965 (0.930–1.000) 0.602 (0.535–0.668) 0.363 (0.359–0.367) <0.0001
50 mAs 0.945 (0.890–1.000) 0.679 (0.594–0.764) 0.266 (0.260–0.272) <0.0001
100 mAs 0.999 (0.996–1.000) 0.866 (0.797–0.936) 0.133 (0.131–0.135) <0.0001
200 mAs 0.998 (0.992–1.000) 0.964 (0.941–0.988) 0.034 (0.033–0.035) <0.0001

Reconstruction
FBP 0.980 (0.964–0.997) 0.744 (0.683–0.805) 0.236 (0.234–0.238) <0.0001

ADMIRE 0.986 (0.968–1.000) 0.813 (0.749–0.877) 0.173 (0.171–0.175) <0.0001

For Detection of 5 mm Objects

Total 0.763 (0.711–0.816) 0.581 (0.549–0.613) 0.182 (0.179–0.185) <0.0001
Radiation Dose

26 mAs 0.658 (0.534–0.781) 0.541 (0.498–0.584) 0.117 (0.105–0.129) <0.0001
50 mAs 0.615 (0.491–1.738) 0.549 (0.500–0.598) 0.066 (0.054–0.078) <0.0001
100 mAs 0.820 (0.722–0.917) 0.577 (0.531–0.623) 0.243 (0.233–0.253) <0.0001
200 mAs 0.956 (0.916–0.996) 0.661 (0.593–0.729) 0.295 (0.288–0.302) <0.0001

Reconstruction
FBP 0.763 (0.689–0.837) 0.564 (0.534–0.595) 0.199 (0.197–0.201) <0.0001

ADMIRE 0.785 (0.714–0.855) 0.599 (0.554–0.643) 0.186 (0.183–0.189) <0.0001

Data are the AUC with 95% CIs in parentheses. p-value < 0.0083 was considered as statistically significant. AUC = area under
receiver operating characteristics curve, CI = confidence interval, DLA = deep learning algorithm, FBP = filtered back projection,
ADMIRE = advanced modeled iterative reconstruction.
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3.3. Post-Hoc Analysis

The reduction in the AUC across radiation doses and reconstruction methods was
significantly lower for the DLA compared with that of the radiologists (p values were all
less than 0.0001), indicating that the performance of the DLA was relatively more robust to
the changes in the imaging conditions than that of the radiologists (Table 4).

Table 4. Comparison of AUC reductions across imaging conditions for DLA and 12 radiologists in detecting 9 mm objects.

AUC Reduction DLA Radiologists Difference (95% CI) p-Value

Between 200 mAs and 26 mAs 0.032 0.362 −0.330 (−0.366 to −0.294) <0.0001
Between 200 mAs and 50 mAs 0.052 0.284 −0.233 (−0.290 to −0.170) <0.0001

Between 200 mAs and 100 mAs 0.003 0.98 −0.095 (−0.112 to −0.078) <0.0001
Between ADMIRE and FBP 0.011 0.069 −0.058 (−0.09 to −0.034) <0.0001

Data are the AUC with 95% CIs in parentheses. p-value < 0.0125 was considered as statistically significant. AUC = area under receiver operating
characteristics curve, CI = confidence interval, DLA = deep learning algorithm, FBP = filtered back projection, ADMIRE = advanced modeled
iterative reconstruction.

3.4. Template Matching Method

The AUCs in detecting 5 mm target and 9 mm target by applying the template match-
ing method were generally lower compared to the AUCs using the DLA (Supplementary
Table S1). AUC was 0.69 and 0.65 for 5 mm and 9 mm target, respectively.

4. Discussion

The DLA outperformed the 12 radiologists in detecting low-contrast objects, con-
sistently across various imaging conditions such as the radiation dose, object size, and
reconstruction method used. In the detection of the 9 mm objects, the DLA showed an AUC
of over 0.9 under all the conditions, even for the lowest radiation dose tested (100 kVp,
26 mAs). The performance of the DLA was relatively more robust to the changes in the
imaging conditions than that of the 12 radiologists, showing a significantly lower degree of
AUC reduction when the radiation dose or reconstruction algorithm was altered. Our re-
sults show potential for the clinical application of DL algorithms to low-dose CT protocols
for screening or surveillance purposes.

Our study has the following strengths. First, we fill the existing knowledge gap in
literature by confirming that DL algorithms can indeed be robust to changing imaging
conditions when detecting low-contrast objects. While it is known that the performance
of radiologists is affected significantly by the imaging conditions, such as radiation dose
or reconstruction algorithm used [11–14], studies on such performance variations for DL
algorithms have been lacking. A previous study [22] that used CT phantom images to
investigate how imaging conditions such as object size, radiation dose, slice thickness, or
reconstruction methods affect the performance of a DLA in detecting pulmonary nodules
reported the performance of the algorithm itself, but not in comparison to that of radiol-
ogists. Moreover, the prior study tested high contrast object detection using pulmonary
nodules, while we focused on low contrast object detection, which is more relevant when it
comes to object detection in abdominal and pelvic organs. To the best of our knowledge,
this is the first study that compares the performance of a DLA with that of radiologists
in low-contrast object detection across varying imaging conditions. Another strength of
this study is that we tested more than 600 images, involving 12 radiologists. Our receiver
operating characteristic curves of the DLA and the radiologists show that the DLA achieved
significantly superior performance, even in comparison to the attending radiologists. Fi-
nally, by using a CT phantom, we could control the imaging factors other than the one we
were interested in.

However, some of the limitations of our study are as follows. First, although we could
control the imaging factors strictly using CT phantom images, it raises a serious concern
on whether our results can be reproduced in CT images of the actual human body. The
task in our study was very simple: object detection in a homogeneous background without
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any variation. In contrast, object detection in an actual human body is more complex,
as normal anatomical structures can be misinterpreted (i.e., causing false-positives) as
target objects. Second, we only tested hyperattenuating objects. In actual clinical practice,
lesions of interest may be hypoattenuating compared with the background (e.g., hepatic
metastasis from pancreatic cancer). Third, the images used for the training and testing
sets were apparently very similar, raising concern of overfitting. Nonetheless, we tried to
create differences by varying the object size and contrast difference with the background
in the testing set. We fixed the imaging parameters, reconstruction algorithm (100 kVp,
200 mAs), and FBP for the training set images, and altered the conditions for the testing
set images; even in this case, the DLA showed an excellent performance. Finally, we did
not incorporate segmentation and object localization (x, y coordinates). To compensate for
this, we used heat maps for the DLA and confirmed that the highest activation occurs at
the targeted areas. However, we could not assess whether the radiologists had localized
the objects correctly, as they only responded to the presence/absence of an object on a
five-point Likert scale.

In summary, our DLA outperformed 12 radiologists in detecting low-contrast objects
across various imaging conditions. The performance of DLA was also relatively more
robust (i.e., stable) to changes in the imaging conditions than that of the 12 radiologists.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/3/410/s1, Table S1: title: Object Detection Using Template Matching Method.
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