
diagnostics

Communication

Development and Validation of a New Wearable Mobile Device
for the Automated Detection of Resting Tremor in Parkinson’s
Disease and Essential Tremor

Basilio Vescio 1,† , Rita Nisticò 2,†, Antonio Augimeri 1, Andrea Quattrone 3, Marianna Crasà 4

and Aldo Quattrone 2,4,*

����������
�������

Citation: Vescio, B.; Nisticò, R.;

Augimeri, A.; Quattrone, A.; Crasà,

M.; Quattrone, A. Development and

Validation of a New Wearable Mobile

Device for the Automated Detection

of Resting Tremor in Parkinson’s

Disease and Essential Tremor.

Diagnostics 2021, 11, 200. https://

doi.org/10.3390/diagnostics11020200

Academic Editor: Giorgio Fassina

Received: 17 December 2020

Accepted: 25 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biotecnomed S.C.aR.L., 88100 Catanzaro, Italy; basilio.vescio@biotecnomed.it (B.V.);
antonio.augimeri@biotecnomed.it (A.A.)

2 Neuroimaging Unit, Institute of Molecular Bioimaging and Physiology of the National Research
Council (IBFM-CNR), 88100 Catanzaro, Italy; rita.nistico@cnr.it

3 Institute of Neurology, Magna Græcia University, 88100 Catanzaro, Italy; an.quattrone@hotmail.it
4 Neuroscience Research Center, Magna Græcia University, 88100 Catanzaro, Italy; marianna.crasa@gmail.com
* Correspondence: quattrone@unicz.it
† These authors contributed equally.

Abstract: Involuntary tremor at rest is observed in patients with Parkinson’s disease (PD) or essential
tremor (ET). Electromyography (EMG) studies have shown that phase displacement between antago-
nistic muscles at prevalent tremor frequency can accurately differentiate resting tremor in PD from
that detected in ET. Currently, phase evaluation is qualitative in most cases. The aim of this study is to
develop and validate a new mobile tool for the automated and quantitative characterization of phase
displacement (resting tremor pattern) in ambulatory clinical settings. A new low-cost, wearable
mobile device, called µEMG, is described, based on low-end instrumentation amplifiers and simple
digital signal processing (DSP) capabilities. Measurements of resting tremor characteristics from
this new device were compared with standard EMG. A good level of agreement was found in a
sample of 21 subjects (14 PD patients with alternating resting tremor pattern and 7 ET patients with
synchronous resting tremor pattern). Our results demonstrate that tremor analysis using µEMG is
easy to perform and it can be used in routine clinical practice for the automated quantification of
resting tremor patterns. Moreover, the measurement process is handy and operator-independent.

Keywords: electromyography; rest tremor; Parkinson’s disease; wearable device; phase pattern

1. Introduction

Tremor is an involuntary, rhythmic, oscillatory movement of a body part. Rest tremor
is tremor in a body part that is not voluntarily activated [1]. It should be assessed when
the patient is attempting to relax and is given adequate opportunity to relax the affected
body part. This may require complete support of the involved body part (e.g., the arm)
against gravity. In Parkinson’s disease (PD), the amplitude of rest tremor almost always
diminishes or is abolished, at least transiently, during goal-directed voluntary movements,
and tremor amplitude typically increases during mental stress. In addition, rest tremor
may appear or increase while walking or when performing movements of another body
part [2].

Resting tremor is not pathognomonic for PD and has also been observed in other
neurologic diseases, such as essential tremor with resting tremor (rET). Due to these
overlapping symptoms, misdiagnosis between ET and PD tremor may occur in 20–30% of
cases [3].

The diagnosis of resting tremor is mainly a clinical process where patients are in-
terviewed and undergo clinical observation. Clinical assessments are often combined

Diagnostics 2021, 11, 200. https://doi.org/10.3390/diagnostics11020200 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7172-8520
https://doi.org/10.3390/diagnostics11020200
https://doi.org/10.3390/diagnostics11020200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11020200
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/2075-4418/11/2/200?type=check_update&version=3


Diagnostics 2021, 11, 200 2 of 8

with electromyography (EMG) and accelerometers measurements to determine tremor
amplitude, frequency and activation pattern.

Several studies have investigated the electrophysiological parameters of resting tremor
in patients with PD and ET. We previously investigated the electrophysiological character-
istics of resting tremor in ET and PD patients, demonstrating that the parameter that best
distinguished the two diseases was muscle activation pattern [4]. Activation pattern can be
synchronous, when bursts recorded from antagonist muscles are in phase, or asynchronous,
when bursts are phase-shifted, as shown in Figure 1. Synchronous activation patterns of
resting tremor are typical of subjects with rET, while asynchronous patterns are observed
in subjects with tPD.
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Figure 1. One second of EMG recording from extensor and flexor muscles of (A) one PD patient and (B) one rET patient.
It can be visually assessed that bursts are phase-shifted in (A) and synchronous in (B). EMG: electromyography; PD:
Parkinson’s disease; rET: essential tremor with resting tremor.

Clinical evaluation of activation patterns is currently performed visually on EMG
recordings. Therefore, the assessment of synchronous or asynchronous patterns is made on
a qualitative basis and may lead to incorrect diagnosis, due to operator’s interpretation of
phase shifting between signals.

Breit S. et al. [5] developed a long-term EMG-based automated analysis procedure
for differentiating parkinsonian tremor from essential tremor in a sample of 45 subjects.
They found a considerable overlap between phase data, as they considered all tremor
occurrences during 24-h activity and did not focus on rest tremor only, as investigated by
Nisticò et al. [4].

There is an increasing interest in methods based on accelerometers [6,7] and/or
surface electromyography (EMG) electrodes, since they are readily available, non-invasive
diagnostic tools.

Hossen et al. [8] introduced an approximate power spectral density, estimated by
means of a wavelet decomposition with soft decision algorithm on both EMG and ac-
celerometer signals recorded for 30 s, in order to discriminate between PD and ET patients.
In this work, only postural tremor was considered and an 85% classification accuracy
was achieved.

Ruonala et al. [9] tried to differentiate patients with essential tremor from patients with
Parkinson’s disease using electromyographic and accelerometric data during iso-metric
tension of the arms.

In other previous studies [10–14], mobile applications on Apple iPhone for the analysis
of tremor in patients with PD and ET, performing accelerometer measurements, were
tested, suggesting that those apps were a valid alternative tool to EMG in assessing the
frequency of tremor. Other authors investigated the evaluation of tremor severity in PD
using wearable inertial devices [15,16]; in particular, López-Blanco et al. [17] focused on
rest tremor. Another work described a new device and method for the continuous and
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long-term monitoring of tremor due to PD. This method was based on the evaluation of
frequency data from multi-axial sensors and the device appeared promising for routine
clinical practice [18]. Recently, some authors [19] evaluated the presence of tremor during
muscular effort and the influence of emotional stress using four tri-axial accelerometers
placed on a hand’s fingers. No study, however, evaluated tremor phase pattern using
wearable mobile devices in PD and ET patients with resting tremor.

In the present work, we aimed at recording resting tremor in PD and rET patients by
using a miniaturized, wearable and mobile device, called µEMG (micro-EMG), capable of
providing a quantitative, operator-independent and automated analysis of the tremor’s
electrophysiological parameters, including tremor pattern, compared to those recorded
with accelerometer and EMG surface electrodes by using classical EMG.

2. Materials and Methods

Fourteen patients with a diagnosis of idiopathic PD in accordance with the UK Brain
Bank criteria [20] and seven patients with rET were enrolled. Only PD (tPD) and ET patients
(rET) with rest tremor were enrolled in this study (Table 1). In particular, patients with
Unified Parkinson Disease Rating Scale Motor Examination (UPDRS-ME) resting tremor
score of ≥2 for at least one hand during the physical examination, and a history of resting
tremor, were considered eligible for this study. Exclusion criteria were: (a) presence of
dementia; (b) deficits in language comprehension and production; (c) use of psychoactive
drugs during the last 3 months preceding the experiment; (d) major depression; (e) neuro-
logical comorbidity.

Table 1. Demographic and clinical data of tPD patients.

tPD (n = 14) rET (n = 7)

Sex, M/F 9/5 4/3
Age, y 67.7 ± 9.6 67.4 ± 9.8
MMSE 27.3 ± 1.6 25.8 ± 2.1

Age at onset, y 65.1 ± 8.3 57.5 ± 8.1
Disease duration, y 3.1 ± 2.3 9.9 ± 7.8

UPDRS-ME OFF Drug 20.9 ± 9.9 7.6 ± 5.9
resting tremor subscore 4.6 ± 1.6 3.5 ± 1.4
Contralateral putamen 2.2 ± 0.3 4.1 ± 0.4

Ipsilateral putamen 2.6 ± 0.5 4.3 ± 0.5
MMSE: Mini-Mental State Examination; UPDRS-ME: Unified Parkinson’s Disease Rating Scale—Motor Examination.

All subjects gave written informed consent before participation. All the experimental
procedures were conducted according to the policies and ethical principles of the Declara-
tion of Helsinki. The study was approved by the Ethics Committee of the Calabria Region,
“Sezione Area Centro” (no. 333, 22 October 2020).

The upper limb with the dominant rest tremor was recorded. Rest measurements
were performed with the patient’s arm flexed at 90◦, fully supported against gravity.

Classical EMG recordings were performed using a Dantec Keypoint system, by Natus
Neurology. A monoaxial accelerometer (Acceleration transducer, Natus), was placed on
the dorsal side of the patient’s hand and 2 pairs of surface electrodes were positioned on
the antagonistic groups of muscles of the forearm, as described elsewhere [4].

µEMG—wearable mobile tremor analysis system—is an experimental device (Figure 2),
based on a cheap AVR microcontroller (Atmega 32u4 on a Bluefruit 32u4 development
board by Adafruit).
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Figure 2. µEMG experimental system: wearable device and mobile app.

It was assembled in the form of a wrist-wearable watch, with connectors for two wired
muscle analog sensor boards. Each sensor board had three electrodes: two electrodes were
used as differential inputs to an AD8221 instrument amplifier, and the third electrode was
used as reference. The two muscle sensors, based on the Myoware development board
project [21], were stuck on two antagonist muscles (extensor and flexor) of each patient’s
arm. The raw signal was then rectified and integrated. Signals were sampled at 200 Hz,
with 10 bit resolution, using two analog inputs of the Atmega 32u4. Samples were sent
to a mobile device (smartphone) using Bluetooth Low Energy, and signal processing was
performed by a custom analysis app running on an Android system. A digital Butterworth
band-pass filter was applied in the 1–10 Hz band, in order to isolate the main tremor signal
on each of the two channels. Tremor frequency was identified on power spectra of filtered
signals. Tremor amplitude and phase were evaluated on the discrete Fourier transforms of
the unfiltered signals, and the phase difference between extensor and flexor muscles was
calculated, for each subject, at the tremor characteristic frequency. Signals acquired from
Keypoint EMG were sampled at 6 KHz. Exported signals were analysed by replicating the
same processing flow as with µEMG. The paired t-test was used to compare measurements
of tremor frequency and phase difference acquired from the two systems, while Pearson
correlation and intraclass correlation coefficient were used to assess reliability between
successive measurements from µEMG. Data analysis was performed using GNU Octave
and R computing environments.

3. Results

The comparison between the parameters measured by µEMG versus those evaluated
from EMG recordings in the whole sample of Parkinson’s disease and rET patients showed
no significant difference in tremor frequency, p = 0.57; and phase difference, p = 0.82.
(Table 2).

In Figure 3, phase patterns are shown by means of polar histograms. The alternating
and synchronous patterns detected using classical EMG were confirmed by µEMG.
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Table 2. Comparison of frequency and phase difference measurements in patients with Parkinson’s
disease and in patients with rET.

Natus EMG µEMG p Value

PD
Frequency, [Hz] 4.63 ± 0.58 4.62 ± 0.49 0.94

Phase difference, [◦] 154.4 ± 15.3 148.3 ± 17.6 0.26

rET
Frequency, [Hz] 4.82 ± 0.71 4.88 ± 0.64 0.37

Phase difference, [◦] 38.4 ± 14.5 41.5 ± 25.6 0.79
PD: Parkinson’s disease; rET: essential tremor with resting tremor.
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Figure 3. Polar histograms showing phase patterns (phase differences) evaluated with: (A) Dantec
Keypoint EMG system; (B) µEMG experimental wearable device. EMG: electromyography.

Correlations and Bland–Altman plots are given in Figure 4. A good degree of cor-
relation is found for tremor frequency (A) (r = 0.93, p < 0.001) and phase difference (B)
(r = 0.92, p < 0.001). Bland–Altman plots show a good level of agreement between the two
techniques for tremor frequency (C) and phase difference between flexor and extensor
muscles, evaluated at tremor frequency (D).

Measurements from the µEMG wearable system were taken twice on the same subjects,
in order to evaluate test-retest reliability, and a very good level of agreement was found
between successive measurements (Pearson correlation: r = 0.994, p < 0.0001; Intraclass
correlation coefficient ICC = 0.992, with 95% confidence interval 0.976–0.997). The root
mean square error (RMSE) between the µEMG wearable system and Dantec Keypoint
EMG for phase measurements was 22.5◦, while RMSE for frequency measurements was
0.23 Hz. Maximum absolute errors (MAE) for phase and frequency measurements were
52◦ and 0.49 Hz, respectively. We observed a relatively high MAE on phase measurements.
However, this did not alter the agreement in pattern classification: all subjects with rET
showed a phase difference below 90◦ and all subjects with tPD showed a phase difference
above 90◦, with both measurement systems. We also observed a higher standard deviation
of phase measurements in ET subjects using µEMG, with respect to classical EMG. However,
an F test showed no significant difference between standard deviations (F = 0.32, p = 0.19).
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4. Discussion

In this study, we compared an innovative mobile device for the analysis of resting
tremor with standard EMG recordings. We demonstrated that tremor-dominant frequency
and phase pattern measured with the µEMG were superimposable to the values acquired
with the standard EMG assessment.

Several methods have been proposed to assess tremor characteristics in patients with
PD and ET in resting position. The gold standard for the evaluation of tremor is EMG study
with surface electrodes, and the most studied parameter is the frequency. In a previous
study, we demonstrated that the activation pattern of antagonistic muscles in the more
affected arm with rest tremor was synchronous in patients with rET, while it was alternating
in patients with tPD, thus making a distinction between patients with these diseases on
an individual basis [4]. Such distinction is not possible when using phase evaluated on
long-term recordings, during the occurrence of other kinds of tremor, as done in [5].

Unfortunately, standard EMG is expensive and time-consuming, needs expertise, and
can be performed only by skilled specialists and technicians. Moreover, phase pattern
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assessment is usually performed qualitatively, by visually inspecting signals, unless traces
are exported and analysed offline.

In this study, we confirmed that the phase of resting tremor in patients with tPD is
alternating, while it is synchronous in patients with rET, and that the new instrument
allowed us to evaluate tremor pattern parameters automatically, quickly, and with a
similar performance to that obtained with EMG. To date, our device is the only wearable
and mobile solution for a quick, real-time and quantitative assessment of alternating or
synchronous tremor pattern. Quantitative evaluation of phase pattern allows the clinical
operator to score tremors according to a grading of synchronicity (in the range of 0–90◦) or
non-synchronicity (alternating pattern) (in the range of 90–180◦).

Our results support the validation of an innovative low-cost and easy-to-use device
which allows a rapid evaluation of disease progression and quantification of tremor charac-
teristics. Clinicians, and even general practitioners, may easily measure, by using this new
device, tremor characteristic in ambulatory clinical settings, thus identifying tPD or rET
patterns without the need for more expensive examinations.

5. Conclusions

A new simple, cheap, easy-to-use and reliable mobile device has been introduced for
the evaluation of tremor frequency and phase difference at tremor frequency in subjects
affected with Parkinson’s disease and in subjects with rET, in resting position. Measure-
ments are fully automated, operator-independent, repeatable, and consistent with those
acquired from classical EMG, thus allowing µEMG to be used in routine clinical practice.

Future Work

In order to further validate the usefulness of µEMG in clinical practice, the device
will be tested on a larger cohort of patients with tPD and patients with rET. Moreover,
µEMG will be implemented in a new fully wireless version, with slave EMG sensor boards
connected to the master bracelet through a dedicated RF communication protocol.
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