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Abstract: Sleep disorders are diagnosed in sleep laboratories by polysomnography, a multi-parameter
examination that monitors biological signals during sleep. The subsequent evaluation of the obtained
records is very time-consuming. The goal of this study was to create an automatic system for
evaluation of the airflow and SpO2 channels of polysomnography records, through the use of
machine learning techniques and a large database, for apnea and desaturation detection (which
is unusual in other studies). To that end, a convolutional neural network (CNN) was designed
using hyperparameter optimization. It was then trained and tested for apnea and desaturation. The
proposed CNN was compared with the commonly used k-nearest neighbors (k-NN) method. The
classifiers were designed based on nasal airflow and blood oxygen saturation signals. The final neural
network accuracy for apnea detection reached 84%, and that for desaturation detection was 74%,
while the k-NN classifier reached accuracies of 83% and 64% for apnea detection and desaturation
detection, respectively.

Keywords: apnea; CNN; sleep EEG records

1. Introduction

Sleep has been proven to play an important role in maintaining balance, preventing
disease, and healing [1]. One of the most common sleep disorders is sleep apnea (sleep
apnea syndrome; SAS), which is characterized by episodes of inadequate respiratory
activity during sleep [2]. According to the American Academy of Sleep Medicine (AASM),
sleep apnea is defined as the cessation of airflow that lasts for at least 10 s, accompanied by a
decrease in blood oxygen saturation by at least 3%. Hypopnea is defined as a 30% decrease
in general ventilation, with the same minimum decrease in blood oxygen saturation
(3%) for at least 10 s. The most common form of sleep apnea is obstructive sleep apnea
syndrome (OSAS) [1]. Research has suggested that the brain damage associated with OSAS
could increase the risk of developing dementia [3,4]. Sleep apnea is described by the apnea
hypopnea index (AHI), which is the average number of apnea and hypopnea episodes
per hour of sleep [5]. Classification according to the AHI uses four groups: Physiological
standard (AHI < 5), mild sleep apnea (AHI < 15), moderate sleep apnea (AHI 15–30), and
severe sleep apnea (AHI > 30) [6]. About 2% of middle-aged women and 4% of middle-
aged men are affected by the apnea disease, and the initial examination of patients is carried
out using a polysomnography system [7]. This disease has a large impact on middle-aged
people, who are considered the most commercially productive part of the population.

Polysomnography (PSG) is used for monitoring sleep, particularly for patients with
suspected OSAS [7]. PSG can record respiratory signals (RS), electroencephalographic (EEG)
data, electro-oculographic (EOG) data, electromyographic (EMG) data, electrocardio-
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graphic (ECG) signals, and pulse oximetry (PO) data [8]. In order to assist in the time-
consuming scoring [9] of PSG records, efforts have been made to automate the detection of
SAS [5,8,10,11]. At present, neural networks are among the most innovative and widely
used classifiers in the field of biomedicine [12]. There exist methods that can accurately
distinguish sleep with apnea from physiological sleep [5,13], but the automatic detection
of sleep apnea events is an open topic [11]. A recent study by Zhao et al. [11] utilized a
support vector machine (SVM) and a k-nearest neighbors (k -NN) model for the apnea
classification problem. They also implemented a random forest (RF) model for data classifi-
cation. Although studies using k-NN and SVM classifiers predominate, the trend of using
artificial neural networks (ANN) has been carried over to the case of sleep apnea event
detection [14].

There is also a laboratory [15] which is currently attempting to automatically detect
apnea and hypopnea through the use of neural networks (NN) to analyze simple signals
(e.g., the respiratory signal), such that they can be used in clinical practice. The trend
of automating apnea detection while simplifying measurements—such that the entire
PSG is not required—has been applied at various levels [16], including the use of motion
sensors outside the human body [17]. Overall, apnea detection research has been shifting
towards the use of machine learning, which is more flexible for working with quasi-
stationary biological data [18,19]. The disadvantage of some machine learning approaches
is the need to extract features. In deep learning methods (deep neural networks; DNNs),
flags are extracted from a large database automatically, without the subjective choice of
calculating a specific feature (e.g., amplitude or signal frequency). There are many types
of DNNs; the two most commonly used types of which are the recurrent long short-term
memory (LSTM) [20,21], which has an artificial recurrent neural network (RNN) [22]
architecture, and convolutional neural networks (CNNs) [23]. These can be applied to
various signals, such as ECG [24,25], airflow in the nasal cavity [26,27], EEG [14], or chest
movements [28].

As not all published methodologies have publicly available software, and as no ap-
propriate implementation had an interface that would be usable for physicians in our sleep
laboratory, we designed, tested, validated, and implemented a convolution neural network
with a graphical interface. The main goal of our research was to create automatic software
for detecting periods of possible sleep apnea or hypoponea for future use in our sleep
laboratory (it is also free for use in other laboratories). The proposed methodology imitates
decisions made by a physician, according to American Academy of Sleep Medicine (ASSM)
scoring [6]. This software can alert physicians to areas of interest and speed up the process
of scoring PSG recordings.

2. Materials and Methods

A large database of PSG data was created for the most effective training, testing, and
validation. The implementation itself was written in a Python programming environment.
This chapter describes the PSG data set, its pre-processing and design, and the training and
validation of the neural network.

2.1. Data Acquisition

Data were obtained in the sleep laboratory during a standard PSG examination.
A BrainScope device (M&I spol. s.r.o., Prague, Czech Republic) with a band-pass filter of
0.1–200.0 Hz was used. The records were obtained with a sampling frequency of 1 kHz,
and the records were down-sampled to 250 Hz by decimation, with decimation factor
equal to 4. The recordings included 19 EEG channels, 2 EOG channels (horizontal and
vertical), 3 EMG channels (1 from the chin, 2 from the lower limbs), airflow through the
nasal cavity, 2 movement channels located on the chest, and an oxygen saturation channel
(SpO2). As only the airflow and SpO2 signals were used to detect apnea and desaturation,
each signal was down-sampled to 50 Hz by simple decimation. The approximate length
of each record was 8 h. Data were scored by sleep physicians, according to the AASM
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standard [6]. Scoring included marking individual phases of sleep as well as, for example,
sleep events or limb movements. Tags summarizing apnea-related events are listed in
Table 1.

Table 1. Example of marker identification and their number from real PSG.

Tag ID Dfile Tag Tag Numbers Dfile Text

130 O+ 225 start OSAS
131 O− 225 stop OSAS
132 A+ 10 start CAS
133 A− 10 stop CAS
138 D+ 159 start desaturation
139 D− 159 stop desaturation

The original data set contained 800 anonymized PSG records. For technical reasons,
333 records were excluded. The most common reason was a missing scoring or the presence
of odd marks (the event in the record had only a beginning or an end), and it was not
possible to correctly identify the marked sections without the intervention of a somnologist.
As a result, the used database contained 255 records suitable for processing simultaneous
oxygen saturation channels and nasal airflow, and 477 records suitable for processing nasal
airflow only.

The number of apnea events varied across records. This imbalance could result in
bias in favor of fewer individuals with a high incidence of apnea events, and the network
would not be sufficiently generalized. For this reason, Tukey’s method was used to limit
the maximum number of segments from one individual. The confidence coefficient was set
to 1.5 [29]. The individual records also contained a large difference between the number
of segments with apnea and those with normal breathing. For example, a patient with
AHI = 75 would have 2.5 h of apnea over a total of 8 h record. Even with such a high AHI
score, only 31% of the segments would be apnea segments. When training a CNN, it is
appropriate to work with data in a ratio of 1:1 (in this case, apnea:physiological breath) [30].
For the apnea segments, segments of normal breathing were randomly selected to maintain
this ratio.

2.2. Data Pre-Processing

The data pre-processing was divided into four stages, see Figure 1. First, the data
were prepared (see the yellow part of the diagram). Second, the data were pre-processed,
including sub-sampling, filtering, and/or normalization (see the green part of the diagram).
Third, the data were complemented (see the gray part of the diagram) and, finally, the data
were designated into training, testing, and validation data sets (see the blue part of the
diagram). Two signals (airflow and SpO2) were chosen for consequent analysis. These two
signals were preprocessed separately (the green part of the diagram), then were connected
into one block for classification. Figure 1 shows the whole process of the data processing.

Figure 1. Block diagram of pre-processing pipeline.
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Numerical filtration of the airflow suppressed frequencies above 5 Hz and smoothed
the signal; for this purpose, a Butterworth IIR filter (order 10) was applied. The phase
shift of the designed filter has a linear characteristic in the range from 0 to 50 Hz. SpO2
was originally sampled with a period of two seconds. A quantization step of 1% ensured
a stepped signal shape. After down-sampling to 50 Hz, oscillations were observed at
sharp transitions. To suppress and smooth the signal, an IIR Butterworth filter (order 2) of
the low-pass type with a cut-off frequency of 0.02 Hz was applied. Signal segmentation
is performed using a sliding window of 10 s with an overlap of 90% (9 s). The window
length was chosen, based on the AASM definition, as the minimum length to indicate the
apnea segment. The size of the overlap was chosen according to a previous study [31]. To
unify the signal amplitude across patients, a Z-score was applied to the partial records.
It was necessary to take into account the delay in the SpO2 signal; see Figure 2. This is a
physiological delay [32], which averages 25 s. For this reason, the SpO2 signal was shifted
by 25 s.

Figure 2. Demonstration of SpO2 decline response in apnea.

The last pre-processing step was division of the data into training, test, and validation
sets. An NN is taught using a training set, tuning is performed using a validation set,
and the testing data set is utilized to evaluate the functionality of the network. The data
were divided in the ratio 2/3:1/6:1/6 (training:validation:testing). The division took place
at the record level, such that the NN was trained on a different data set than the one
on which the subsequent testing is performed. The final size of the data set for apnea
detection is seen in Table 2, and that for desaturation detection in Table 3. The number of
segments for desaturation is larger, as the decrease in SpO2 not only causes apnea, but also
hypopnea (not included in apnea).

Table 2. Numbers of segments and subjects in data sets for NN apnea detection.

Number of Segments Number of Subjects

Training data set 351,550 175
Validation data set 87,180 38

Testing data set 88,882 42

Table 3. Numbers of segments and subjects in data sets for NN desaturation detection.

Number of Segments Number of Subjects

Training data set 777,640 174
Validation data set 193,886 36

Testing data set 198,082 45
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2.3. NN Design

The use of deep neural networks for data classification has become popular. However,
there are many variants of NNs, among which CNNs are often used. These networks make
it possible to easily recognize individual elements in signals.

An NN consists of various different layers. In a CNN, the convolution layer is one of
the main layers, in which the mathematical operation of convolution is applied to the input
signal. Moreover, 2D convolution was used in this case, with one of the parameters being
the number of individual filters. This number theoretically corresponds to the number
of symptoms being searched for. A max-pooling layer usually follows each convolution
layer, which reduces the size of a given data space. This reduction ensures that the next
convolution layer has different data input and can search for more general features. The
regularization layer is located before the next convolutional or fully connected layer (dense
layer). Its task is to generalize, thus preventing over-learning the network on a given
training set. The basic method for regularization is called dropout, which randomly turns
selected neurons and their connections on and off during testing [33]. In the Tensorflow
version 2.0 library, a dropout value of 0 means that a neuron will never be discarded. The
dense layer usually follows, as the last layer. Its task is to convert all feature maps created
by the convolution layers into a 1D vector, and it learns to choose the right combination
that best suits the segment. The number of neurons in final layer was set to 1.

A CNN consisting of six layers was chosen, with regard to the results of previous
studies [26,27]. The visualization of the NN is depicted in Figure 3.

Figure 3. Visualization of the optimal NN design for apnea detection.

2.3.1. Setting of Parameters

Two types of activation function were used in this study: namely, the ReLU func-
tion [34] and the sigmoid function. The sigmoid function was used in the output layer
and the ReLU function was used in all of the hidden layers. The loss function used binary
cross-entropy with sigmoid activation [35], the batch size was set to 1000, and the Adam
algorithm was used as an optimizer [36].

2.3.2. Hyperparameter Optimization

The grid search method was used for hyperparameter optimization. This method
is based on defining specific hyperparameter values and testing the best results under
a concrete hyperparameter combination [37]. The principle scheme of hyperparameter
optimization is depicted in Figure 4.

Figure 4. Principle scheme of hyperparameter optimization.
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The first-tested hyperparameter was the kernel size, assuming that ideal kernel is
not the same in each CNN layer. The specific values of kernel size for each of the layers
are defined in Table 4. The other hyperparameters were set as fixed, for testing purposes.
These parameters are defined in Table 5. The batch size was set to 250 and the number of
epochs was set to 50.

Table 4. Tested values for convolutional layer kernel sizes.

Layer Variable Values

First kernel1 1, 5, 11, 21, 31, 41, 51
Second kernel2 1, 5, 11, 21, 31, 41, 51, 61
Third kernel3 1, 5, 11, 21, 31, 41, 51, 61, 71

Table 5. NN structure for kernel size optimization.

Layer Name Parameter

2D CL K (1 × kernel1 ), F 128
MaxPool M (1,2)
Dropout D 0.5
2D CL K (2 × kernel2), F 128

MaxPool M (1,2)
Dropout D 0.5
2D CL K (1 × kernel3), F 32

MaxPool M (1,2)
Dropout D 0.5
Flatten
Dense N 256

Dropout D 0.5
Dense N 64

Dropout D 0.5
Dense N 1

The kernel size parameter is independent of the segment number, so the kernel size
parameter was tested on a data set consisting of 100,000 segments of the original data set.
Thus, it was basically trained on 68,298 segments, after dividing into training, testing, and
validation sets.

The second-tested hyperparameters were the number of filters for convolutional layers
and number of neurons in fully connected layers, which were tested simultaneously. The
tested values are described in Table 6. The other hyperparameters were set as fixed for
testing purposes. These parameters are defined in Table 7. The batch size was set to 250
and the number of epochs was set to 50.

It was observed that the best-performing structures significantly differed in kernel
and layer sizes. As mentioned above, the grid search was conducted on subsets of the
original training set. It was assumed that the optimal kernel sizes and sizes of layers were
subject- and testing set-specific. Thus, three best combinations of hyperparameters were
averaged, in order to facilitate the higher generality of the network. A number of averaged
networks was chosen intuitively, based on observed variations of the hyperparameters in
the sorted list of networks.

Table 6. Tested values of filter number and number of neurons.

Layer Variable Tested Values

First, convolutional f ilter1 1, 30, 60, 120, 300, 500
Second, convolutional f ilter2 1, 30, 60, 120, 300, 500
Third, convolutional f ilter3 1, 30, 60, 120, 300, 500
Fourth, fully connected dense1 1, 30, 100, 500
Fifth, fully connected dense2 1, 30, 100, 500
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Table 7. NN structure for optimization of number of filters and number of neurons.

Layer Name Parameter

2D CL K (1 × 1), F f ilters1
MaxPool M (1,2)
Dropout D 0.5
2D CL K (2 × 15), F f ilters2

MaxPool M (1,2)
Dropout D 0.5
2D CL K (1 × 45), F f ilters3

MaxPool M (1,2)
Dropout D 0.5
Flatten
Dense N dense1

Dropout D 0.5
Dense N dense2

Dropout D 0.5
Dense N 1

The tested values for the dropout hyperparameter were in the range of 0.0 to 0.8 in
0.1 steps. The batch size was set to 250 for testing purposes. This hyperparameter was
tested on the whole training data set.

The batch size hyperparameter was examined last. Its tested values were as follows:
100, 250, 500, 1000, and 2000.

2.4. Evaluation

The parameters that we focused on in the design phase of the network were accuracy
and error. ROC analysis (considering specificity and sensitivity) was used to select the
appropriate threshold in the final classification. As most studies compare their proposed
networks to other standard automatic classifiers (often k-NN), we compared our network
through assessing the differences in the classification results between the proposed neural
network and a k-NN classifier. Neural networks are adapted to a specific signal, which
makes it harder for direct comparison. In our case, we used a less-common variant of the
combination of breath and SpO2, as it imitates a physician’s decision based on the ASSM
standard. The k-NN method is a very simple and easily reproducible algorithm, which has
been widely used in past studies as a reference solution to the apnea detection problem.
The nearest neighbors were estimated based on the Euclidean distance.

2.5. GUI for Physician

A graphical user interface (GUI) was created using the AppJar library (available at
www.appjar.infoi, accessed on 1 September 2021). Python 3.6+ and the following libraries
are required for proper functionality: Keras 2.3.1, Tensor ow 2.0.0, AppJar 0.94.0, Numpy
1.18.0, Scipy 1.4.1, Struct, Window slider 0.8, Collections, Pytictoc, Shutil. All of these
libraries are available from https://pypi.org/, accessed on 1 September 2021.

3. Results

The results of this work are divided into two parts: The first part provides the results
of the design of the CNN and its parameters, while the second part contains the results of
apnea detection using the implemented network, in comparison with the k-NN classifier.

3.1. Designed CNN
3.1.1. Hyperparameter Optimization

To determine the ideal kernel size, 416 combinations with a length of 50 epochs were
randomly tested. Figure 5 presents the individual combinations.

www.appjar.infoi
www.appjar.infoi
https://pypi.org/
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Figure 5. Parallel graph of all combinations and their results, in terms of accuracy. Generated using
the Weights and Biases software.

In Table 8, the five best combinations, selected according to training accuracy, are
given. These results show a very high similarity. As such, their arithmetic mean was used
to define the resulting dimensions of the layers. The resulting layer dimensions were:
1, 15, 45. If the convolution kernel length is 1, the corresponding layer provides simple
scalar multiplication.

Table 8. Results for top five combinations of convolutional kernel size. The same values of convolu-
tional kernel length were achieved with different sweep.

Length of Convolution Kernel Classification Evaluation

First Layer Second Layer Third Layer Accuracy (%) Error (-)

1 11 41 88.320 0.2930
1 11 31 88.278 0.2911
1 11 31 88.269 0.2911
1 21 61 88.240 0.2903
1 21 61 88.224 0.2903

To identify the ideal number of neurons in the dense layer and the number of filters
for the convolutional layers, we calculated 79 random combinations. Figure 6 shows the
evaluation of the tested combinations.

Table 9 shows the first five best combinations (sorted by accuracy on the training set).
The final values for the numbers of filters and neurons were chosen as an arithmetic mean
of these five best combinations. The number of neurons in the dense layers were 148 and
86 (fourth and fifth dense layers, respectively). The number of filters for each convolution
layer were 174, 308, and 96 (first, second, and third convolution layers, respectively).
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Figure 6. Parallel graph of all combinations of number of neurons in dense layers and number of
filters in convolutional layers. Generated by the Weights and Biases software.

Table 9. Results of top five combinations considering the number of neurons in dense layers and
number of filters in convolutional layers.

No. Filters No. Neurons Classification Evaluation

First
Layer

Second
Layer

Third
Layer

Fourth
Layer

Fifth
Layer Accuracy (%) Error (-)

30 120 120 100 30 86.58 0.3349
120 500 120 30 100 86.51 0.3361
300 300 60 500 100 86.47 0.3330
120 120 120 100 100 86.45 0.3339
300 500 60 100 100 86.38 0.3386

The dropout was tested in the range of 0.0–0.8 in 0.1 steps. The highest validation
accuracy of 83.16% was achieved with a value of 0.6; see Figure 7, which shows the error
and accuracy of the set validation when using different dropout values. The resulting
dropout was selected to be 0.6, as the error in the validation set approached the error
values on the training set (red solid and dashed lines in Figure 7). A larger dropout value
was not used, as the accuracy on the training set decreased above 0.6. At the same time,
the validation set had the same trend for a dropout value of 0.2 and the selected value of
0.6. For apnea investigation (see Figure 8), the error tends to increase with a higher number
of epochs on the validation set. The accuracy does not change on the validation set after
reaching the break. For desaturation, the trend error and accuracy were the same for the
training and validation sets. The best batch size was 1000, due to the accuracy (83.29%) on
the validation data set; see Table 10.
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Figure 7. Different dropout settings and their results in the training and validation of the CNN.

Figure 8. The course of testing the final neural network for apnea detection. Different colors represent
different divisions into training and validation data sets.

Table 10. Results of training with different batch sizes.

Batch Size Accuracy (%) Error (-)

100 82.81 0.4183
250 82.58 0.4248
500 82.57 0.4252

1000 83.23 0.4004
2000 82.81 0.3973
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The optimal kernel size was defined based on the grid search method. Additional
testing for different kernel sizes in the first layer was performed. Table 11 represents the
results of additional testing.

Table 11. Testing the accuracy with different kernel size in the first layer of the proposed NN.

Kernel Size Results

First Layer Second Layer Third Layer ACC (%) Error (-)

1 15 45 88.11 0.2947
2 15 45 87.84 0.2988
3 15 45 87.76 0.2992

3.1.2. Final Design of the Proposed CNN

Based on the hyperparameter optimization, the final structure of the CNN was imple-
mented. The design and parameters of the network are shown in Table 12, where K is the
size of the convolution kernel, F is the number of filters, M is the size of maxpool kernel, D
is the dropout value, and N is the number of neurons.

Table 12. Final structure of a convolutional neural network used for apnea and desaturation detection.

Layer Name Parameter No. of Weights Data Size

2D CL K (1 × 1) F 174 384 2 × 500 × 174
MaxPool M (1,2) 2 × 250 × 174
Dropout D 0.6
2D CL K (2 × 15) F 308 1,608,068 1 × 236 × 308

MaxPool M (1,2) 1 × 118 × 308
Dropout D 0.6
2D CL K (1 × 45) F 96 1,330,656 1 × 74 × 96

MaxPool M (1,2) 1 × 37 × 96
Dropout D 0.6
Flatten 3552
Dense N 148 525,844 148

Dropout D 0.6
Dense N 86 12,814 86

Dropout D 0.6
Dense N 1 87 1

3.2. Apnea Classification Results

The results of the sleep event detector were calculated on a testing data set, which
always contained complete records of subjects. The same testing set was subsequently
used for detection using the standard k-NN method. The results were evaluated using
ROC analysis.

3.2.1. Results of CNN Based Classification

The results of apnea segment classification using the deep neural convolutional net-
work are shown in Table 13, under various selected thresholds. The results of desaturation
segment classification are included in Table 14. The graph in Figure 9 shows the ROC curve,
which describes the relationship between the sensitivity and specificity, depending on the
threshold values, in the case of apnea and desaturation detection.
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Table 13. Results of classification by the proposed NN in the content of apnea segments under vari-
ous thresholds.

Threshold (-) Accuracy (%) Sensitivity (%) Specificity (%)

0.3 82.21 96.22 68.21
0.5 84.27 88.39 80.14
0.7 82.92 81.64 84.21

AUC (-) 0.9034

Table 14. Results of classification by proposed NN in the content of desaturation segments under
various thresholds.

Threshold (-) Accuracy (%) Sensitivity (%) Specificity (%)

0.3 69.04 93.74 44.34
0.5 74.19 82.62 65.76
0.7 74.41 67.46 81.37

AUC (-) 0.8264

Figure 9. ROC curve for apnea (top) and desaturation (below) segment analyses.
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3.2.2. Results of k-NN Based Classification

According to Tukey’s method, the maximum limit for the number of segments with an
apnea event was determined for the creation of the data set (i.e., 559 segments). To reduce
the time demands of the k-NN classification method, principal component analysis (PCA)
and the t-distributed stochastic neighbor embedding (t-SNE) were used to reduce the data
dimensionality before k-NN classification. The accuracy for different settings of k in the
k-NN method on the reduced validation set (50,000 segments) is shown in Table 15 (left).
The most suitable coefficient for apnea detection was k = 20, while that for desaturation
detection was k = 500. The sensitivity and specificity results for this setting are presented
in Table 16.

Table 15. Results of classification by k-NN in content of apnea and desaturation segments under
various k.

Apnea Desaturation

k (-) Accuracy (%) Accuracy (%)

5 83.06 55.77
20 84.22 57.74
50 84.03 59.11

100 83.71 59.93
200 82.81 60.78
500 80.96 61.61

1000 78.91 61.37

Table 16. Results of classification by k-NN in content of apnea (k = 20) and desaturation (k = 500)
segments.

Apnea Desaturation

Accuracy (%) 83.39 64.33
Sensitivity (%) 88.31 54.05
Specificity (%) 78.47 74.61

4. Discussion

Deep learning techniques have been increasingly used to diagnose sleep apnea [38],
including convolutional neural networks, such as was used in our study. As in a large part
of neurodiagnostic methods, the problem is the small number of measured subjects (i.e.,
small data set size). The main benefit of this work can be considered to be the training
of a deep convolutional network on a large database. PSG records were obtained with a
sampling frequency of 1000 Hz. Such a high frequency is due to the acquisition of EEG
recordings, in which it is necessary to evaluate brain frequencies up to 30 Hz as standard.
Only airflow and SpO2 signals were processed to detect apnea and desaturation in this
study. Therefore, it was possible to down-sample these signals. The shapes of the airflow
and SpO2 signals are similar to a sinusoid with a frequency of about 0.2 Hz. It was therefore
possible to sample at a frequency of 50 Hz. The signal was down-sampled five times, which
significantly reduced the computational complexity and memory usage without loss of
information. Even so, the design and training of the network were very time-consuming;
for example, to determine the ideal number of neurons in fully connected layers and the
number of filters for convolutional layers, 79 random combinations were calculated. In total,
the calculation took 92 h. Additionally, hardware limitations prevented testing a batch size
larger than 2000, as the used computing unit had limited parallel computation ability.

We designed a neural network and then performed its learning, validation, and testing
stages. Thanks to the use of a large database, we adapted the network and its parameters
to detect apnea. Pre-trained networks have also been used in the literature [39], but we
still assume that the greatest effectiveness can be obtained by training for a specific pattern
(in this case, apnea). The baseline approximate neural network depth was determined from
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a previous study [31]. The parameters of the NN were further estimated to achieve the
highest validation accuracy.

The hyperparameters of CNN were estimated separately, not taking into account the
fact that some parameters depend on each other; however, if the parameters were tested
as dependent variables, it would not be possible to evaluate their effect separately. For
the desaturation detection, the same NN design with the same hyperparameters as in
the case of apnea detection was used, based on the knowledge that the analyzed signals
were generated from same biosignals. For future research, it may be interesting to test and
optimize the hyperparameters for each of the events separately.

The resulting dimensions of the convolution kernel were 1, 15, 45. Gradual enlarge-
ment of the convolution kernel is an expected phenomenon, which guarantees that features
of different lengths gradually flow between layers. Our test results indicated that a size of
1 for the first layer kernel gave the best results; see Table 11. It is possible that this layer
could be replaced by a simpler layer in the future, which may speed up the calculation and
the detection itself. The batch size parameter was set to 2000. A larger batch size decreases
the accuracy of a NN on the training data set [40]. In our case, the use of a larger batch
ensured greater regularization and, thus, greater accuracy on the validation set. A higher
batch size could not be tested, due to hardware limitations.

The training of the NN was performed four times on randomly generated training,
validation, and testing data sets. The graph in Figure 8 shows the course of the training of
the proposed NN for apnea detection. According to the results, it can be concluded that
the NN had similar character for the different data sets (different curve colors). The graph
in Figure 10 shows the course of the training of the NN for desaturation detection. The
accuracy and error had similar characters when comparing the training and testing phases,
so it should be easy to train the NN for desaturation detection.

Figure 10. The course of testing the final neural network for desaturation. Different colors represent
different divisions into training and validation data sets.

During the training of the proposed CNN for apnea detection, an increase in the
validation error was observable, which increased with the steps of the training while, at
the same time, the validation accuracy decreased. This indicates the over-fitting of the
neural network. In order not to implement an over-fitted network, the method of early
interruption of learning was used. The final epoch was not included but, instead, the one
that had the smallest validation error during training was used. For the network trained for
desaturation classification, the setting with the smallest validation error was selected. The
final accuracy of the designed neural network was 84% for apnea detection and 74% for
desaturation detection. For the k-NN reference method, the accuracy was 83% in the case
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of apnea detection, while that for desaturation detection was 64%; that is, both were lower
than those of the proposed CNN. Studies comparing the results of classification using k-NN
and ANNs vary in the difference between the accuracy of these classifiers (accuracy of ANN
minus k-NN). For example, some studies [14,41,42] have described a positive difference
(i.e., higher accuracy for the ANN) of 9.7% on average. In contrast, other studies [43,44]
have reported a negative difference (i.e., higher accuracy for k-NN) of 2% on average.
Furthermore, the study by Mendel et al. [45] reported zero difference (identical accuracy
for both methods). When detecting desaturation, the difference in our accuracy study was
similar to that of [14,42]. Although the k-NN classifier is much simpler, compared to the
ANN, the accuracy on the testing data set of k-NN (83%) was similar to that obtained by
the ANN (84%) in our case; this was also comparable with the previous papers. This result
ensured us that the k-NN is a meaningful reference method for ANN-based classifiers.
Obviously, detection using a deep neural network has a great advantage over the use of
a k-NN classifier, in terms of the significantly lower time requirements of the detector.
Apnea detection using CNN processed up to 8 h of recording in 36 s, while using k-NN
required 45 min (as measured on an AMD Ryzen 9 3900X processor). Calculating k-NN
with high-volume data is very demanding. With a lower class processor (i.e., standard
sleep department equipment), the calculation would take even longer. This is an essential
parameter for practical implementation in a clinical setting. The disadvantage of using
a neural network, in terms of hardware, is that it requires a processor that supports the
Advanced Vector Extensions (AVX) instruction set. AVX support has been introduced for
most processors since 2013; so, for implementation in practice, it is necessary to install the
proposed detector only on devices containing such processors, which do not have to be in
all sleep labs.

For the purposes of training, as well as the detection itself, the original continuous
signal was segmented. For subsequent display by the software used in the sleep laboratory,
it is necessary to convert the segments back to a continuous signal after classification.
Each segment containing 80% of the event in a sequence of several such segments in a
row (positive) indicates an event (apnea/hypopnea). In the study by Choi et al. [31], valid
apnea events were considered as five consequent events in row. We also differ from other
studies, in that we detected apnea with an accuracy of 1 s (10 s window with a bias of
90%). For example, in the study by Varady et al. [19], a 16 s window was used without an
overlay, such that they detected apnea with an accuracy of 16 s. Furthermore, in the study
by McClure et al. [46], a 15 s window was used, also without an overlay.

The event detection process takes place on data with the same pre-processing as was
used to learn the CNN. Apnea and desaturation detection are performed separately, and
the detected events are saved to a newly copied file. The output of a neural network is the
probability that a given segment contains an event. This allows the threshold to be selected,
according to whether greater specificity or sensitivity is desired.

Various biological signals can be used to identify apnea. Neural networks have been
applied to EEG [14], EKG [47], respiratory [48], and SpO2 [49] signals. Apnea detection
is often performed using random forest, support vector machine, and k-NN methods,
which have accuracies of about 80–90% [7]. Some new studies have reported high classi-
fication accuracy (sensitivity and specificity > 90%), but the data sample was very small
(17 subjects) [50]. Our proposed NN had lower classification accuracy, but we trained and
tested the NN on a data set, which was 15 times larger. Some previous studies have used
an existing NN topology and used transfer learning to recompute the ideal parameters;
for example, Singh et al. [51] have used the AlexNet NN with different types of classifiers.
Table 17 summarizes the results of apnea detection in the case of different classifiers and
used signals in the previous studies.

Note that the SpO2 and nasal airflow signals were used in our study to detect apnea,
in order to refer to the standard scoring procedure of the AASM scoring manual. Studies
which specifically used the SpO2 or nasal airflow as reference signal resulted in accuracies
ranging from 79.6% to 97.64%; see Table 17.
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The highest accuracy was obtained in the study by Mostafa et al. [49]; namely, 97.64%.
The deep belief network (DBN) classifier was used in this case, and the SpO2 reference
signal was used. The first two layers of the DBN classifier were constructed using restricted
Boltzmann machines (RBM), and the final layer was a softmax layer. The methodology was
tested on two publicly available data sets consisting of 32 and 25 records, respectively. The
structure of the DBN was fixed, and the hidden layer neurons were only optimized for the
UCD database. The same DBN classifier was used on different data set, and the accuracy
decreased to 85.26%. Lower accuracy values can be reached when different data sets are
used for training and testing. In the first case, of training and testing on the same data
set, the accuracy values were higher than in proposed methodology. On the other hand,
the sensitivity reached lower values in the study of Mostafa et al. [49]. In case of testing
on a different database, the accuracy was comparable, and the sensitivity was lower than
those reported in our study. Furthermore, AUC values were not presented in the study by
Mostafa et al. [49].

In the study by Biswal et al. [21], SaO2, airflow, and signals from the chest and
abdomen belt were used as reference. Two publicly available data sets were used in this
case. They utilized an RCNN for classification. Different accuracies were reached in the
case of training and testing on the same data set; namely, 85.7% and 81.7%, respectively.
When testing on different data sets, it decreased to 78.7% in the first case while, in the
second case, the accuracy increased to 83.3%. This study used more reference signals than
in the proposed methodology, with comparable results.

In the study of Pathinarupothi et al. [20], SpO2 and instantaneous heart rate (IHR)
were used for apnea classification. The LSTM method was used in this case. The accuracy
when using SpO2 reached 95.5% and, in the case of using a combination of SpO2 and
IHR, the accuracy decreased to 92.1%. This study proposed minute-to-minute apnea
classification. It involved the analysis of 35 subjects but, in the case of the SpO2 reference
signal, it involved only 8 subjects. In comparison to the proposed methodology, the study
of Pathinaupothi et al. [20] was performed on a data set which was approximately 30 times
smaller, and with 60 times smaller time resolution.

In a study by Cen et al. [28], the 2D CNN method was used for apnea detection, based
on the SpO2, oronasal airflow, and movements of ribcage and abdomen reference signals
for classification. The study was performed using 25 patients. The method was based
on feature extraction, and the concrete features were validated by the CNN. An average
accuracy value of 79.61% was reached across all classes; however, the average classification
accuracies in normal, hypopnea, and apnea classes were 82.20%, 53.61%, and 66.24%,
respectively. In comparison to the proposed methodology, the study by Cen et al. [28]
was performed on a smaller data set, with lower accuracies and smaller time resolution;
however, the study by Cen et al. [28] was designed on a data set based on more reference
signals than our proposed methodology.

The study by Mostafa et al. [52] used an SpO2 reference signal for classification by
a 1D CNN. Three publicly available databases were used, consisting of the records of 8,
25, and 70 subjects, respectively. The largest database was used for training purposes, and
then the model was tested on the others. This study also performed a transfer learning
technique to retrain the CNN on the other databases. All of the tests were performed
considering 1 min-, 3 min-, and 5 min-long segments. The accuracy was in the range of
84.53–92.65% in the first case, and the sensitivity was in the range 56.72–91.64%. Lower
values were reached in the case of testing on different databases than the training set. In the
second case (i.e., transfer learning), the accuracy values were in the range of 84.85–94.24%,
and the sensitivity was in the range 93.32–96.78%. Therefore, transfer learning improved
both the accuracy and sensitivity. In comparison to the proposed methodology, the study
of Mostafa et al. [52] was performed on a smaller data set, with comparable accuracies
and smaller time resolution. The sensitivity was lower in the study by Mostafa et al. [52].
The study by Mostafa et al. [52] used only one reference signal; namely, SpO2.
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Overall, the use of ECG signals generally corresponds with high apnea classification
accuracy. On the other hand, in the study of Pathinarupothi et al. [20], the success of
the classification decreased with the use of the ECG signal. In our manuscript, the pro-
posed solution was to mimic the work of a physician who scores apnea according to
ASSM standards.

A large number of approaches have been tested to detect apnea; however, a major
limitation of most studies is the size of the used data set. For example, Varady et al. [19]
conducted research on a set of 18 PSG recordings, but with an average recording time
of only 4 h. The study of Almazaydeh et al. [53] had a sample of 50 subjects, but these
were healthy individuals who consciously simulated respiratory pauses. In the study
of Janbakhshi et al. [54], 35 records were used. Probably the most extensive study we
were able to find is that of Steenkiste et al. [48], who used a data set [55] (available online
at https://physionet.org/content/shhpsgdb/1.0.0/, accessed on 2019) from which they
selected 2100 individuals, of which 100 individuals were used for training, and 2000 for
testing. However, this is a data set [55] from 1997, where PSG is presented as a “home”
variant and apnea was marked from saturation and EEG; the primary orientation of the
data set is on cardiovascular disease.

A limitation of the study was the lower accuracy than the highest transmission men-
tioned in the current literature. The lower portability was due to the effort to imitate
the ASSM manual while, at the same time, streamlining the network in the context of
minimizing network dispositions. The established network was tuned within a limited
number of iterations, so it is possible that a higher accuracy could be achieved. At the same
time, unlike other studies, we did not use segment-level information (from each patient)
to train the network, instead focusing at the record level from each patient. Subsequently,
our network obtained information from new patients (the network has no previous infor-
mation), and we presented the accuracy of the classification on this approach. Another
limitation lies in the usage of only the k-NN reference method to assess the performance
of the proposed CNN. Further work can be carried out to interpret the weights across
kernel layers and to bring insights into the features differentiating respiration events from
the baseline. The current paper relied on the scoring guidelines, and more information
about the respiration events could be obtained from the trained network. In the case of
finding the optimal kernel length, the number of filters, and the number of neurons, it was
observed that the best-performing structures only slightly differed in their accuracy. For
this reason, a mean value was used. It is possible that some other metric may be more
suitable for identifying the best solution. We presented how the convolutional network
behaved when training on such a large database. In addition, we offer open access to our
code for further use. The proposed approach mimics the work of a physician, such that
it is possible to use the methodology for the preparation of training for physicians and
laboratory nurses in sleep laboratories. Another advantage is the high time resolution that
the proposed network offers.

Table 17. Comparison of different types of classifiers and their accuracies.

Ref. Signal Classifier Accuracy Results
Sensitivity Specificity

[21] CB, AB, SaO2, AF ut. RCNN 85.7%/81.7% - -
[21] CB, AB, SaO2, AF ut. RCNN 78.7%/83.3% - -
[49] SpO2 DBN 97.64% 78.75% 95.89%
[49] SpO2 DBN 85.26% 60.36% 91.71%
[20] SpO2, IHR LSTM 92.1% 84.7% -
[20] SpO2 LSTM 95.5% 92.9% -
[28] SpO2, ONAF, RIB, AB CNN2D 79.6% - -
[52] SpO2 CNN1D 84.53–92.65% 56.72–91.64% 90.19–94.60%
[52] SpO2 CNN1D 84.85–94.24% 58.32–92.04% 93.32–96.78%
[31] NP CNN 96.6% 81.1% 98.5%
[27] THO CNN 70.7% - -

https://physionet.org/content/shhpsgdb/1.0.0/
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Table 17. Cont.

Ref. Signal Classifier Accuracy Results
Sensitivity Specificity

[27] ABD CNN 72.3% - -
[27] NAF CNN 77.6% - -
[27] THO, ABD CNN 77.7% - -
[27] NAF, THO CNN 82.0% - -
[27] NAF, ABD CNN 82.6% - -
[27] NAD, ABD, THO CNN 83.5% - -
[26] NAF CNN 74.70 ± 1.43% - -
[24] ECG CNN 98.91% 97.82% 99.20%
[56] ECG AB 87.33% 81.99% 90.72%
[57] ECG LS-SVM 84.74% 84.71% 84.69%
[44] ECG BA 85.97% 84.14% 86.83%
[58] ECG SLBP 89.80% 88.46% 90.63%
[59] ECG 1-D CNN 87.90% - -
[60] ECG CNNLSTM 86.25% - -
[51] ECG AlexNet CNN 86.22% 90.00% 83.82%
[14] EEG k-NN 75% 70% 92%
[14] EEG SVM (RBF) 95% 90% 100%
[14] EEG SVM (polynomial) 99% 100% 98%
[14] EEG ANN 86% 75% 100%
[5] EEG DFA + SVM 95.1% 93.2% 98.6%

[10] EEG CNN + LSTM 76.5–84.5% - -

5. Conclusions

A sleep apnea and desaturation detector were constructed, based on a deep convo-
lutional neural network. The Python language and TensorFlow library were used for the
implementation. The hyperparameters of the CNN were optimized for the case of apnea
detection, and the CNN was then trained for apnea and desaturation detection. After
optimization and evaluation of the CNN parameters, a comparison with the k-NN method,
in terms of detection capability, was performed.

The accuracy of the resulting neural network on the test data set, for apnea detection,
was 84%, while that for desaturation detection was 74%. In comparison, using k-NN, the
accuracies were 83% and 64% for apnea and desaturation detection, respectively. From a
practical point of view, calculation using a CNN is faster and provides the possibility of
using an optional threshold that changes the resulting sensitivity and specificity, according
to the user’s preferences.
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AASM American Academy of Sleep Medicine
AB Adaptive boosting
AHI Apnea hypopnea index
ANN Artificial neural network
BA Bootstrap aggregating
CNN Convolutional neural network
DBN Deep belief network
DFA Detrended fluctuation analysis
DNN Deep neural network
ECG Electrocardiographic signals
EEG Electroencephalographic signals
EMG Electromyographic signals
EOG Electrooculographic signals
k-NN k-nearest neighbors
LSTM Long short-term memory
NN Neural network
OSAS Obstructive sleep apnea syndrome
PCA Principal component analysis
PO Pulse oximetry
PSG Polysomnography
RBM Restricted Boltzmann machines
RF Random forest
RNN Recurrent neural network
RS Respiratory signals
SAS Sleep apnea syndrome
SLBP Symmetrically weighted local binary patterns
SVM Support vector machine
t-SNE t-distributed stochastic neighbor embedding
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