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Abstract: Our systematic review investigated the additional effect of artificial intelligence-based
devices on human observers when diagnosing and/or detecting thoracic pathologies using different
diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles
from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included
articles were published within the last 20 years and used a device based on artificial intelligence (AI)
technology to detect or diagnose pulmonary findings. The AI-based device had to be used in an
observer test where the performance of human observers with and without addition of the device
was measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading. A total of
38 studies were included for final assessment. The quality assessment tool for diagnostic accuracy
studies (QUADAS-2) was used for bias assessment. The average sensitivity increased from 67.8%
to 74.6%; specificity from 82.2% to 85.4%; accuracy from 75.4% to 81.7%; and Area Under the ROC
Curve (AUC) from 0.75 to 0.80. Generally, a faster reading time was reported when radiologists were
aided by AI-based devices. Our systematic review showed that performance generally improved for
the physicians when assisted by AI-based devices compared to unaided interpretation.

Keywords: artificial intelligence; deep learning; computer-based devices; radiology; thoracic
diagnostic imaging; chest X-ray; CT; observer tests; performance

1. Introduction

Artificial intelligence (AI)-based devices have made significant progress in diagnostic
imaging segmentation, detection, and disease differentiation, as well as prioritization. AI
has emerged as the cutting-edge technology to bring diagnostic imaging into the future [1].
AI may be used as a decision support system, where radiologists reject or accept the al-
gorithm’s diagnostic suggestions, which was investigated in this review, but there is no
AI-based device that fully autonomously diagnose or classify findings in radiology yet.
Some products have been developed for the purpose of radiological triage [2]. Triage
and notification of a certain finding have been a task that has had some autonomy since
there is no clinician assigned to re-prioritize the algorithm’s suggestions. Other uses of
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AI algorithms could be suggestion of treatment options based on disease specific predic-
tive factors [3] and automatic monitoring and overall survival prognostication to aid the
physician in deciding the patient’s future treatment plan [4].

The broad application of plain radiography in thoracic imaging and the use of other
modalities, such as computed tomography (CT), to delineate abnormalities adds to the num-
ber of imaging cases that can provide information to successfully train an AI-algorithm [5].
In addition to providing large quantities of data, chest X-ray is one of the most used imag-
ing modalities. Thoracic imaging has, therefore, not only a potential to provide a large
amount of data for developing AI-algorithms successfully, but there is also potential for
AI-based devices to be useful in a great number of cases. Because of this, several algorithms
in thoracic imaging have been developed—most recently in the diagnosis of COVID-19 [6].

AI has attracted increasing attention in diagnostic imaging research. Most studies
demonstrate their AI-algorithm’s diagnostic superiority by separately comparing the algo-
rithm’s diagnostic accuracy to the accuracy achieved by manual reading [7,8]. Nevertheless,
several factors seem to prevent AI-based devices from diagnosing pathologies in radiology
without human involvement [9], and only few studies conduct observer tests where the
algorithm is being used as a second or concurrent reader to radiologists: a scenario closer
to a clinical setting [10,11]. Even though diagnostic accuracy of an AI-based device can be
evaluated by testing it independently, this may not reflect the true clinical effect of adding
AI-based devices, since such testing eliminates the factor of human-machine interaction
and final human decision making.

Our systematic review investigated the additional effect AI-based devices had on
physicians’ abilities when diagnosing and/or detecting thoracic pathologies using different
diagnostic imaging modalities, such as chest X-ray and CT.

2. Materials and Methods
2.1. Literature Search Strategy

The literature search was completed on 24 March 2021, from 5 databases: EMBASE,
PubMed, Cochrane library, SCOPUS, and Web of Science. The search was restricted to
peer-reviewed publications of original research written in English from 2001–2021, both
years included.

The following specific MESH terms were used in PubMed: “thorax”, “radiography,
thoracic”, “lung”, “artificial intelligence”, “deep Learning”, “machine Learning”, “neural
networks, computer”, “physicians”, “radiologists”, “workflow”, “physicians”. MESH
terms were combined with the following all-fields specific search words and their bended
forms: “thorax”, “chest”, “lung”, “AI”, “artificial intelligence”, “deep learning”, “ma-
chine learning”, “neural networks”, “computer”, “computer neural networks”, “clinician”,
“physician”, “radiologist”, “workflow”.

To perform the EMBASE search, the following combination of text word search and
EMTREE terms were used: (“thorax” (EMTREE term) OR “lung” (EMTREE term) OR
“chest” OR “lung” OR “thorax”) AND (“artificial intelligence (EMTREE term) OR “ma-
chine learning” (EMTREE term) OR “deep learning” (EMTREE term) OR “convolutional
neural network” (EMTREE term) OR “artificial neural network” (EMTREE term) OR “ai”
OR “artificial intelligence” OR “neural network” OR “deep learning” OR “machine learn-
ing”) AND (“radiologist (EMTREE term) OR “ physician” (EMTREE term) OR “clinician”
(EMTREE term) OR “workflow” (EMTREE term) OR “radiologist” OR “clinician” OR
“physician” OR “workflow”).

We followed the PRISMA guidelines for literature search and study selection. After
removal of duplicates, all titles and abstracts retrieved from the search were independently
screened by two authors (D.L. and L.M.P.). In case of unresolved disagreements, that could
not be determined by consensus vote between D.L. and L.M.P., a third author (J.F.C.) was
appointed to assess and resolve the disagreement. Data were extracted by D.L. and L.M.P.
using pre-piloted forms. To describe the performance of the radiologists without and with
assistance of AI-based devices, we used a combination of narrative synthesis and compared
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measures of accuracy, area under the ROC curve (AUC), sensitivity, specificity, and time
measurements.

For evaluating the risk of bias and assess quality of research, we used the QUADAS-2
tool [12].

2.2. Study Inclusion Criteria

Peer-reviewed original research articles published in English, between 2001 and 2021,
were reviewed for inclusion. Inclusion criteria were set at follows:

1. AI-based devices, either independent or incorporated into a workflow, used for
imaging diagnosis and/or detection of findings in lung tissue, regardless of thoracic
imaging modality; and

2. an observer test where radiologists or other types of physicians used the AI-algorithm
as either a concurrent or a second reader; and

3. within the observer test, the specific observer that diagnosed/detected the findings
without AI-assistance must also participate as the observer with AI-assistance; and

4. outcome measurements of observer tests included either sensitivity, specificity, AUC,
accuracy, or some form of time measurement recording observers’ reading time
without and with AI-assistance.

Studies where one set of physicians, with the aid of AI, retrospectively re-evaluate
another set of physicians’ diagnoses without AI were excluded. AI-based devices that
did not detect specific pulmonary tissue findings/pathology, e.g., rib fracture, aneurisms,
thyroid enlargements etc. were also excluded.

3. Results

We included a total of 38 studies [13–50] in our systematic review. The QUADAS-2
tool is presented in Figure 1, and a PRISMA flowchart of the literature search is presented
in Figure 2.

We divided the studies into two groups: The first group, consisting of 19 stud-
ies [13–31], used an AI-based device as a concurrent reader in an observer test, where
the observers were tasked with diagnosing images with assistance from an AI-based
device, while not being allowed (blinded) to see their initial diagnosis made without assis-
tance from AI (Table 1a). The second group, consisting of 20 studies [19,32–50] used the
AI-based device as a second reader in an un-blinded sequential observer test, thus allowing
observers to see and change their original un-assisted diagnosis (Table 1b).
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Figure 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of the literature search
and study selection.

Table 1. (a) Included studies with artificial intelligence-based devices as concurrent readers in the observer test. (b) Included
studies with artificial intelligence-based devices in an observer test with a sequential test design.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology No. of

Cases Test Observers Image
Modality

a

Bai et al. [13] 2021 RT-PCR
EfficientNet-B3
Convolutional

Neural Network
COVID-19
pneumonia 119

6 radiologists
(10–20 years of chest

CT experience)
CT

Beyer et al. [19] 2007 Radiologist identified
and consensus vote

Commercially
available (LungCAD

prototype version,
Siemens Corporate
Research, Malvern,

PA, USA)

Pulmonary nodules 50
4 radiologists
(2–11 years
experience)

CT

de Hoop et al. [20] 2010 Histologically
confirmed

Commercially
available (OnGuard

5.0; Riverain Medical,
Miamisburg,

OH, USA)

Pulmonary nodules 111
1 general radiologist,
1 chest radiologist,

and 4 residents
Chest X-ray

Dorr et al. [14] 2020 RT-PCR DenseNet
121 architecture

COVID-19
pneumonia 60

23 radiologists
and 31 emergency

care physicians
Chest X-ray

Kim et al. [15] 2020 Bacterial culture and
RT-PCR for viruses

Commercially
available (Lunit

INSIGHT for chest
radiography, version

4.7.2; Lunit, Seoul,
South Korea)

Pneumonia 387

3 emergency
department
physicians
(6–7 years

experience)

Chest X-ray

Koo et al. [21] 2020 Pathologically
confirmed

Commercially
available (Lunit
Insight CXR, ver.
1.00; Lunit, Seoul,

South Korea)

Pulmonary nodules 434 2 thoracic radiologists
and 2 residents Chest X-ray
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Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology No. of

Cases Test Observers Image
Modality

a

Kozuka et al. [22] 2020 Radiologist identified
and majority vote

Faster Region-
Convolutional

Neural Network
Pulmonary nodules 120 2 radiologists

(1–4 years experience) CT

Lee et al. [23] 2012 Pathologically
confirmed

Commercially
available

(IQQA-Chest, EDDA
Technology, Princeton

Junction, NJ, USA)

Pulmonary nodules
malignant/benign 200 5 chest radiologists

and 5 residents Chest X-ray

Li et al. [24] 2011 CT

Commercially
available (SoftView,

version 2.0; Riverrain
Medical, Miamisburg,

OH, USA-Image
normalization, feature

extraction and
regression networks)

Pulmonary nodules 151
3 radiologists
(10–25 years
experience)

Chest X-ray

Li et al. [25] 2011
Pathologically
confirmed and

radiology assessed

Commercially
available (SoftView,

version 2.0;
Riverain Medical)

Pulmonary nodules 80
2 chest radiologists,

4 general radiologists,
and 4 residents

Chest X-ray

Liu et al. [16] 2020 -

Segmentation model
with class attention

map including
a residual

convolutional block

COVID-19
pneumonia 643 - Chest X-ray

Liu et al. [26] 2019 Radiologist identified
and majority vote

DenseNet and Faster
Region-Convolutional

Neural Network
Pulmonary nodule 271 2 radiologists

(10 years experience) CT

Martini et al. [27] 2021 Radiologist consensus

Commercially
available

(ClearRead-CT,
Riverrain

Technologies,
Miamisburg,

OH, USA)

Pulmonary consolida-
tions/nodules 100

2 senior radiologists,
2 final-year residents,
and 2 inexperienced

residents

MDCT

Nam et al. [29] 2021 RT-PCR and CT

Deep learning-based
algorithm (Deep

convolutional
neural network)

Pneumonia,
pulmonary edema,
active tuberculosis,

interstitial lung
disease, nodule/mass,
pleural effusion, acute

aortic syndrome,
pneumoperitoneum,

rib fracture,
pneumothorax,

mediastinal mass.

202

2 thoracic radiologists,
2 board-certified
radiologists, and

2 residents

Chest X-ray

Rajpurkar et al. [31] 2020 Positive culture or
Xpert MTB/RIF test

Convolutional
Neural Network Tuberculosis 114

13 physicians
(6 months–25 years

of experience)
Chest X-ray

Singh et al. [28] 2021 Radiologically
reviewed

Commercially
available (ClearRead

CT Vessel
Suppression and
Detect, Riverain

Technologies TM)

Subsolid nodules
(Incl ground-glass
and/or part-solid)

123
2 radiologists
(5–10 years
experience)

CT

Sung et al. [30] 2021 CT and clinical
information

Commercially
available (Med-Chest
X-ray system (version
1.0.0, VUNO, Seoul,

South Korea)

Nodules,
consolidation,

interstitial opacity,
pleural effusion,
pneumothorax

128

2 thoracic radiologists,
2 board-certified

radiologists,
1 radiology resident,
and 1 non-radiology

resident

Chest X-ray

Yang et al. [17] 2021 RT-PCR Deep Neural
Network

COVID-19
pneumonia 60

3 radiologists
(5–20 years
experience)

CT

Zhang et al. [18] 2021 RT-PCR

Deep Neural
Network using the

blur processing
method to improve

the image
enhancement

algorithm

COVID-19
pneumonia 15

2 physicians
(13–15 years
experience)

CT
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Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology No. of

Cases Test Observers Image
Modality

b

Abe et al. [47] 2004
Radiological review

and clinical
correlation

Single three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Sarcoidosis, miliary
tuberculosis,
lymphangitic

carcinomatosis,
interstitial pulmonary

edema, silicosis,
scleroderma, P.

Carinii pneumonia,
Langerhals cell

histiocytosis,
idiopathic pulmonary

fibrosis, viral
pneumonia,
pulmonary

drug toxicity

30
5 radiologists
(6–18 years
experience)

Chest X-ray

Abe et al. [48] 2003

Radiology consensus
Fourier

transformation and
Artificial Neural

Network

Detection of
interstitial

lung disease
20

8 chest radiologists,
13 other radiologists,

and 7 residents
Chest X-ray

Clinical correlation
and bacteriological

Artificial Neural
Network

Differential diagnosis
of 11 types

of interstitial
lung disease

28
16 chest radiologists,
25 other radiologists,

and 12 residents
Chest X-ray

Pathology Artificial Neural
Network

Distinction between
malignant and benign
pulmonary nodules

40
7 chest radiologists,

14 other radiologists,
and 7 residents

Chest X-ray

Awai et al. [33] 2004 Radiological review Artificial Neural
Network Pulmonary nodules 50

5 board-certified
radiologists and

5 residents
CT

Awai et al. [32] 2006 Histology Neural Network Pulmonary nodules
malignant/benign 33

10 board-certified
radiologists and

9 radiology residents
CT

Beyer et al. [19] 2007 Radiologist identified
and consensus vote

Commercially
available (LungCAD

prototype version,
Siemens Corporate
Research, Malvern,

PA, USA)

Pulmonary nodules 50
4 radiologists
(2–11 years
experience)

CT

Bogoni et al. [34] 2012 Majority of agreement

Commercially
available (Lung CAD

VC20A, Siemens
Healthcare, Malvern,

PA, USA)

Pulmonary nodules 43
5 fellowship-trained

chest radiologists
(1–10 years experience)

CT

Chae et al. [35] 2020

Pathologically
confirmed and
radiologically

reviewed

CT-lungNET (Deep
Convolutional

Neural Network)
Pulmonary nodules 60

2 medical students,
2 residents,

2 non-radiology
physicians, and

2 thoracic radiologists

CT

Chen et al. [36] 2007 Surgery or biopsy Deep Neural
Network

Pulmonary nodules
malignant/benign 60

3 junior radiologists,
3 secondary

radiologists, and
3 senior radiologists

CT

Fukushima et al. [49] 2004
Pathological,

bacteriological and
clinical correlation

Single three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Sarcoidose, diffuse
panbronchioloitis,

nonspecific interstitial
pneumonia,

lymphangitic
carcinomatosis, usual

interstitial
pneumonia, silicosis,

BOOP or chronic
eopsinophilic
pneumonia,

pulmonary alveolar
proteinosis, miliary
tuberculosis, lym-

phangiomyomatosis,
P, carinii pneumonia
or cytomegalovirus

pneumonia

130
4 chest radiologists

and 4 general
radiologists

High
Resolution

CT



Diagnostics 2021, 11, 2206 7 of 17

Table 1. Cont.

Author Year Standard of
Reference

Type of Artificial
Intelligence-Based

CAD
Pathology No. of

Cases Test Observers Image
Modality

b

Hwang et al. [50] 2019 Pathology, clinical
or radiological

Deep Convolutional
Neural Network with

dense blocks

4 different target
diseases (pulmonary
malignant neoplasms,

tuberculosis,
pneumonia,

pneumothorax)
classified in to binary

classification of
normal/abnormal

200

5 thoracic radiologists,
board-certified

radiologists, and
5 non-radiology

physicians

Chest X-ray

Kakeda et al. [41] 2004 CT

Commercially
available (Trueda,
Mitsubishi Space

Software,
Tokyo, Japan)

Pulmonary nodules 90
4 board-certified
radiologists and

4 residents
Chest X-ray

Kasai et al. [40] 2008 CT Three Artificial
Neural Networks Pulmonary nodules 41

6 chest radiologists
and 12 general

radiologists

Lateral chest
X-ray only

Kligerman et al. [42] 2013 Histology and CT

Commercially
available (OnGuard

5.1; Riverain Medical,
Miamisburg,

OH, USA)

Lung cancer 81

11 board-certified
general radiologists

(1–24 years
experience)

Chest X-ray

Liu et al. [37] 2021
Histology, CT, and

biopsy/surgical
removal

Convolutional
Neural Networks

Pulmonary nodules
malignant/benign 879

2 senior chest
radiologists,

2 secondary chest
radiologists, and

2 junior radiologists

CT

Matsuki et al. [38] 2001 Pathology and
radiology

Three-layer,
feed-forward

Artificial Neural
Network with a

back-propagation
algorithm

Pulmonary nodules 50

4 attending
radiologists,

4 radiology fellows,
4 residents

High
Resolution

CT

Nam et al. [43] 2019

Pathologically
confirmed and
radiologically

reviewed

Deep Convolutional
Neural Networks
with 25 layers and

8 residual connections

Pulmonary nodules
malignant/benign 181

4 thoracic radiologists,
5 board-certified

radiologists,
6 residents, and
3 non-radiology

physicians

Chest X-ray

Oda et al. [44] 2009 Histology, cytology,
and CT

Massive training
Artificial Neural

Network
Pulmonary nodules 60

7 board-certified
radiologists and

5 residents
Chest X-ray

Rao et al. [39] 2007 Consensus and
majority vote LungCAD Pulmonary nodules 196 17 board-certified

radiologists MDCT

Schalekamp et al. [45] 2014

Radiologically
reviewed, pathology

and clinical
correlation

Commercially
available (ClearRead
+Detect 5.2; Riverain

Technologies and
ClearRead Bone
Suppression 2.4;

Riverain
Technologies)

Pulmonary nodules 300 5 radiologists and
3 residents Chest X-ray

Sim et al. [46] 2020 Biopsy, surgery, CT,
and pathology

Commercially
available (ALND,

version 1.00; Samsung
Electronics, Suwon,

South Korea)

Cancer nodules 200

5 senior chest
radiologists, 4 chest

radiologists, and
3 residents

Chest X-ray

Visual summaries of the performance change in sensitivity, specificity, and AUC for
all studies are shown in Figure 3a,b.
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Figure 3. Sensitivity and specificity (a) and AUC (b) without and with the aid of an AI-based device.

3.1. Studies Where Human Observers Used AI-Based Devices as Concurrent Readers

In 19 studies observers were first tasked to diagnose the image without an AI-based
device. After a washout period, the same observers were then tasked to diagnose the
images again. They were not allowed to see and change their original un-aided radiological
diagnosis before making their diagnosis aided by and AI-based device (Table 1a). The
results of the observer tests are listed in Table 2a–c for concurrent reader studies.
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Table 2. Sensitivity and specificity (a); accuracy and AUC (b); and time measurement results (c) for observer tests without
and with AI-based devices as a concurrent reader.

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceSensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

a

Bai et al. [13] 79 88 88 91 ↑ p < 0.001

Beyer et al. [19] 56.5 - 61.6 - ↑ p < 0.001

de Hoop et al. [20] 56 * - 56 * - ↑ -

Dorr et al. [14] 47 79 61 75 ↑ p < 0.007

Kim et al. [15] 73.9 88.7 82.2 98.1 ↑ p < 0.014

Koo et al. [21] 92.4 93.1 95.1 97.2 ↑ -

Kozuka et al. [22] 68 91.7 85.1 83.3 ↑ p < 0.01 **

Lee et al. [23] 84 - 88 - ↑ -

Rajpurkar et al. [31] 70 52 73 61 ↑ -

Singh et al. [28] 68 * 77.5 * 73 * 74 * ↑ -

Sung et al. [30] 80.1 89.3 88.9 96.6 ↑ p < 0.01

Yang et al. [17] 89.5 - 94.2 - ↑ p < 0.05

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceAccuracy (%) AUC Accuracy (%) AUC

b

Bai et al. [13] 85 - 90 - ↑ p < 0.001

Kim et al. [15] - 0.871 - 0.916 ↑ p = 0.002

Koo et al. [21] - 0.93 - 0.96 ↑ p < 0.0001

Li et al. [24] - 0.840 - 0.863 ↑ p = 0.01

Li et al. [25] - 0.807 - 0.867 ↑ p < 0.001

Liu et al. [26] - 0.66 * - 0.78 * ↑ -

Nam et al. [29] 66.3 * - 82.4 * - ↑ p < 0.05

Rajpurkar et al. [31] 60 - 65 - ↑ p = 0.002

Singh et al. [28] - 0.73 * - 0.74 * ↑ Not statistically
significant

Sung et al. [30] - 0.93 - 0.98 ↑ p = 0.003

Yang et al. [17] 94.1 - 95.1 - ↑ p = 0.01

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceTime Time

c

Beyer et al. [19] 294 s (1) 337 s (1) ↓ p = 0.04

Kim et al. [15] 165 min (2) 101 min (2) ↑ -

Kozuka et al. [22] 373 min(2) 331 min (2) ↑ -

Liu et al. [16] 100.5 min (3) 34 min (3) ↑ p < 0.01

Liu et al. [26] 15 min (1) 5–10 min (1) ↑ -

Martini et al. [27] 194 s (1) 154 s (1) ↑ p < 0.001

Nam et al. [29] 2771.2 s * (1) 1916 s * (1) ↑ p < 0.002

Sung et al. [30] 24 s (1) 12 s (1) ↑ p < 0.001

Zhang et al. [18] 3.623 min (2) 0.744 min (2) ↑ -

a: * our calculated average; ** for sensitivity only; - not applicable; ↑ positive change. b: * our calculated average; - not applicable; ↑positive
change. c: (1) per image/case reading time; (2) total reading time for multiple cases; (3) station survey time; * our calculated average; - not
applicable; ↑ positive change; ↓ negative change.
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3.1.1. Detection of Pneumonia

Bai et al. [13], Dorr et al. [14], Kim et al. [15] Liu et al. [16], Yang et al. [17], and
Zhang et al. [18] had AI-based algorithms to detect pneumonia findings of different
kinds, e.g., Covid-19 pneumonia from either non-Covid-19 pneumonia or non-pneumonia.
Bai et al. [13], Yang et al. [17], Dorr et al. [14], and Zhang et al. [18] investigated detection of
Covid-19 pneumonia. Bai et al. [13], Dorr et al. [14], and Yang et al. [17] all had significant
improvement in performance measured in sensitivity after being aided by their AI-based
devices (Table 2a), and Zhang et al. [18] reported shorter reading time per image but there
was not any mention of statistical significance (Table 2c). Liu et al. [16] incorporated an
AI-algorithm into a novel emergency department workflow for Covid-19 evaluations: a
clinical quarantine station, where some clinical quarantine stations were equipped with
AI-assisted image interpretation, and some did not. They compared the overall median
survey time at the clinical quarantine stations in each condition and reported statistically
significant shortened time (153 min versus 35 min, p < 0.001) when AI-assistance was
available. Median survey time specific to the image interpretation part of the clinical
quarantine station was also significantly shortened (Table 2c), but they did not report if
the shortened reading time were accompanied by the same level of diagnostic accuracy.
While the previously mentioned studies specifically investigated Covid-19 pneumonia,
Kim et al. [15] used AI-assistance to distinguish pneumonia from non-pneumonia and
reported significant improvement in performance measured in sensitivity and specificity
after AI-assistance (Table 2a).

Detection of Pulmonary Nodules

Beyer et al. [19], de Hoop et al. [20], Koo et al. [21], Kozuka et al. [22], Lee et al. [23],
Li et al. [24], Li et al. [25], Liu et al. [26], Martini et al. [27], and Singh et al. [28] used AI-based
devices to assist with detection of pulmonary nodules. Even though de Hoop et al. [20]
found a slight increase in sensitivity in residents (49% to 51%) and change in radiologists
(63% to 61%) for nodule detection, both changes were not statistically significant (Table 2a).
In contrast, Koo et al. [21], Li et al. [24], and Li et al. [25] reported improvement of AUC
for every individual participating radiologist when using AI-assistance, regardless of
experience level (Table 2b). Lee et al. [23] reported improved sensitivity (84% to 88%)
when using AI as assistance (Table 2a) but did not mention if the change in sensitivity was
significant. However, their reported increase in mean figure of merit (FOM) was statistically
significant. Beyer et al. [19] had performed both blinded and un-blinded observer tests; in
the blinded, concurrent reader test, radiologists had significant improved sensitivity (56.6%
to 61.6%, p < 0.001) (Table 2a) but also significantly increased time for reading when assisted
by AI (increase of 43 s per image, p = 0.04) (Table 2c). Martini et al. [27] reported improved
interrater agreement (17–34%) in addition to improved mean reading time (Table 2c), when
assisted by AI. Results for the effects of AI assistance on radiologists by Kozuka et al. [22],
Liu et al. [26], and Singh et al. [28] are also shown in Table 2a,b, but only Kozuka et al. [22]
reported significant improvement (sensitivity from 68% to 85.1%, p < 0.01). In addition to
change in accuracy, Liu et al. [26] reported a reduction of reading time per patient from
15 min to 5–10 min without mentioning statistical significance.

Detection of Several Different Findings and Tuberculosis

Nam et al. [29] tested an AI-based device in detecting 10 different abnormalities
and measured the accuracy by dividing them into groups of urgent, critical, and normal
findings. Radiologists significantly improved their detection of critical (accuracy from 29.2%
to 70.8%, p = 0.006), urgent (accuracy from 78.2% to 82.7%, p = 0.04), and normal findings
(accuracy from 91.4% to 93.8%, p = 0.03). Reading times per reading session were only
significantly improved for critical (from 3371.0 s to 640.5 s, p < 0.001) and urgent findings
(from 2127.1 to 1840.3, p < 0.001) but significantly prolonged for normal findings (from
2815.4 s to 3267.1 s, p < 0.001). Even though Sung et al. [30] showed overall improvement
in detection (Table 2a–c), per-lesion sensitivity only improved in residents (79.7% to 86.7%,
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p = 0.006) and board-certified radiologists (83.0% to 91.2%, p < 0.001) but not in thoracic
radiologists (86.4% to 89.4%, p = 0.31). Results from a study by Rajpurkar et al. [31] for
the effects of AI-assistance on radiologists detecting tuberculosis show that there were
significant improvement in both sensitivity, specificity, and accuracy when aided by AI
(Table 2a,b).

3.2. Studies Where Human Observers Used AI-Based Devices as a Second Reader in a Sequential
Observer Test Design

In 20 studies, observers were first tasked to diagnose the image without an AI-based
device. Immediately afterwards, they were tasked to diagnose the images aided by an
AI-based device and were also allowed to see and change their initial diagnosis (Table 1b).
The results of the observer tests are listed in Table 3a–c for sequential observer test de-
sign studies.

3.2.1. Detection of Pulmonary Nodules Using CT

A total of 16 studies investigated the added value of AI on observers in the detection
of pulmonary nodules; nine studies [19,32–39] used CT scans, and seven studies [40–46]
used chest X-rays (Table 1b). Although Awai et al. [33], Liu et al. [37], and Matsuki et al. [38]
showed statistically significant improvement across all radiologists (Table 3b) when using
AI, other studies reported only significant increase in a sub-group of their test observers.
Awai et al. [32] and Chen et al. [36] reported only significant improvement in the groups
with the more junior radiologists; Awai et al. [32] reported an AUC from 0.768 to 0.901
(p = 0.009) in residents but no significant improvement in the board-certified radiologists
(AUC 0.768 to 0.901, p = 0.19), and Chen et al. [36] reported an AUC from 0.76 to 0.96
(p = 0.0005) in the junior radiologists and 0.85 to 0.94 (p = 0.014) in the secondary radiologists
but no significant improvement in the senior radiologists (AUC 0.91 to 0.96, p = 0.221). In
concordance, Chae et al. [35] only reported significant improvement in the non-radiologists
(AUC from 0.03 to 0.19, p < 0.05) but not for the radiologists (AUC from−0.02 to 0.07). While
the results from Bogoni et al. [34] confirm the results from Beyer et al.’s [19] concurrent
observer test, Beyer et al. [19] showed in the sequential observer test the opposite: decreased
sensitivity (56.5 to 52.9, p < 0.001) with shortened reading time (294 s to 274 s per image,
p = 0.04) (Table 3a,c). In addition to overall increase in accuracy (Table 3b), Rao et al. [39]
also reported that using AI resulted in greater number of positive actionable management
(averaged 24.8 patients), i.e., recommendations for additional images and/or biopsy, that
were missed without AI.

3.2.2. Detection of Pulmonary Nodules Using Chest X-ray

As with detection of pulmonary nodules using CT, there were also contrasting
results regarding radiologist experience level when using chest X-rays as the test set.
Kakeda et al. [41] (AUC 0.924 to 0.986, p < 0.001), Kligerman et al. [42] (AUC 0.38 to 0.43,
p = 0.007), Schalekamp et al. [45] (AUC 0.812 to 0.841, p = 0.0001), and Sim et al. [46] (sensi-
tivity 65.1 to 70.3, p < 0.001) showed significant improvement across all experience levels
when using AI (Table 3a,b). Nam et al. [43] showed significant increase in average among
every radiologist experience level (AUC 0.85 to 0.89, p < 0.001–0.87), but, individually,
there were more observers with significant increase among non-radiologists, residents,
and board-certified radiologists than thoracic radiologists. Only one out of four thoracic
radiologists had a significant increase. On the other hand, Oda et al. [44] only showed
significant improvement for the board-certified radiologists (AUC 0.848 to 0.883, p = 0.011)
but not for the residents (AUC 0.770 to 0.788, p = 0.310). Kasai et al. [40] did not show any
statistically significant improvement(Table 3b), but they reported that sensitivity improved
when there were only lateral images available (67.9% to 71.6%, p = 0.01).



Diagnostics 2021, 11, 2206 12 of 17

Table 3. Sensitivity and specificity (a); accuracy and AUC (b); and time measurement results (c) for sequential observer
tests without and with AI-based devices as a second reader.

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceSensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

a

Abe et al. [48] 64 - 81 - ↑ p < 0.001

Beyer et al. [19] 56.5 - 52.9 - ↓ p < 0.001

Bogoni et al. [34] 45.34 * - 59.34 * - ↑ p < 0.03

Chae et al. [35] 70 * 69 * 65 * 84 * ↓ Not statistically
significant

Hwang et al. [50] 79 * 93.2 * 88.4 * 94 * ↑ p = 0.006–0.99

Kligerman et al. [42] 44 - 50 - ↑ p < 0.001

Sim et al. [46] 65.1 - 70.3 - ↑ p < 0.001

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceAccuracy (%) AUC Accuracy (%) AUC

b

Abe et al. [47] - 0.81 - 0.87 ↑ p = 0.031

Abe et al. [48] - 0.94 - 0.98 ↑ p < 0.01

Abe et al. [48] - 0.77 - 0.81 ↑ p < 0.001

Awai et al. [33] - 0.64 - 0.67 ↑ p < 0.01

Awai et al. [32] - 0.843 - 0.924 ↑ p = 0.021

Chae et al. [35] 69 * 0.005 * 75 * 0.13 * ↑ Not statistically
significant

Chen et al. [36] - 0.84 * - 0.95 * ↑ p < 0.221

Fukushima et al. [49] - 0.972 * - 0.982 * ↑ p < 0.071

Hwang et al. [50] - 0.880 * - 0.934 * ↑ p <0.002

Kakeda et al. [41] - 0.924 - 0.986 ↑ p < 0.001

Kasai et al. [40] - 0.804 - 0.816 ↑ Not statistically
significant

Kligerman et al. [42] - 0.38 - 0.43 ↑ p = 0.007

Liu et al. [37] - 0.913 - 0.938 ↑ p = 0.0266

Matsuki et al. [38] - 0.831 - 0.956 ↑ p < 0.001

Nam et al. [43] - 0.85 * - 0.89 * ↑ p < 0.001-0.87

Oda et al. [44] - 0.816 - 0.843 ↑ p = 0.011–0.310

Rao et al. [39] 78 - 82.8 - ↑ p < 0.001

Schalekamp et al. [45] - 0.812 - 0.841 ↑ p = 0.0001

Author
Without AI-Based CAD With AI-Based CAD

Change Statistical Significance
between DifferenceTime Time

c

Beyer et al. [19] 294 s (1) 274 s (1) ↑ p = 0.04

Bogoni et al. [34] 143 s (1) 225 s (1) ↓ -

a:* our calculated average; - not applicable; ↑ positive change; ↓ negative change. b: * our calculated average; - not applicable; ↑ positive
change. c: (1) per image/case reading time; - not applicable;↑ positive change; ↓ negative change.

3.2.3. Detection of Several Different Findings

Abe et al. [47], Abe et al. [48], Fukushima et al. [49], and Hwang et al. [50] explored the
diagnostic accuracy in detection of several different findings besides pulmonary nodules
with their AI-algorithm (Table 1b). While Abe et al. [47] found significant improvement
in all radiologists (Table 3b), Fukushima et al. [49] only found significant improvement in
the group of radiologists that had more radiological task experience (AUC 0.958 to 0.971,
p < 0.001). In contrast, Abe et al. [48] found no significant improvement in the more senior
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radiologists for detection of interstitial disease (p > 0.089), and Hwang et al. [50] found no
significant improvement in specificity for the detection of different major thoracic diseases
in the more senior radiologists (p > 0.62). However, there were significant improvements in
average among all observers for both studies (Table 3a,b).

4. Discussion

The main finding of our systematic review is that human observers assisted by AI-
based devices had generally better detection or diagnostic performance using CT and chest
X-ray, measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading
compared to human observers without AI-assistance.

Some studies suggest that physicians with less radiological task experience benefit
more from AI-assistance [30,32,35,36,48,50], while others showed that physicians with
greater radiological task experience benefitted the most from AI-assistance [44,49]. Gaube
et al. [51] suggested that physicians with less experience were more likely to accept and
deploy the suggested advice given to them by AI. They also reported that observers
were generally not averse to following advice from AI compared to advice from humans.
This suggests that the lack of improvement in the radiologists’ performance with AI-
assistance, was not caused by lack of trust in the AI-algorithm but more by the presence of
confidence in own abilities. Oda et al. [44] did not find that the group of physicians with
less task experience improved from assistance by AI-based device and had two possible
explanations. Firstly, the less experienced radiologists had a larger interrater variation
of diagnostic performance, leading to insufficient statistical power to show statistical
significance. This was also an argument used by Fukushima et al. [49]. Secondly, they
argued that the use of AI-assistance lowers false-negative more than false-positive findings,
and radiologists with less task experienced generally had more false-positive findings.
However, Nam et al. [43] found that physicians with less task experience were more inclined
to change their false-negative diagnosis’ and not their false-positive findings; therefore, they
benefitted more from AI-assistance. Nam et al. [43], confirmed Oda et al.’s [44] finding in
that there was a higher acceptance rate for false-negative findings. Brice [52] also confirmed
this and suggested that correcting false-negative findings could have the most impact
on reducing errors in radiological diagnosis. Although Oda et al. [44], Nam et al. [43],
and Gaube et al. [51] had different reports on which level of physicians could improve
their performance the most from the assistance of AI-based devices, they all confirm that
AI-assistance lowers false-negative findings, which warrants advancing development and
implementation of AI-based devices in to the clinics.

A limitation of our review is the heterogeneity of our included studies, e.g., the
different methods for observer testing; some of our studies used a blinded observer test
where AI-based devices was used as a concurrent reader (Table 1a), some studies used an
un-blinded, sequential observer test (Table 1b), and some used both [19]. To the best of
our knowledge, Kobayashi et al. [53] was one of the first to use and discuss both test types.
Even though they concluded that there was no statistical significance in the difference
of the results obtained from the two methods, they argue that an un-blinded, sequential
test type would be less time consuming and practically easier to perform. Since then,
others have adopted this method of testing [54] not only in thoracic diagnostic imaging
and accepted it as a method for comparing effect of diagnostic tests [55]. Beyer et al. [19]
also performed both methods of testing, but they did not come to the same conclusions
about the results as Kobayashi et al. [53]. Their results of the two test methods were not
the same; In the blinded concurrent reader test, they used more reading time per image
(294 s to 337 s, p = 0.04) but achieved higher sensitivity (56.5 to 61.6, p < 0.001), and, in the
un-blinded sequential reader test, they were quicker to interpret each image (294 s to 274 s,
p = 0.04) but had worse sensitivity (56.5 to 52.9, p < 0.001) when assisted by AI. The test
observers in the study by Kobayashi et al. [53] did not experience prolonged reading time,
even though Bogoni et al. [34] confirmed the results by Beyer et al. [19] and also argued
that correcting false-positives would prolong the time spent on an image. Roos et al. [56]



Diagnostics 2021, 11, 2206 14 of 17

also reported prolonged time spent on rejecting false positive cases when testing their
computer-aided device and explained that false-positive cases may be harder to distinguish
from true-positive cases. This suggests that the sequential observer test design could result
in prolonged time spent on reading an image when assisted by a device since they are
forced to decide on previous findings. Future observer test studies must, therefore, be
aware of this bias, and more studies are needed to investigate this aspect of observer tests.

A pre-requisite for AI-based devices to have a warranted place in diagnostic imaging
is that it has higher accuracy than the intended user, since human observers with less
experience may have a higher risk of also being influenced by inaccurate advice due to
availability bias [57] and premature closure [58]. To be able to include a larger number of
studies, we allowed the possibility of some inter-study variability in the performance of
the AI-based devices because of different AI-algorithms being used. We recognize this as a
limitation adding to the heterogeneity of our systematic review. In addition, we did not
review the diagnostic performance of the AI-algorithm by itself, and we did not review
the training or test dataset that was used to construct the AI-algorithm. Because of the
different AI-algorithms, the included studies may also have been subjected to publication
bias since there may be a tendency to only publish well-performing AI-algorithms.

Improved performance in users is a must before implementation can be successful.
Our systematic review focused on observer tests performed in highly controlled environ-
ments where they were able to adjust their study settings to eliminate biases and variables.
However, few prospective clinical trials have been published where AI-based devices have
been used, in a more dynamic and clinically realistic environment [59,60]. No clinical trials
have been published using AI-based devices on thoracic CT or chest X-rays, whether it be
as a stand-alone diagnostic tool or as an additional reader to humans [61]. Our systematic
review has, therefore, been a step towards the integration of AI in the clinics by showing
that it generally has a positive influence on physicians when used as an additional reader.
Further studies are warranted not only on how AI-based devices influence human deci-
sion making but also on their performance and integration into a more dynamic, realistic
clinical setting.

5. Conclusions

Our systematic review showed that sensitivity, specificity, accuracy, AUC, and/or time
spent on reading diagnostic images generally improved when using AI-based devices com-
pared to not using them. Disagreements still exist, and more studies are needed to uncover
factors that may inhibit an added value by AI-based devices on human decision-making.
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