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Abstract: In order to assess coronary artery calcium (CAC) quantification reproducibility for photon-
counting computed tomography (PCCT) at reduced tube potential, an anthropomorphic thorax
phantom with low-, medium-, and high-density CAC inserts was scanned with PCCT (NAEOTOM
Alpha, Siemens Healthineers) at two heart rates: 0 and 60–75 beats per minute (bpm). Five imaging
protocols were used: 120 kVp standard dose (IQ level 16, reference), 90 kVp at standard (IQ level 16),
75% and 45% dose and tin-filtered 100 kVp at standard dose (IQ level 16). Each scan was repeated five
times. Images were reconstructed using monoE reconstruction at 70 keV. For each heart rate, CAC
values, quantified as Agatston scores, were compared with the reference, whereby deviations >10%
were deemed clinically relevant. Reference protocol radiation dose (as volumetric CT dose index)
was 4.06 mGy. Radiation dose was reduced by 27%, 44%, 67%, and 46% for the 90 kVp standard
dose, 90 kVp 75% dose, 90 kVp 45% dose, and Sn100 standard dose protocol, respectively. For the
low-density CAC, all reduced tube current protocols resulted in clinically relevant differences with
the reference. For the medium- and high-density CAC, the implemented 90 kVp protocols and heart
rates revealed no clinically relevant differences in Agatston score based on 95% confidence intervals.
In conclusion, PCCT allows for reproducible Agatston scores at a reduced tube voltage of 90 kVp
with radiation dose reductions up to 67% for medium- and high-density CAC.

Keywords: X-ray computed tomography; calcium; coronary vessels; imaging phantoms; photon
counting detector; radiation dose; image quality

1. Introduction

Cardiovascular disease (CVD) is the most common cause of death in both the United
States of America and Europe [1]. Among CVDs, ischemic heart disease as a consequence
of intracoronary atherosclerosis remains the largest cause of death [2,3]. Computed tomog-
raphy (CT) is the modality of choice to detect and quantify coronary artery calcium (CAC).
Clinically, the Agatston score is used for patient risk stratification, with a strong association
with future adverse cardiovascular events [4–8]. As a result, CAC assessment is recom-
mended by several guidelines to improve clinical risk prediction in appropriately selected
asymptomatic individuals, which therefore results in a high number of examinations [6,7,9].

Several studies have assessed potential radiation dose reduction techniques for CAC
assessment with CT [10]. One technique is related to changes in tube potential. By reducing
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the overall energy or the spectrum of the x-ray beam, patient radiation dose can be reduced.
As tissue attenuation, and corresponding CT numbers in Hounsfield units (HU) are en-
ergy dependent, modifications to the Agatston score methodology, such as HU-threshold
optimization, may be required for reproducible results [11–14].

However, Agatston score methodology modifications might not be necessary for
changes in tube potential for a new CT technology: photon-counting CT (PCCT) [15–22].
With PCCT, incoming photons are counted within predefined energy bins. These spectral
data are subsequently used for image reconstruction of CT images for virtual mono-
energetic (monoE) x-ray sources.

For one vendor, the clinical PCCT CAC protocol uses the standard acquisition tube
potential of 120 kVp, with a subsequent monoE image reconstruction at 70 keV. The
impact of reduced or spectral shaped (by means of tin filtration) tube potentials on CAC
assessments with this new CT system remains unknown.

The aim of the current study is, therefore, to assess Agatston score reproducibility for
reduced radiation dose CAC protocols with tube potential adjustments.

2. Materials and Methods

A routine clinical CAC protocol was used to scan an anthropomorphic thorax phantom
(QRM-Thorax, QRM GmbH, Möhrendorf, Germany) on a first generation dual-source
PCCT (NAEOTOM Alpha, Siemens Healthineers, Erlangen, Germany) (Table 1). A fat
tissue equivalent extension ring was used to increase phantom dimensions to resemble a
large patient size [23]. At the center of the thorax phantom, an artificial hydroxyapatite
(HA) containing coronary artery was placed inside a water compartment. In total, three
cylindrical calcifications of equal dimensions (5 mm diameter, 1 mm length) but different
densities were used. The HA densities were 196 ± 3, 408 ± 2, and 800 ± 2 mg/cm3, or
low, medium, and high density, respectively. Besides a static scan, a dynamic scan was
made, whereby the artery was translated at 20 mm/s by a computer-controlled lever (QRM-
Sim2D, QRM GmbH, Möhrendorf, Germany). The static and dynamic scan corresponded
to 0 and 60–75 beats per minute (bpm), respectively [24,25]. The ECG trigger from the
ECG-output of the computer-controlled lever was used to ensure data acquisition only
during linear motion of the artificial coronary artery [25].

Following the reference CAC protocol scan at 120 kVp, additional acquisitions at
reduced tube potentials of 90 and Sn100 kVp were made. For all tube potentials, tube
current modulation with image quality level 16 (CareIQ, Siemens Healthineers, Erlangen,
Germany) was used as the standard dose. In addition, radiation dose in terms of the
volumetric CT dose index (CTDIvol) was further reduced for the 90 kVp acquisition to 75%
and 45% of the standard dose, with tube current reduction. Overall, this resulted in five
combinations of tube potential and tube current: (1) reference (120 kVp, 20 mAs), (2) 90 kVp
standard dose, (3) 90 kVp 75% dose, (4) 90 kVp 45% dose, and (5) Sn100 kVp standard dose.
For each combination, scans were repeated five times, with manual repositioning between
each scan (2 mm translation, 2 degrees rotation). Each scan was reconstructed at a monoE
level of 70 keV.

For each reconstruction, Agatston scores were automatically determined with the use
of a previously validated, open-source Python script (Python version 3.7) [26]. A threshold
of 130 HU was used to discriminate CAC from the background signal.

In addition to the Agatston score, several image quality metrics were calculated. First
of all, total image noise (standard deviation (SD)) was calculated from a large uniform
region of interest (ROI) (128 × 128 voxels). For this same ROI, a so-called background
Agatston score (BAS) was determined [26,27]. The BAS was calculated by summation
of the number of voxels that exceed the CAC threshold of 130 HU within this ROI. For
reconstructions with a non-zero BAS, noise levels were too high, which led to false positive
CAC assessment. Third, noise-power-spectra (NPS) were determined in the same slice.
Finally, contrast-to-noise ratios (CNRs) were determined for the three CAC densities, by
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dividing the absolute difference in HU between CAC and background material by the total
image noise (SD).

Table 1. Acquisition and reconstruction parameters.

Parameter Reference Scan 90 kVp
Standard Dose

90 kVp
75% Dose

90 kVp
45% Dose

Sn100 kVp
Standard Dose

CT system PCCT PCCT PCCT PCCT PCCT
Technique Axial Axial Axial Axial Axial

Tube voltage (kVp) 120 90 90 90 100 + Sn filter
Effective tube
current time

product (mAs)
20 1 45 1 34 20 134 1

Automatic
exposure control Off Off Off Off Off

Collimation (mm) 144 × 0.4 144 × 0.4 144 × 0.4 144 × 0.4 144 × 0.4
Field of view (mm) 220 220 220 220 220

Rotation time (s) 0.25 0.25 0.25 0.25 0.25
Slice thick-

ness/increment
(mm)

3.0/1.5 3.0/1.5 3.0/1.5 3.0/1.5 3.0/1.5

Reconstruction
kernel Qr36 Qr36 Qr36 Qr36 Qr36

Matrix size (pixels) 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512
Reconstruction FBP 2 FBP 2 FBP 2 FBP 2 FBP 2

monoE level (keV) 70 70 70 70 70
Repetitions 5 5 5 5 5

Phantom speed 0 & 20 mm/s 0 & 20 mm/s 0 & 20 mm/s 0 & 20 mm/s 0 & 20 mm/s
CTDIvol (mGy) 4.06 2.97 2.26 1.33 2.21

1 Based on the vendor recommended reference CareIQ level 16. 2 FBP: filtered back projection. The setting used was actually Quantum
Iterative Reconstruction (QIR, Siemens Healthineers) off, which is comparable to a conventional reconstruction in terms of the expected
noise level.

For each heart rate, Agatston scores for the reduced kVp and reduced dose were
compared to the reference at 120 kVp with standard dose. We calculated the 95% confidence
interval for the mean difference. If there were deviations in Agatston score < 10%, then we
deemed these differences to be not clinically relevant.

3. Results
3.1. Radiation Dose

Automatic exposure control at standard dose (IQ level 16) with tube voltages 120 kVp
(reference scan), 90 kVp, and Sn100 kVp resulted in a radiation dose of 4.06 mGy, 2.97 mGy,
and 2.21 mGy, respectively (Table 1). Accordingly, scans acquired at 90 kVp with 75%
and 45% of the standard dose resulted in a radiation dose of 2.26 mGy and 1.33 mGy,
respectively.

3.2. Image Quality

Mean and standard deviation (SD) image noise levels were 25.3 ± 0.3, 25.0 ± 2.0,
27.0 ± 2.3, 30.7 ± 3.0, and 25.7 ± 1.9 for the reference (120 kVp standard dose), 90 kVp
standard dose, 90 kVp 75% dose, 90 kVp 45% dose, and Sn100 kVp standard dose, respec-
tively. These noise levels only resulted in BAS > 0 for 2 out of 100 scans, namely for the
90 kVp at 45% radiation dose.

Example images and NPS for all combinations of tube potential, radiation dose, and
heart rate are shown in Figure 1. Overall, noise spatial frequency decreased with decreasing
tube potential.
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Figure 1. MonoE reconstructed images of the low-density CAC at 70 keV for all combinations used of tube potential,
radiation dose, and heart rate. Noise-power-spectra (NPS) are indicated in the right column.

With comparable image noise for the acquisitions, standard dose CAC CNRs were
comparable for the 120, 90, and Sn100 kVp acquisition (Figure 2). With respect to the
reference, CNR decreased with increasing image noise, for the reduced dose acquisitions
at 90 kVp. At increased heart rate, CNR increased for Sn100 kVp acquisitions for all
CAC densities.
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Figure 2. Contrast-to-noise ratio box and whisker plots for the low-, medium-, and high-density calcification, translated at 0
and 60–75 bpm for all combinations of tube potential and radiation dose.

3.3. Influence on Agatston Scores

For the static phantom, reference Agatston scores as mean and SD were 79.3 ± 4.4,
358.74 ± 9.68, and 438.26 ± 5.44 for the low-, medium-, and high-density CAC, respectively.
Reference Agatston scores for the calcification at 60–75 bpm were 65.0 ± 4.1, 346.7 ± 12.6,
and 465.5 ± 8.6 for the low-, medium-, and high-density CAC, respectively.

Relative differences of the reference Agatston scores with scores from the other proto-
cols are shown in Figure 3. Firstly, for the low-density calcification, variability in Agatston
score differences with the reference was large for all protocols.

Secondly, for the static medium- and high-density calcifications, Agatston score dif-
ferences with the reference were not clinically relevant (<10%). At 60–75 bpm, similar
results were shown, with no significantly different Agatston scores in comparison with the
reference for all protocols.
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Figure 3. Mean and 95% confidence interval Agatston score deviation in % from the reference (120 kVp IQ level 16) with
(A) stationary calcifications and (B) moving calcifications at 60–75 bpm. The dashed lines indicate deviations of ±10%,
which is the threshold for clinically relevant differences.

4. Discussion

The main finding of this study is that for medium- and high-density CAC, monoE
reconstructions at 70 keV for PCCT acquisitions at various tube potentials allow for re-
producible Agatston scores. With this, patient radiation dose could be reduced up to
67%, without clinically relevant changes to the resulting CAC assessment for these CAC
densities for 90 kVp acquisitions. However, variations in Agatston score differences with
the reference for low-density CAC were large. In comparison with the reference at 120 kVp,
CNR did not decrease for 90 and Sn100 kVp. Overall, noise spatial frequency increased
with increasing tube potential.

To the best of our knowledge, the current study is the first to assess Agatston score
reproducibility for monoE reconstructions acquired with various tube potentials. The main
reason for this is that conventional dual-source CT sacrifices temporal resolution when
acquiring spectral data. As high temporal resolution is essential for reproducible CAC
quantification, spectral mode is not recommended for CAC studies [25,28,29]. For PCCT,
however, spectral data is available at high-temporal resolution as well.

While reproducible Agatston scores are key for robust risk stratification, many factors
have previously been shown to influence Agatston score reproducibility. These factors
include patient size, heart rate, CT system, scan starting position, slice thickness, and CAC
quantification parameters [25,26,29–35]. These parameters especially influence low-density
CAC Agatston scores, for which the CT numbers just exceed the CAC scoring threshold of
130 HU. In our current study, large variations in Agatston scores for the low-density CAC
resulted in clinically relevant differences in Agatston scores for all reduced tube potential
protocols. A post-hoc power analysis revealed that particularly in this low-density category
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we were underpowered (1–β: 0.31) to detect ‘clinically’ meaningful differences. For low-
density CAC, the threshold of deviations in Agatston score > 10% to indicate clinical
relevance may be too strict, especially considering the large number of parameters that
influence this measurement.

Many previous studies have evaluated the potential of CAC assessment at reduced
radiation dose [10]. Despite using adjusted CAC scoring thresholds for reduced tube
potential acquisitions, both Thomas et al. and Marwan et al. found overestimations
in Agatston scores for phantom and patients [13,36]. Contrarily, Gräni et al. showed
that Agatston scores were underestimated with adjusted CAC scoring thresholds, in
comparison with the standard 120 kVp protocol [11]. The dose reduction potential (57–65%)
of these studies was comparable to our results. For our study, conventional CAC scoring
thresholds of 130 HU could be used for all acquisitions, as all scans were reconstructed at
a monoE level of 70 keV. For the same PCCT system, Eberhard et al. showed a different
approach for radiation dose reduction, with different monoE levels and the use of iterative
reconstruction [37]. For our study, the clinical CAC protocol (FBP and 70 keV) was used. A
combination of other monoE levels, iterative reconstruction, and tube voltage reduction
acquisitions may result in further radiation dose reductions.

This study has limitations that merit consideration. First, an anthropomorphic phan-
tom with artificial CAC containing coronary arteries and artificial tissue-simulating materi-
als was used for the current study. The densities of the artificial CAC were mixtures of HA
and so-called solid water. The mass of the calcifications was in the range that is observed
in patients [38]. Second, the complex in vivo motion of coronary arteries was simulated by
the phantom as a translation of the coronary artery in one direction, perpendicular to the
scan plane. The constant linear motion of our phantom was deemed sufficient, as the scan
times were relatively short as a result of fast gantry rotation times [24]. Third, our CAC
contrast calculation was based on all voxels that exceeded the CAC threshold in multiple
slices. The reason for this approach is the small number of voxels for each slice that exceed
the CAC scoring threshold, due to the small diameter of the calcification. Consequently, the
resulting CNR was underestimated compared to what would be expected for the known
CAC densities. Fourth, only discrete radiation dose reduction steps were used for the
current study. For the 90 kVp acquisitions, radiation dose reduction was at 75% and 45%
for the standard dose. The latter resulted in BAS > 0 for one repetition. Optimal radiation
dose reduction might therefore lie between 45% and 75% of the standard radiation dose
for 90 kVp acquisitions. Fifth, this study was underpowered to draw conclusions on
low-density calcifications. Extensive follow-up studies are needed to validate our results
in vivo. Sixth, only one PCCT system was used for our current study. However, this PCCT
system is currently the only clinically available PCCT system that can provide monoE
reconstructions at high-temporal resolution.

5. Conclusions

In conclusion, PCCT allows for reproducible Agatston scores at radiation dose re-
ductions up to 67% for moving calcifications of medium and high density, when using a
reduced tube potential acquisition of 90 kVp, reconstructed at a monoE level of 70 keV.
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