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Abstract: The correct differential diagnosis of dementia has an important impact on patient treatment
and follow-up care strategies. Tc-99m-ECD SPECT imaging, which is low cost and accessible in
general clinics, is used to identify the two common types of dementia, Alzheimer’s disease (AD) and
Lewy body dementia (LBD). Two-stage transfer learning technology and reducing model complexity
based on the ResNet-50 model were performed using the ImageNet data set and ADNI database.
To improve training accuracy, the three-dimensional image was reorganized into three sets of two-
dimensional images for data augmentation and ensemble learning, then the performance of various
deep learning models for Tc-99m-ECD SPECT images to distinguish AD/normal cognition (NC),
LBD/NC, and AD/LBD were investigated. In the AD/NC, LBD/NC, and AD/LBD tasks, the AUC
values were around 0.94, 0.95, and 0.74, regardless of training models, with an accuracy of 90%, 87%,
and 71%, and F1 scores of 89%, 86%, and 76% in the best cases. The use of transfer learning and a
modified model resulted in better prediction results, increasing the accuracy by 32% for AD/NC.
The proposed method is practical and could rapidly utilize a deep learning model to automatically
extract image features based on a small number of SPECT brain perfusion images in general clinics
to objectively distinguish AD and LBD.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia in neurodegenerative
diseases of the brain, accounting for more than 60% of all dementia cases [1], followed by
Lewy body dementia (LBD), which accounts for about 10–30% of all cases of dementia [1,2].
Although there are consensus criteria for the clinical diagnosis of both diseases [3,4], in
some cases, due to the overlap of clinical and pathological features, it may be difficult to
distinguish between LBD and AD patients. Early diagnoses of LBD and AD are important
from prognostic and therapeutic perspectives, and distinguishing them is clinically vital [5].
Functional imaging methods, such as F-18-FDG (fluorodeoxyglucose, FDG) PET and
cerebral perfusion SPECT are considered useful for clarifying the diagnosis of dementia.
Although increasingly more specific ligands are available (e.g., amyloid), the mainstay of
functional brain imaging for the differential diagnosis of dementia remains F-18-FDG PET
and cerebral perfusion SPECT for the foreseeable future [6]. The studies of SPECT brain
perfusion and PET metabolism are usually consistent in abnormal areas [7]. However, F-
18-FDG PET, which is typically used in the West for brain glucose metabolism examination,
is currently not covered by the National Health Insurance in Taiwan [8]. Therefore, most
nuclear medicine departments in Taiwan use cerebral perfusion SPECT and the Tc-99m-
ECD (ethyl cysteinate dimer, ECD) tracer. Although SPECT has a longer imaging time and
poorer image resolution than PET, it is low cost and the tracer is easily accessible; hence, it
is widely used in domestic clinical practice. Therefore, this study focused on how to use
Tc-99m-ECD SPECT images to differentiate between LBD and AD.

Previous studies have shown that the abnormal areas of F-18-FDG PET and cerebral
perfusion SPECT images of AD patients are usually bilateral temporoparietal areas, pos-
terior cingulate, and medial temporal areas, with sensory-motor cortices, including the
cerebellum, largely spared [9,10]. However, the abnormal areas of LBD and AD often
overlap. O’Brien et al. compared F-18-FDG PET and cerebral perfusion SPECT imaging
[tracer: Tc-99m-HMPAO (hexamethyl propylene amine oxime, HMPAO)] in the differential
diagnosis of AD and LBD, showing that the area under the ROC curve (AUC) of F-18-FDG
PET and cerebral perfusion SPECT were 0.8 and 0.58 [6]. In addition, hypoperfusion in
the posterior cingulate cortex (PCC) was observed in AD, whereas the PCC is relatively
preserved in LBD. The phenomenon of sparing the PCC relative to the precuneus plus
cuneus, termed the cingulate island sign (CIS) [11], has recently garnered attention because
it reflects concomitant AD pathology that affects the clinical symptoms of LBD [12,13].
Imabayashi et al. developed a discrimination method using optimized VOI (focus on the oc-
cipital lobe and cingulate cortex) on cerebral perfusion SPECT images (tracer: Tc-99m-ECD),
with 92.3% sensitivity and 76.9% specificity [14]. Shimizu et al. studied cerebral perfusion
SPECT images [tracer: I-123-IMP (N-isopropyl-p-[I-123] iodoamphetamine, I-123-IMP)]
analyzed by three-dimensional stereotactic surface projections (3D-SSP), cerebral perfusion
in the medial occipital lobe, and distinguished LBD from AD with 85% sensitivity and
specificity [5]. Iizuka et al. used the 3D-SSP analysis of I-123-IMP SPECT images for convo-
lutional neural network (CNN) model training, with an 89% accuracy of distinguishing
LBD and AD [15]. The literature shows that the use of cerebral perfusion SPECT imaging
(tracers including I-123-IMP, Tc-99m-ECD, Tc-99m-HMPAO) can distinguish AD, NC, and
LBD; however, as abnormal areas of AD and LBD images often overlap, it is difficult to
distinguish between the two. Hence, additional image processing and analysis are required
to improve the discrimination, such as calculated specific VOI values and a Z-score surface
map of the 3D-SSP images, etc.

In recent years, due to the advanced digitalization of medical data, novel technologies,
studies applying artificial intelligence (AI), radiomics technology in medical imaging, and
the identification of noninvasive disease features have increased significantly [16]. Current
data featuring learning methods can automatically discover features in the original data and
generate insights [17]. For example, the deep learning algorithm transforms the original
data into more detailed features through the nonlinear function composed of a hierarchical
structure, thereby identifying new patterns [18]. Multidisciplinary clinical neuroscience
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has begun to be influenced by deep learning and is moving toward the development of
new diagnostic and prognostic tools. Indeed, deep learning technology is particularly
promising in neuroscience because clinical diagnosis usually relies on subtle symptoms
and complex neuroimaging methods [19].

Deep learning technology can automatically extract features from the original data,
but a large amount of data needs to be prepared for deep learning model training [20].
Compared with thousands or tens of thousands of X-ray chest imaging databases, the
number of nuclear medicine brain images is much smaller. Although nuclear medical imag-
ing is a highly sensitive functional image modality, the tracer used can directly reflect the
distribution of biomarkers in the brain and effectively detect neurological diseases, but the
small number of nuclear medical images limits the research using deep learning technology
in this field. In the field of neuroscience, many researchers have applied deep learning on
magnetic resonance imaging to detect AD [21], and some have applied functional mag-
netic resonance imaging, magnetoencephalography, and electroencephalography signals
to detect AD [22]. Only a few have applied deep learning on nuclear medicine imaging
to distinguish AD [23–25], with most using F-18-FDG PET images from the ADNI public
database. The authors’ previous study using two-stage transfer learning technology via
F-18-FDG PET images of the public database ADNI successfully distinguished AD and
NC from the Tc-99m-ECD SPECT images, overcoming the issue of a small amount of data.
The study indicated that the model trained on PET FDG metabolic imaging for the same
disease could be transferred to a small sample of SPECT cerebral perfusion images [26].
However, apart from AD, there is almost no relevant research on nuclear medicine images
applied to deep learning technology to distinguish other types of dementia.

In this study, we aimed to evaluate whether the deep learning models could be trained
to distinguished AD from LBD using a real clinical data set, a small amount of Tc-99m-ECD
SPECT images. Our previous study proved that in AD/NC classification tasks, feature
extraction from a relatively large number of F-18FDG PET image data sets can be transferred
to a relatively small number of Tc-99m-ECD SPECT image data sets to overcome data size.
We further investigated whether such models can be applied to an independent data set
with different disease domains and LBD patients to differentiate AD and LBD.

2. Materials and Methods
2.1. Subjects

Tc-99m-ECD SPECT images (total 308 subjects: 134 NC, 113 AD, 61 LBD) from the
Taiwanese Nuclear Medicine Brain Image database were collected and built by the Institute
of Nuclear Energy Research. All participants were evaluated by neurologists and clinical
psychologists, and their education level was elementary school or above. People with
normal cognitive function were assessed to rule out physical conditions that cannot be
corrected and may cause dementia or delirium, such as poor vision, abnormal hearing,
hypothyroidism, anemia, pneumonia, fever, dehydration, signs of abnormal liver function,
abnormal renal function, signs of heart failure (NY class < 3), etc. Those with obvious
head trauma, neurological diseases related to dysfunction of the extrapyramidal system
or autonomic nervous system, such as hydrocephalus, Parkinson’s disease, cortical basal
ganglia degeneration, and progressive supranuclear palsy, Vitamin B12 or folic acid de-
ficiency caused by subacute combined degeneration, multiple system degeneration, and
cerebrovascular diseases that may cause various local neurological symptoms were ex-
cluded. The systolic pressure of those with hypertension needed to be controlled below
160 mmHg, and the HbA1c of those with diabetes mellitus below 9.0. Those on medica-
tions that may cause cognitive dysfunction, such as anticholinergic drugs, hypnotics, or
antipsychotics, were excluded. The critical mental illness scale (CHQ-12) score should
be < 3, and all participants completed the clinical dementia rating (CDR) scale to determine
the severity. Participants with clinically suspected AD or LBD received a complete medical
history inquiry (including important system and brain disease history and CDR), cognitive
function (such as Mini-Mental State Examination (MMSE) scores), and related examina-
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tions. Those who met the criteria further underwent Tc-99m-ECD SPECT imaging, and the
images were interpreted by nuclear medicine experts. The demographic characteristics
and clinical characteristics are shown in Table 1. The Institutional Review Board (IRB) of
National Cheng Kung University Hospital approved this study (serial number: NCKUH
IRB B-BR-107-030).

Table 1. Demographic and clinical characteristics of Tc-99m-ECD SPECT data.

Characteristic NC AD LBD

Number of subjects 134 113 61
Age at the time of SPECT (years) 67.0 ± 8.5 74.4 ± 7.0 77.2 ± 5.9

Sex (F:M) 88:46 58:55 25:36
MMSE 27.5 ± 2.4 19.2 ± 5.3 17.6 ± 5.9
CDR 0.22 ± 0.25 0.79 ± 0.39 0.93 ± 0.50

The F-18-FDG PET images of AD and NC (total 1333 subjects: 666 NC, 667 AD)
used for pretraining in this study were obtained from ADNI, a public database, and the
demographic and clinical characteristics of the data are shown in Table 2.

Table 2. Demographic and clinical characteristics of F-18-FDG PET data.

Characteristic NC AD

Number of subjects 666 667
Age at the time of SPECT (years) 76.4 ± 5.7 76.8 ± 7.5

Sex (F:M) 282:384 268:399
MMSE 28.5 ± 4.0 21.9 ± 5.1
CDR 0.03 ± 0.16 0.83 ± 0.41

2.2. Image Acquisition and Processing

F-18-FDG PET images were downloaded from the ADNI database (http://adni.loni.
usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and AD. These images were preprocessed to achieve database
consistency. All F-18-FDG PET images were spatially normalized into the MNI space with
an image size of 91 × 109 × 91 using the registration method and FDG template in SPM8
software (University College of London, London, UK). After spatial normalization, these
images were further cropped, padded, and the image slices above the skull and below the
cerebellum were removed to retain most of the brain parenchymal area, with a final image
size of 95 × 95 × 48.

Tc-99m-ECD SPECT images were acquired from four medical institutions and obtained
by E-CAM, Symbia T16, and Symbia T2 SPECT equipment (Siemens Medical Solutions,
Malvern, PA, USA) with LEHR (low energy high resolution) and fan beam collimators.
Fifteen minutes after intravenous injection of 925 MBq Tc-99m-ECD, SPECT images were
acquired for 30 to 40 min, and the image matrix size was 128 × 128. The images were recon-
structed by filtered back projection (FBP) with a Metz filter and ordered subsets expectation
and maximization (OSEM) method using Chang’s attenuation correction (attenuation coef-
ficient is 0.1 cm−1). The original image was processed for spatial normalization using the
registration method and SPECT perfusion template in SPM8 software. These SPECT images
were intensity normalized using the Z-score method. The image values were scaled to a
distribution with an average value of zero and a standard deviation of one. The image was
resampled to 95 × 95 × 68 with the voxel size 2 × 2 × 2 mm3, and the image slices above
the cranium and below the cerebellum were removed to retain most of the parenchymal
area, giving a final image dimension of 95 × 95 × 48.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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To effectively use the computing resources during training and adopt the pretraining
model used in the image vision field, 3D medical images needed to be reduced to 2D
images. To retain the information of the whole brain slices, the brain parenchymal area
with an image dimension of 95 × 95 × 48 was equally divided into 16 sections, with one
image selected for each section, then 4 × 4 slices were reassembled to a 2D image. A 3D
image (F-18-FDG PET or Tc-99m-ECD SPECT) was divided into three 2D images with a
380 × 380 matrix size. Sixteen slices were sorted in order from the caudal of the brain to
the cranial as shown in the left part of Figure 1.
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Figure 1. Schematic diagram of the 3D image divided into three 2D images for training.

2.3. Pretrained and Training Model

This research is based on a simple computing device environment and a limited
amount of SPECT data to investigate how to overcome the above disadvantages and
successfully train via deep learning technology to achieve the goal of nuclear medicine
imaging disease classification. The differentiation of dementia using Tc-99m-ECD SPECT
images included distinguishing AD and NC, LBD and NC, and AD and LBD. Our training
strategy was to use ResNet-50, a commonly used model in the field of image visual
classification, to perform Tc-99m-ECD SPECT image classification tasks for the assembled
2D images. Through the above training, the model could learn low-level image features.
Then F-18-FDG PET images from ADNI were used for the pretrained. With such transfer
learning, the model could learn not only low-level image features but also the features of
nuclear medicine images. Finally, we modified the model by reducing the complexity to
improve the training performance.

In the study, the effects of the three training methods were compared: (a) Original
ResNet-50, which loaded the ResNet-50 weights trained on the ImageNet data set. In
Figure 2, an average pooling was connected to the top layer of the ResNet-50 model, then
the fully connected layer (FC) with a length of 128, the batch normalization (BN), and the
dropout layer were added. The dropout layer was set to 0.5 as a form of regulation to
avoid neural network coadaptation by randomly removing nodes for a more robust model.
(b) ResNet-50 with ADNI Pretrained, which was first loaded with the ResNet-50 weights
trained on ImageNet, then retrained by the F-18-FDG PET image data set, and finally
retrained by the Tc-99m-ECD SPECT image data set with the weights of the aforementioned
learning as the initial value. (c) ResNet-50 with ADNI Pretrained + Modified, which was the
same as (b), but when transferring learning to the Tc-99m-ECD SPECT image, the model
was modified to delete the high-level features corresponding to the fifth block of ResNet-50.
The architecture of the training model is shown in Figure 2.
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Figure 2. The convolutional neural network architecture, ResNet-50, used in this study.

All training methods loaded the preprocessed image with a dimension of 380 × 380
on the computing machine of the Linux operating system (system version Ubuntu 18.04).
In the container environment created by virtual technology, the resources were allocated
with four cores of Intel Xeon 6230 2.1 GHz processor (Intel, Santa Clara, CA, USA), 48 GB
of DDR4 memory, and an NVIDIA 2080Ti computing card (Nvidia Corporation, Santa
Clara, CA, USA). The development environments were all executed under Python 3 using
Keras 2.2.5 to build neural networks and import pretrained models, and the backend runs
as TensorFlow 1.15.2 (Google, Mountain View, CA, USA).

We randomly selected 20% of the data from a classification task as an independent
test set and the remaining 80% for training. The data comprised the ADNI pretrained
database (F-18-FDG PET images), as well as Tc-99m-ECD SPECT images for AD/NC,
LBD/NC, AD/LBD classification tasks, all of which were used in the same training/testing
proportion (Table 3).

In the training process, data augmentation was used to increase the amount of training
data and the tolerance of the training model to the data, preventing the neural network
from memorizing training data to overcome the training problem of overfitting. The range
of random width and height shift of data augmentation was 0–0.02% and the range of
zooming was 1–1.03% for the Tc-99m-ECD SPECT images. The range of random width and
height shift of data augmentation was 0–0.03% and the range of zooming was 1–1.03% for
the F-18-FDG PET images.
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Table 3. The number and class distribution of all classification tasks in training and testing data sets.

Task Training Data Set (80%) Testing Data Set (20%)

ADNI Pretrained AD/NC 549/517 (total: 1066) 118/149 (total: 267)
AD/NC 91/106 (total: 197) 22/28 (total: 50)
LBD/NC 43/113 (total: 156) 18/21 (total: 39)
AD/LBD 92/47 (total: 139) 21/14 (total: 35)

The loss function used categorical cross entropy, and the optimization algorithm used
adaptive moment estimation (Adam) [27], the learning rate was set to 0.0000005, and the
batch size was set to 8 for model training. The early-stopping mechanism was used to
judge the stop and choose a suitable epoch. The trained model was validated using 20% of
the Tc-99m-ECD SPECT images and its performance was evaluated by accuracy to decide
when to stop. For F-18-FDG PET images, all hyperparameters settings were almost the
same as above, except for the learning rate was set to 0.000001.

Each 3D image was divided into three 2D images. The respective predicted proba-
bilities of three 2D images from the same subject were summed for ensemble learning as
shown in the right part of Figure 1.

2.4. Features Visualization

The nonlinear dimensionality reduction algorithm t-distributed stochastic neighbor
embedding (t-SNE) [28] is suitable for dimension reduction of high-dimensional data to
two dimensions for visualization. In this study, image features extracted from each image
(including NC, AD, and LBD) through the deep learning model were dimension-reduced
to two dimensions by t-SNE using package scikit-learn [29], allowing visual observation of
the scattered location of each image to qualitative assess the similarity between the data.

2.5. Model Testing and Evaluation

The accuracy of the model was evaluated by receiver operating characteristic (ROC)
curves and the AUC. The ROC curve was plotted with 95% confidence intervals (CI)
calculated using MATLAB (MATLAB R2020a, MathWorks, Natick, MA, USA) with 1000 it-
erations of bootstrapping. In addition, statistical analysis was performed on the classifi-
cation prediction results, including the calculation of the sensitivity, specificity, precision,
accuracy, and F1 score. When calculating the above performance indicators of AD/NC,
LBD/NC, and AD/LBD classification tasks, the category before the slash was defined as
the positive class.

In addition, the author also listed all the research results of deep learning on cerebral
perfusion SPECT images to distinguish AD/NC, LBD/NC, and AD/LBD. Although the
training conditions of these studies were very different from ours (such as the tracer they
used and data type after calculation), they were provided for reference.

3. Results
3.1. Features Visualization

To distinguish between AD and NC, the features extracted from each Tc-99m-ECD SPECT
training image after the deep learning model (“ResNet-50 with ADNI Pretrained + Modified”)
are displayed by t-SNE dimensionality reduction, as shown in Figure 3a, and the NC data (blue
points) and AD data (orange points) have two clusters, both of which can roughly distinguish
AD and NC, which means that the characteristics of AD and NC are distinguishable after
training. Figure 3b shows the feature of the images used for testing to distinguish AD and
NC, with AD data in the lower left and NC data in the upper right of the figure; however,
there was a partial mixing of the clusters. To distinguish between LBD and NC, the feature
distributions of the Tc-99m-ECD SPECT image training and testing data sets by the “Original
ResNet-50” model are shown in Figure 3c,d. Regardless of the training or testing data set,
there was a clear distinguishing ability. To distinguish between AD and LBD, the feature
distributions of the Tc-99m-ECD SPECT image training and testing data sets by “ResNet-50
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with ADNI Pretrained” model are shown in Figure 3e,f; the trend is similar to Figure 3a,b, but
the distinguishing ability is poorer.
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3.2. Model Testing and Result Evaluation

The ROC curve of the pretrained model using F-18-FDG PET images is shown in
Figure 4a, with an AUC value of 0.99 (95% CI: 0.986–0.997), indicating that the model
can be successfully trained to distinguish AD and NC. Furthermore, the ROC curves of
the three models for Tc-99m-ECD SPECT images to distinguish AD/NC, LBD/NC, and
AD/LBD are shown in Figure 4b–d, with the AUC values and performance evaluation
index listed in Tables 4–6, respectively. The “ResNet-50 with ADNI Pretrained + Modified”
model performed best in distinguishing between AD and NC, with an AUC, sensitivity,
specificity, precision, accuracy, and F1 score of 0.94, 91% (20/22), 89% (25/28), 87% (20/23),
90% (45/50), and 89%, respectively. The “Original ResNet-50” model performed best to
distinguish between LBD and NC, with an AUC, sensitivity, specificity, precision, accuracy,
and F1 score of 0.95, 83% (15/18), 90% (19/21), 88% (15/17), 87% (34/39), and 86%, respec-
tively, whereas the “ResNet-50 with ADNI Pretrained” model was best at distinguishing
between AD and LBD, with an AUC, sensitivity, specificity, precision, accuracy, and F1
score of 0.74, 76% (16/21), 64% (9/14), 76% (16/21), 71% (25/35), and 76%, respectively.

Table 4. Comparison of the training performance of ECD data sets in various models for distinguishing between AD
and NC.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for
AD/NC
(95% CI)

Proposed
(ECD image)

Original ResNet-50 model 90.91
(20/22)

50.00
(14/28)

58.82
(20/34)

68.00
(34/50) 71.43 0.94 (0.82–0.99)

ResNet-50 model
(with ADNI pretrain)

95.45
(21/22)

78.57
(22/28)

77.78
(21/27)

86.00
(43/50) 85.71 0.94 (0.86~0.99)

ResNet-50 model
(with ADNI pretrain

+ modified)

90.91
(20/22)

89.29
(25/28)

86.96
(20/23)

90.00
(45/50) 88.89 0.94 (0.84–0.98)

Reference
(ECD image)

3 layers DNN 1,+ 95.12 75.00 - 83.51 - -
Naive Bayes + 68.29 91.07 - 81.44 - -

Decision trees + 78.05 85.71 - 82.47 - -
SVM + 82.92 82.14 - 82.47 - -
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Table 4. Cont.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for
AD/NC
(95% CI)

Reference
(nonECD

image)

CNN 2,*
(I-123-IMP 3D-SSP)

- - - 92.39 - 0.94

ANN 3,ˆ

(HMPAO 36 value)

93.80 100.00 - - - 0.97

1 Deep neural network + Segovia F et al., 2017 [30]; 2 convolutional neural network * Iizuka T et al., 2019 [15]; 3 artificial neural network
ˆ Swietlik D et al., 2019 [31].

Table 5. Comparison of the training performance of ECD data sets in various models for distinguishing between LBD
and NC.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for
LBD/NC
(95% CI)

Proposed
(ECD image)

Original ResNet-50 model 83.33
(15/18)

90.48
(19/21)

88.24
(15/17)

87.18
(34/39) 85.71 0.95 (0.83–0.99)

ResNet-50 model
(with ADNI pretrain)

94.44
(17/18)

76.19
(16/21)

77.27
(17/22)

84.62
(33/39) 84.99 0.96 (0.83–0.99)

ResNet-50 model(with ADNI
pretrain

+ modified)

100.00
(18/18)

71.43
(15/21)

75.00
(18/24)

84.62
(33/39) 85.71 0.93 (0.78–0.99)

Reference
(nonECD

image)

CNN *
(I-123-IMP 3D-SSP) - - - 93.07 - 0.95

* Iizuka T et al., 2019 [15].

Table 6. Comparison of the training performance of ECD data sets in various models for distinguishing between AD
and LBD.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for
AD/LBD
(95% CI)

Proposed
(ECD image)

Original ResNet-50 model Training unsuccessful
ResNet-50 model

(with ADNI pretrain)
76.19

(16/21)
64.29

(9/14)
76.19

(16/21)
71.43

(25/35) 76.19 0.74 (0.52–0.90)

ResNet-50 model(with ADNI
pretrain

+ modified)

76.19
(16/21)

57.14
(8/14)

72.73
(16/22)

68.57
(24/35) 74.42 0.70 (0.47–0.86)

Reference
(nonECD

image)

CNN *
(I-123-IMP 3D-SSP) - - - 89.32 - 0.94

* Iizuka T et al., 2019 [15].
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4. Discussion and Conclusions

Regarding data-driven research, exploring and discovering disease-related features
from data has many clinical applications. The prerequisite for a deep learning model to
automatically learn about disease features from data is a large amount of data needed to
train the model. Radiographic images and retinal optical images have been used in the
field of deep learning with excellent results. Moreover, the morphological characteristics
of structural images such as CT (computed tomography) and MRI are more similar to
the photos in the field of computer vision (CV) than functional images such as PET and
SPECT. Therefore, the original deep learning model for CV was first applied to CT and
MRI images, with few studies using deep learning techniques for nuclear medicine images
to differentiate dementia.

The lack of a large data set of Tc-99m-ECD SPECT images was overcome by using
transfer learning technology and reducing model complexity. This study using conven-
tional hardware equipment and about 100 cases of Tc-99m-ECD SPECT image data for
each category, reorganized 3D images into three sets of 2D images for data augmentation
to improve the accuracy of the training results. The respective prediction of three sets of
2D images from the same subject for ensemble learning improved the accuracy, which is
helpful for deep learning training with a small amount of data.
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Using t-SNE to display the feature distribution of the data after dimension reduction
can intuitively help users understand the pros and cons of data grouping by category
after deep learning model training, rapidly identifying the incorrectly predicted cases. For
example, Figure 3f shows the feature distribution of the ECD testing data set; there were
five LBD data points (red dots with black borders) misjudged as AD. These patients had
ages ranging from 61 to 78 years old, had a CDR score of 0.5, and had images of obvious
hypoperfusion in suspicious areas. These cases are difficult to evaluate by the model, and
consequently, changes in such cases require follow up.

In the overall comparison of the training performance of the AD/NC task, the AUC
value was around 0.94, regardless of the training models, with a sensitivity of 91%, speci-
ficity of 89%, precision of 87%, accuracy of 90%, and F1 score of 89 for the “ResNet-50
with ADNI Pretrained + Modified” model. These results were better than a previous
study [30] which used Tc-99m-ECD SPECT images for a deep learning method to diagnose
AD, reporting a sensitivity of 95%, specificity of 75%, and accuracy of 84%. In Table 4,
other studies [15,31] used cerebral perfusion SPECT images, but not Tc-99m-ECD, with
slightly better results, but their training data consisted of 3D-SSP results and ROI values
rather than images. Finally, the use of transfer learning and a modified model resulted
in better prediction results, increasing the accuracy by 32%. In Table 5, a comparison
of the training performance of the LBD/NC task shows an AUC value higher than 0.93,
regardless of training models. It is worth noting that although the training results were
quite good (accuracy was greater than 85%), directly using the “Original ResNet-50” model
has slightly higher accuracy, implying that using a large number of F-18-FDG PET AD/NC
images for pretraining was not very helpful and that LBD features have been retrained with
better results. In Table 6, the comparison of the training performance of the AD/LBD task
showed that training by the ResNet-50 model failed, and other models had an accuracy of
about 70%. The performance of the “ResNet-50 with ADNI Pretrained” model was better
than the “ResNet-50 with ADNI Pretrained + Modified” model, but it still seems unable to
effectively learn the characteristics of the differences between AD and LBD. As mentioned
before [15], the results of 3D-SSP processing have been trained with an accuracy of about
89%, which shows the important role of highlighting the regional differences.

In summary, this study used conventional hardware equipment and a small amount
of data to prove the feasibility of successfully training Tc-99m-ECD SPECT images to
distinguish between AD and LBD through transfer learning technology and reducing
model complexity. However, because AD and LBD have been shown in past studies
to often overlap in abnormal areas of the image, as compared with whole-brain image
information, cerebral perfusion in certain tissue areas (such as the occipital lobe, cingulate
cortex, etc. [14]) can improve the ability to distinguish between AD and LBD. The use
of vision transformer (ViT) [32] and attention technology can automatically enhance the
learning of more regional details and their relevance, helping to consider whole-brain
information while also perceiving the impact of regional changes, and can extend to
knowledge-based explainable AI. Furthermore, the experience of the area which concerns
doctors can be concatenated into the top layer of the deep learning model to understand
the features automatically extracted by the AI model corresponding to the regulation
and domain knowledge. Thus, the deep learning model can improve the overall training
efficiency of the model and find more important features of differentiating between AD
and LBD using a small amount of data. In the future, ViT architecture will be used to
improve the effectiveness of training and add physician’s mark information to achieve
Knowledge-based Explainable AI.
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