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Abstract: In the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as
a powerful and promising approach for diagnosis. However, despite the good performance of the
models, decision rules should be interpretable to elicit trust from the medical community. Therefore,
the development of an evaluation methodology to assess DL models based on interpretability
methods is a challenging task that is necessary to extend the use of AI among clinicians. In this
work, we propose a novel methodology to quantify the similarity between the decision rules used
by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to
trust a prediction that was based on decision rules they can understand. Given an eye fundus image
with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an
ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an
open dataset that includes the eye fundus images and the segmentation masks is shared with the
community. The proposal was tested on three different DL architectures. The results suggest that
complex models tend to perform worse in terms of likelihood to be trusted while achieving better
results in sensitivity and specificity.

Keywords: deep learning; ocular toxoplasmosis; machine learning interpretability; trust

1. Introduction

Over a third of the world’s human population is exposed to Toxoplasma gondii, making
Toxoplasmosis one of the most common parasitic diseases worldwide [1]. Ocular toxo-
plasmosis (OT) occurs if the parasite reaches the retina, as it can damage host cells and
neighboring cells leaving primary lesions. OT requires drug-based therapy to eliminate the
parasite and the inflammation caused by it. If not treated properly, OT can lead to loss of
vision [2].

Ophthalmologists conduct eye exams that look for lesions caused by the disease in
eye fundus images to diagnose OT. Clinical manifestations of the disease tend to be highly
characteristic; however, atypical manifestations can cause false-negative errors even by

Diagnostics 2021, 11, 1951. https://doi.org/10.3390/diagnostics11111951 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-0218-4267
https://orcid.org/0000-0002-9766-4182
https://orcid.org/0000-0002-6867-7080
https://orcid.org/0000-0002-3698-4043
https://orcid.org/0000-0002-5711-2826
https://orcid.org/0000-0002-0964-9506
https://doi.org/10.3390/diagnostics11111951
https://doi.org/10.3390/diagnostics11111951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11111951
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11111951?type=check_update&version=2


Diagnostics 2021, 11, 1951 2 of 15

experienced doctors. Clinical examination is considered the diagnostic standard, due to
the lack of a sufficiently sensitive lab test [3].

Machine learning is a subfield of artificial intelligence that allows computers to learn
from existing data and make predictions. Its application has improved the performance of
many challenging tasks in medical imaging, with a considerable impact on ophthalmology
based on fundus photography, optical coherence tomography and slit-lamp imaging [4].

Deep learning (DL) is a subfield of machine learning based on artificial neural net-
works (ANN), a paradigm inspired by the human brain. DL models allow end-to-end
learning, skipping the feature engineering step that was required by traditional computer
vision approaches [5]. DL models have achieved promising results in automatic classifi-
cation of images, and they have brought breakthroughs to the state of the art in recent
years [6].

In particular, when applied to retinal images for medical diagnosis and prognosis, con-
volutional neural networks (CNNs) have been able to identify and estimate the severity of
ocular diseases, such as age-related macular degeneration [7] and diabetic retinopathy [8,9].
Moreover, models have been trained to detect lesions caused by these diseases and classify
them according to their severity [10].

Hasanreisoglu et al. [11] explored similar techniques for OT diagnosis using fundus
images. Parra et al. [12] attempted an additional network architecture and achieved
promising results, in addition to publishing an open OT dataset. To the best of our
knowledge, these are the only works that have applied deep learning to OT diagnosis.

In the field, most works have been focused on the predictive power of the model.
However, despite the good results obtained, the medical community is skeptical about its
use due, mainly, to the difficulty in the interpretation of the results. Human factors play
an important role in the diagnosis, and they must be taken into account to increase the
reliability of the models induced and to extend human-AI collaboration. The concept of
Trust arises in this context, defined as the intention to accept vulnerability based on positive
expectations [13]. Currently, a lack of trust in AI systems is a significant drawback in the
adoption of this technology in healthcare [14]. Understanding the reasons behind predic-
tions, and analyzing them considering prior knowledge about the application domain, can
be important to establish trust [15].

Zhang et al. defined interpretability as the ability to provide explanations in under-
standable terms to a human [16]. As such, interpretability methods can be used to obtain
an explanation of the output of a predictive model. Attribution methods, a family of
interpretability methods, assign credit (or blame) with regards to the prediction to the
input features. For images, this means that they assign a score to each of the input pixels.

Several deep learning attribution methods are based on gradients, i.e., partial deriva-
tives of the output with respect to the input. Gradient * Input [17], Integrated Gradients [18],
Layer-wise Relevance Propagation (LRP) [19] and DeepLIFT [20] are examples of such meth-
ods. Although they use gradients differently to compute attribution scores, Ancona et al.
have shown these methods to be strongly related, if not equivalent under certain
conditions [21].

Attribution methods have been applied to classification problems with retinal images,
to enrich predictions presented to physicians. Sayres et al. explored integrated gradients
to grade diabetic retinopathy [22], and Mehta et al. used the same method for automatic
detection of glaucoma [23].

A general-purpose trust metric was proposed by Wong et al. [24] and extended by
Hryniowski et al. [25]. They were experimentally tested with Imagenet with insight-
ful results. Interpretability, a prerequisite of trust, is known to be a domain-specific
notion [26]. Hence, we argue that domain-specific trust metrics are important for machine
learning adoption.

In this study, we propose a method to quantitatively evaluate the trustworthiness of
a model in the OT diagnosis domain. We do this by comparing the average attribution
scores of pixels that belong to a lesion vs. the rest of the pixels. We assume that doctors are
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more likely to trust a model if its predictions are based on the features they consider for
their diagnosis. Hence pixels within lesions should have higher attribution scores than the
rest for an OT model to be considered trustworthy.

The rest of this paper is organized as follows. Section 2 introduces the main concepts
of this work, including the data used. Then, in Section 3, the experimental results are
described. The discussion about such results is given in Section 4. Finally, Section 5
presents the conclusions of this work.

2. Materials and Methods

In this section, the main characteristics of the data are first presented. Then, the
different Deep Learning architectures are introduced. Finally, the proposed evaluation
methods are described.

2.1. Dataset

Predictive models were trained and evaluated on a dataset of 160 eye fundus images.
These images were collected at the Hospital de Clínicas in Asunción (Paraguay) by members
of the Department of Ophthalmology. Some examples of the dataset can be seen in Figure 1.
The complete dataset can be found online and is freely available for research purposes.

(a) (b)

(c) (d)
Figure 1. A sample of healthy (a,b) and unhealthy (c,d) retinal fundus images from the dataset.

Images were captured using a Zeiss brand camera, model Visucam 500, operated by
experienced ophthalmologists. Each image was manually segmented by an ophthalmol-
ogist using an open source labeling tool (https://labelstud.io (accessed on Wednesday,
20 October 2021)) to manually highlight OT entities (active lesions and inactive scars).

Active lesions have variable size, white or yellow color, blurry edges and a cottony
center. They might be associated with a brown retinal hyperpigmentation area, which

https://labelstud.io
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is compatible with previous scar lesions. In some cases, active lesions can be hard to
differentiate due to the presence of vitreitis. Inactive lesions have variable size with
possible brown hyperpigmentation, with a stunted yellow or white center. An example of
these annotations can be seen in Figure 2.

(a) (b)

(c) (d)
Figure 2. A sample of unhealthy eye fundus images (a,c) with their corresponding masks of seg-
mented OT lesions (b,d) from the dataset.

2.2. Model Training

Deep learning models and, in particular, CNNs, have achieved state-of-the-art results
in terms of predictive power for computer vision use cases [27]. Convolutional neural
networks are a particular type of feedforward neural networks (artificial neural networks
with no backlinks) that is normally composed of a combination of layers:

• Convolutional layers: capture local features by sliding a set of kernels over their input.
• Pooling layers: are used to downsample the output of convolutional layers.
• Fully-connected layers: are often used as the final layers of the model, to perform the

final prediction.

As kernels share weights with all neurons, they help significantly in reducing the total
number of parameters of the network. Thus, CNNs allow building neural networks with
many layers with fewer parameters than other architectures [28].

We evaluate three different architectures:

• A CNN model with a few convolutional layers initialized with random weights.
• A VGG16 [29] model pretrained on the Imagenet dataset.
• A Resnet18 [30] model pretrained on the Imagenet dataset.
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VGG16 is an architecture proposed by Simonyan and Zisserman, which was the first
to experiment with smaller kernel sizes achieving promising results and increased depth of
the model. Furthermore, Resnet18, which introduced the concept of residual connections.
Residual connections help transfer knowledge from previous layers, alleviating the vanish-
ing gradient problem that neural networks often suffer from. Residual networks allowed
even deeper models to be trained, with a decreased number of parameters [28].

A comparison of the three architectures in terms of number of parameters and depth
is shown in Table 1.

Table 1. A comparison of the three selected deep learning models.

Model Parameters (Millions) Layers

Vanilla CNN 5.6 6
VGG16 138 16
Resnet18 11 152

Data augmentation based on random flips and crops was performed for all models,
as shown in Figure 3. The last two models leverage transfer learning, i.e., they were
pretrained on a larger general-purpose image dataset and then, with minor modifications
to the learned weights, applied to OT classification for which less data is available. This is
common when applying DL in domains where it is very difficult to build well-annotated
datasets on a large scale due to the cost of acquiring data and annotations [31]. The idea of
transfer learning is represented graphically in Figure 4.

(a) (b)

(c) (d)
Figure 3. An original eye fundus training image (a) with some example transformations, such as
vertical flip (b), horizontal flip (c) and rotation (d), which are computed for data augmentation.
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Models were optimized for 50 epochs using stochastic gradient descent (SGD) with a
batch size of 32. Binary cross-entropy loss was used as the optimization target. The dataset
was split into training (70%), validation (10%) and test (20%) sets. The training set was
used for model fitting, the validation set for hyperparameter tuning and the test set to
make the final model evaluation.

Figure 4. A schematic overview of transfer learning.

2.3. Model Evaluation

All models were evaluated using traditional predictive performance metrics: accuracy,
sensitivity and specificity. In addition to that, we propose a method to obtain a trust score
based on feature attributions, which is described in detail below. We only consider ed
images with lesions that were correctly classified by the models (as a reminder, we consider
an eye fundus image to be unhealthy if there are any lesions) for our evaluation, since our
analysis depends on OT entities that were segmented by ophthalmologists.

2.3.1. Measuring Feature Importance: Pixel Attribution Scores

Attribution methods provide scores for each of the input features that estimate the
relevance they had on the prediction. Formally, given a deep neural network (DNN)
F : Rn → [0, 1], let x ∈ Rn be the model input. An attribution method can be seen as a
function A(F, x) = [s1, . . . , sn], where s1, . . . , sn are referred to as attribution scores. In this
study, we use Integrated Gradients (IG) as the attribution method of choice.

Let x′ ∈ Rn be a baseline input of the model, which is usually a black image for image
networks. Integrated gradients are defined as the integral of the gradients along the path
from the baseline x′ to the input x. The integrated gradient for the ith dimension is defined
as follows:

IntegratedGradientsi(x) ::= (xi − x
′
i)×

∫ 1

α=0

∂F(x
′
+ α× (x− x

′
))

∂xi
dα

where ∂F(x)
∂xi

is the gradient of F(x) along the ith dimension and α is an interpolation
constant to perturb features by.
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We can calculate an attribution score per feature using IG. To obtain a per-pixel
attribution score, we sum scores across RGB channels. The proposal of this study is
independent of the actual attribution method selected.

2.3.2. Evaluating a Prediction: To Trust or Not to Trust?

Given a particular pixel attribution matrix A ∈ Rn and a mask of OT entities for the
original image, some pixels belong to an OT entity and others do not. Assume that those
two groups of pixels were sampled from different populations, L and R. We expect the
median of L to be larger than that of R for OT cases, i.e., pixels from the lesions identified
by a physician should be relatively more relevant for the model to elicit trust from them.
We can test this hypothesis by using a one-sided Mann–Whitney U test such that:

h0: The median of R is larger or equal than the median of L.
h1: The median of L is larger than the median of R.
Therefore, we can define a binary trust function t as:

t(A) =

{
0, if the p-value < 0.05, i.e., we fail to reject the null hypothesis
1, otherwise

2.3.3. Evaluating a Model Given a Dataset: Aggregating Our Results

Given a test set of images, a model is scored by calculating the ratio of images for which
we obtain a one after applying t to their pixel-attribution matrix. This aggregate represents
the proportion of images for which to model is likely to be considered trustworthy by an
ophthalmologist.

The general purpose trust score proposed by Wong et al. [24] and extended by
Hryniowski et al. [25] defines trust based on the answer to two questions: (1) How much
trust do we have in a model that gives wrong answers with great confidence? and (2) How
much trust do we have in a model that gives right answers hesitantly? However, valuable,
interpretability and trust are known to be domain-specific notions [26]. Hence, the trust
score proposed in this work incorporates domain-specific knowledge (masks) and compares
it with the attribution matrix to answer the question: Did the model consider the features
that an ophthalmologist would have taken into account (lesions) for this prediction?

A general overview of the process to evaluate a model is depicted in Figure 5 and can
be summarized as follows: (i) an eye fundus dataset was collected by ophthalmologists at
the Hospital de Clínicas of Asunción, Paraguay, (ii) physicians manually segmented OT
entities for every image that had lesions, (iii) a predictive model is trained on a subset of the
eye fundus dataset, (iv) pixel- attribution matrices are computed for all correctly-predicted
sick images of a test set and, finally, (v) segmentation masks and attribution matrices are
compared using a Mann–Whitney U test, and the results are aggregated to calculate the
model trust score.
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Figure 5. A schematic overview of the general process for trust evaluation.

3. Results

The experiments were performed on a Google Colab Pro account, which provides
Nvidia T4 and P100 graphic cards and up to 25 GB of RAM. The models were implemented
using Pytorch 1.4. Models were trained with a batch size of 32, a learning rate of 1 × 10−2

and stochastic gradient descent (SGD) as the optimizer, and these hyperparameters were
selected according to the selection process performed by Parra et al. [12].

Two experiments were performed:

• Models were trained and evaluated with respect to accuracy, sensitivity and specificity,
to contrast them with the results of the proposed trust metric and then,

• Models were evaluated using the proposed trust score on all correctly-predicted sick
images from the test set.
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3.1. Common Predictive Metrics

After fine-tuning all predictive models common metrics used to evaluate predictive
power were computed on the complete test set. Table 2 summarizes the results in terms of
accuracy, sensitivity and specificity. The goal of this experiment was to determine if the
evaluated models ranked similarly to comparisons made in other domains. As expected,
both VGG and Resnet achieve better results than the vanilla CNN. Interestingly, better
results were achieved with VGG than with Resnet as opposed to the results published for
ImageNet [30].

Table 2. Predictive metrics comparison for the three deep learning models.

Model Accuracy Sensitivity Specificity

Vanilla CNN 0.75 0.75 0.75
VGG16 0.96875 1.0 0.9375
Resnet18 0.9375 0.9375 0.9375

3.2. Trust Score

The proposed trust score was calculated for each of the models on the subset of
correctly-labeled images from the test set, as depicted in Section 5. Aggregated results for
each the compared models are summarized in Table 3. Predictive metrics are included
to better contrast their relationship to the proposed score. The results show that models
that scored higher in terms of traditional metrics associated with predictive power, e.g.,
accuracy, sensitivity and specificity performed worse in terms of the proposed trust score.
This can be seen on a per-image basis in Figure 6. In addition to this, numeric values
associated with the trust score calculation on a per-image basis can be found in Table A1 of
Appendix A.

Table 3. Metric comparison including trust score for the three deep learning models.

Model Accuracy Sensitivity Specificity Trust

Vanilla CNN 0.75 0.75 0.75 0.67
VGG16 0.96875 1.0 0.9375 0.21
Resnet18 0.9375 0.9375 0.9375 0.14

Vanilla CNN
VGG16
Resnet18

Figure 6. Visualizing results: each cell represents an image of the test set that was predicted using a
model. Green cells represent correct and trustworthy predictions (i.e., those where the lesions were
relevant for the model output); orange cells are those where the model predicted the right label, but
the prediction might not be trustworthy; and red cells are prediction errors.

4. Discussion

Exploratory analysis of the IG attribution maps confirms the intuition behind the
proposed trust score. Figure 7 shows an example prediction for which the model was
considered trustworthy. This can be visually verified as the attribution scores are clustered
around the area of the lesion. Figure 8 shows an example prediction for which the model
was considered untrustworthy. One can visually confirm that pixel attribution scores are
scattered and less concentrated on the lesion area.
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(a) (b)

(c) (d)
Figure 7. An example of an unhealthy eye fundus image that was correctly classified by the CNN
model (a), the mask segmented by an ophthalmologist (b), a heatmap of the IG-based pixel attribution
scores (c) and the attribution scores as an overlay (d). Median pixel attribution score differences were
statistically significant between lesion and non-lesion areas.

(a) (b)

(c) (d)
Figure 8. An example of an unhealthy eye fundus image that was correctly classified by the Resnet18
model (a), the mask segmented by an ophthalmologist (b), a heatmap of the IG-based pixel attribution
scores (c) and the attribution scores as an overlay (d). Median pixel attribution score differences were
not statistically significant between lesion and non-lesion areas.

The obtained results suggest that predictions made by the most accurate deep learning
might be harder to trust by experienced physicians. These findings agree with the existing
literature, as it is known that healthcare workers often find it challenging to trust complex
machine-learning models [32].
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Interestingly, the relationship between the trust score and the number of parameters
of the trained models (a common proxy for complexity) is not perfectly inverse. Although
it is clear that the simple CNN scored much higher, the trust score for VGG16 was higher
than that of Resnet18, despite having approximately 10-times more trainable parameters.
This suggests that further research is needed regarding what exactly is it about complexity
that punishes trustworthiness of the predictions, e.g., Are residual blocks bad for model
trust? In other words, Can the key architectural decisions that lead to poor trustworthiness
be identified?

Answering the previous question can lead to developing better building blocks for
DL and machine learning in general, and this represents a needed, but challenging, change
in the way state-of-the-art models are currently evaluated. Considering metrics beyond
performance power is key to achieving mainstream adoption of predictive models in the
healthcare domain.

5. Conclusions

We evaluated three different DL architectures and observed an inverse relation be-
tween the predictive power and our trust score. These results suggest that trust should
also be considered for model selection, in addition to more traditional metrics, such as
sensitivity and specificity. This is particularly the case if we expect deep learning models to
be adopted by the medical community.

The main contributions of this work are: (i) an open dataset of annotated eye fundus
images for OT diagnosis and (ii) a domain-specific method to evaluate predictive models
with respect to trust (i.e., how likely a physician is to trust a model’s predictions) for
OT diagnosis.

Extensions to our work can include: (i) a user study with ophthalmologists could
help validate that our trust score adequately models their reactions to different model
predictions, (ii) comparing the results using alternative attribution methods and (iii) com-
paring our score with traditional ML models by using an extension of IG that supports
non-differentiable models [33].
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Appendix A. Detailed Results

Table A1. Results per pair of model and test image. Images are identified by a unique code (IID). Results include the mean
attribution score for lesion-related and non-lesion-related pixels and the p-value obtained for the Mann–Whitney test 1.

IID Vanilla CNN VGG16 Resnet18

81

Mean lesion attribution:
0.00034721767224766176
Mean non-lesion attribution:
−6.601 419 281 104 99× 10−6

Mann–Whitney p-value:
0.0

Mean lesion attribution:
0.0023451965695009515
Mean non-lesion attribution:
−1.505 774 503 219 224 6× 10−5

Mann–Whitney p-value:
2.182 831 996 769 315× 10−7

Mean lesion attribution:
−6.291 439 449 744 539× 10−5

Mean non-lesion attribution:
4.173 565 166 532 544× 10−6

Mann–Whitney p-value:
0.8461449179567923

156 misclassified

Mean lesion attribution:
7.608 095 877 901 965× 10−5

Mean non-lesion attribution:
9.139 120 141 825 367× 10−6

Mann–Whitney p-value:
0.8894574555554062

Mean lesion attribution:
1.026 627 135 195 600 7× 10−5

Mean non-lesion attribution:
1.283 862 080 623 880 5× 10−5

Mann–Whitney p-value:
0.5119256881011157

148

Mean lesion attribution:
6.443 540 099 421 086× 10−5

Mean non-lesion attribution:
−3.871 953 049 444 241× 10−6

Mann–Whitney p-value:
0.0

Mean lesion attribution:
0.0004341474669653702
Mean non-lesion attribution:
−2.815 535 276 382 608 5× 10−5

Mann–Whitney p-value:
0.12678531658770215

misclassified

144

Mean lesion attribution:
2.284 996 167 701 541 6× 10−5

Mean non-lesion attribution:
−1.224 208 807 727 668 7× 10−7

Mann–Whitney p-value:
2.178 388 365 911 942 3× 10−143

Mean lesion attribution:
9.005 965 358 771 226× 10−5

Mean non-lesion attribution:
7.268 116 949 538 503× 10−6

Mann–Whitney p-value:
0.2580941242701976

Mean lesion attribution:
2.337 102 520 230 451 4× 10−5

Mean non-lesion attribution:
1.267 864 040 454 379× 10−5

Mann–Whitney p-value:
0.9355251360530437

97

Mean lesion attribution:
6.336 514 502 731 98× 10−5

Mean non-lesion attribution:
1.029 527 369 847 149 3× 10−6

Mann–Whitney p-value:
0.0

Mean lesion attribution:
0.00031431523156589153
Mean non-lesion attribution:
−9.295 814 133 027 072× 10−7

Mann–Whitney p-value:
0.4886499718139443

Mean lesion attribution:
8.424 714 848 856 002× 10−6

Mean non-lesion attribution:
1.200 708 985 033 684 7× 10−5

Mann–Whitney p-value:
0.976338912018821

151

Mean lesion attribution:
8.273 648 382 325 341× 10−5

Mean non-lesion attribution:
−1.586 017 485 948 515 7× 10−6

Mann–Whitney p-value:
0.0

Mean lesion attribution:
0.00021355240374255574
Mean non-lesion attribution:
4.000 040 678 326 502× 10−6

Mann–Whitney p-value:
0.03181811783986231

Mean lesion attribution:
5.638 891 517 729 174× 10−5

Mean non-lesion attribution:
6.625 146 340 744 238× 10−6

Mann–Whitney p-value:
0.40842097615151357

142

Mean lesion attribution:
9.391 440 979 266 882× 10−5

Mean non-lesion attribution:
5.027 028 776 625 433 6× 10−6

Mann–Whitney p-value:
4.482 154 236 285 02× 10−230

Mean lesion attribution:
0.0008307758169506642
Mean non-lesion attribution:
1.188 879 169 016 227 2× 10−5

Mann–Whitney p-value:
0.11516303087912255

Mean lesion attribution:
0.00015584305846376865
Mean non-lesion attribution:
6.200 042 851 696 207× 10−6

Mann–Whitney p-value:
0.3019700368885526

118

Mean lesion attribution:
−2.179 597 111 096 857 7× 10−5

Mean non-lesion attribution:
1.265 590 910 444 417 7× 10−5

Mann–Whitney p-value:
1.0

Mean lesion attribution:
0.00016869457829025018
Mean non-lesion attribution:
7.862 114 094 452 912× 10−6

Mann–Whitney p-value:
0.7708368497428252

Mean lesion attribution:
9.424 270 874 506 554× 10−5

Mean non-lesion attribution:
3.199 492 210 451 337 6× 10−7

Mann–Whitney p-value:
0.6965993050535022
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Table A1. Cont.

IID Vanilla CNN VGG16 Resnet18

150

Mean lesion attribution:
−7.918 849 021 031 336× 10−5

Mean non-lesion attribution:
1.583 111 698 817 516 7× 10−5

Mann–Whitney p-value:
1.0

Mean lesion attribution:
0.00013991786062732565
Mean non-lesion attribution:
9.315 094 828 690 027× 10−6

Mann–Whitney p-value:
0.6484420024657709

Mean lesion attribution:
1.135 622 422 691 986× 10−5

Mean non-lesion attribution:
1.006 649 973 543 553 3× 10−5

Mann–Whitney p-value:
0.5955185797651998

94 misclassified

Mean lesion attribution:
0.00046278512907457894
Mean non-lesion attribution:
−6.857 434 254 485 007× 10−6

Mann–Whitney p-value:
1.687 138 254 138 508 6× 10−9

Mean lesion attribution:
2.319106013366875e-05
Mean non-lesion attribution:
1.304 558 028 864 510 6× 10−6

Mann–Whitney p-value:
0.7233509758415473

132 misclassified

Mean lesion attribution:
0.0007116612771495348
Mean non-lesion attribution:
−5.007 881 843 520 115× 10−6

Mann–Whitney p-value:
0.9661658611357002

Mean lesion attribution:
3.984 074 887 705 268× 10−6

Mean non-lesion attribution:
1.844 952 743 705 595 8× 10−7

Mann–Whitney p-value:
0.9659463877638184

146

Mean lesion attribution:
6.460267789192614e-05
Mean non-lesion attribution:
5.149 698 277 781 459 5× 10−6

Mann–Whitney p-value:
3.629 556 224 709 794× 10−15

Mean lesion attribution:
0.00033481917634950995
Mean non-lesion attribution:
−5.838 907 669 173 114× 10−6

Mann–Whitney p-value:
0.9474421613415959

Mean lesion attribution:
3.984 074 887 705 268× 10−6

Mean non-lesion attribution:
1.844 952 743 705 595 8× 10−7

Mann–Whitney p-value:
0.05547639441097111

99

Mean lesion attribution:
1.0623468091879256e-05
Mean non-lesion attribution:
−8.381 454 520 194 11× 10−7

Mann–Whitney p-value:
8.705 342 309 642 405× 10−12

Mean lesion attribution:
0.00011561437034381344
Mean non-lesion attribution:
1.122 893 524 636 988 8× 10−6

Mann–Whitney p-value:
0.9991945637023955

Mean lesion attribution:
4.387 994 697 815 6× 10−5

Mean non-lesion attribution:
5.952 850 761 770 384× 10−6

Mann–Whitney p-value:
0.8881489550295014

117

Mean lesion attribution:
−3.639 901 875 997 307 6× 10−5

Mean non-lesion attribution:
1.448 736 389 989 063 7× 10−5

Mann–Whitney p-value:
1.0

Mean lesion attribution:
0.0001403303076260771
Mean non-lesion attribution:
1.199 786 422 310 879 6× 10−5

Mann–Whitney p-value:
0.8978942267882748

Mean lesion attribution:
6.2256477107090875e-06
Mean non-lesion attribution:
1.240 475 023 789 905 8× 10−5

Mann–Whitney p-value:
0.503937509947166

111

Mean lesion attribution:
6.573 892 462 999 344× 10−10

Mean non-lesion attribution:
6.415 230 420 503 763× 10−6

Mann–Whitney p-value:
0.9986524555283746

misclassified

Mean lesion attribution:
0.00011425205913621127
Mean non-lesion attribution:
−2.209 874 594 196 942× 10−6

Mann–Whitney p-value:
0.024341820096032026

1 p-values of 0.0 are smaller than the smallest floating point number representable by Numpy.

References
1. Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258.

[CrossRef]
2. Park, Y.H.; Nam, H.W. Clinical features and treatment of ocular toxoplasmosis. Korean J. Parasitol. 2013, 51, 393–399. [CrossRef]

[PubMed]
3. Garweg, J.G.; de Groot-Mijnes, J.D.F.; Montoya, J.G. Diagnostic approach to ocular toxoplasmosis. Ocul. Immunol. Inflamm. 2011,

19, 255–261. [CrossRef] [PubMed]
4. Tong, Y.; Lu, W.; Yu, Y.; Shen, Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020, 7, 22.

[CrossRef] [PubMed]

http://doi.org/10.1016/S0020-7519(00)00124-7
http://dx.doi.org/10.3347/kjp.2013.51.4.393
http://www.ncbi.nlm.nih.gov/pubmed/24039281
http://dx.doi.org/10.3109/09273948.2011.595872
http://www.ncbi.nlm.nih.gov/pubmed/21770803
http://dx.doi.org/10.1186/s40662-020-00183-6
http://www.ncbi.nlm.nih.gov/pubmed/32322599


Diagnostics 2021, 11, 1951 14 of 15

5. Mahony, N.O.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Velasco-Hernandez, G.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep
Learning vs. Traditional Computer Vision. In Proceedings of the Science and Information Conference, Las Vegas, NV, USA, 25–26
April 2019.

6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
7. Pead, E.; Megaw, R.; Cameron, J.; Fleming, A.; Dhillon, B.; Trucco, E.; MacGillivray, T. Automated detection of age-related

macular degeneration in color fundus photography: A systematic review. Surv. Ophthalmol. 2019, 64, 498–511. [CrossRef]
8. Alyoubi, W.L.; Shalash, W.M.; Abulkhair, M.F. Diabetic retinopathy detection through deep learning techniques: A review. Inform.

Med. Unlocked 2020, 20, 100377. [CrossRef]
9. Tsiknakis, N.; Theodoropoulos, D.; Manikis, G.; Ktistakis, E.; Boutsora, O.; Berto, A.; Scarpa, F.; Scarpa, A.; Fotiadis, D.I.; Marias,

K. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Comput. Biol. Med.
2021, 135, 104599. [CrossRef] [PubMed]

10. Yang, Y.; Li, T.; Li, W.; Zhang, W. Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolu-
tional Neural Networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 533–540.

11. Hasanreisoglu, M.; Halim, M.S.; Chakravarthy, A.D.; Ormaechea, M.S.; Uludag, G.; Hassan, M.; Ozdemir, H.B.; Ozdal, P.C.;
Colombero, D.; Rudzinski, M.N.; et al. Ocular Toxoplasmosis Lesion Detection on Fundus Photograph using a Deep Learning
Model. Invest. Ophthalmol. Vis. Sci. 2020, 61, 1627.

12. Parra, R.; Ojeda, V.; Vázquez Noguera, J.L.; García Torres, M.; Mello Román, J.C.; Villalba, C.; Facon, J.; Divina, F.; Cardozo, O.;
Castillo, V.E.; et al. Automatic Diagnosis of Ocular Toxoplasmosis from Fundus Images with Residual Neural Networks. Stud.
Health Technol. Inform. 2021, 281, 173–177.

13. Lockey, S.; Gillespie, N.; Holm, D.; Someh, I.A. A Review of Trust in Artificial Intelligence: Challenges, Vulnerabilities and Future
Directions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2021.

14. Asan, O.; Bayrak, A.E.; Choudhury, A. Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. J. Med. Internet
Res. 2020, 22, e15154. [CrossRef]

15. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016,
arXiv:1602.04938.
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