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Abstract: Manual identification of brain tumors is an error-prone and tedious process for radiologists;
therefore, it is crucial to adopt an automated system. The binary classification process, such as
malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2,
T1CE, and Flair) is a challenging task for radiologists. Here, we present an automated multimodal
classification method using deep learning for brain tumor type classification. The proposed method
consists of five core steps. In the first step, the linear contrast stretching is employed using edge-based
histogram equalization and discrete cosine transform (DCT). In the second step, deep learning feature
extraction is performed. By utilizing transfer learning, two pre-trained convolutional neural network
(CNN) models, namely VGG16 and VGG19, were used for feature extraction. In the third step,
a correntropy-based joint learning approach was implemented along with the extreme learning
machine (ELM) for the selection of best features. In the fourth step, the partial least square (PLS)-based
robust covariant features were fused in one matrix. The combined matrix was fed to ELM for final
classification. The proposed method was validated on the BraTS datasets and an accuracy of 97.8%,
96.9%, 92.5% for BraTs2015, BraTs2017, and BraTs2018, respectively, was achieved.

Keywords: brain tumor; healthcare; linear contrast; transfer learning; deep learning features; feature
selection; feature fusion; PLS; ELM

1. Introduction

A brain tumor is an abnormal growth of brain cells in an uncontrollable way [1,2]. Brain tumors
can be cancerous or noncancerous. The gravity inside the skull can accelerate the growth of a brain
tumor. In the worst case, it can cause brain damage, which can be life-threatening. According to an
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estimate, 18,020 adults will die from the primary cancerous brain and central nervous system (CNS)
tumors in 2020 [3]. Various manifestations and classes of brain tumors have different appearances
on magnetic resonance imaging (MRI) data [4,5]. Therefore, MRI scans are typically used to detect
and classify brain tumors. MRI assists doctors in evaluating tumors in order to plan for further
treatment. This treatment depends on various factors like shape, size, type, grade, and location of
cancer. Depending on the patient’s condition, these factors can have enormous variation. Hence,
accurate recognition and classification of brain tumors are critical for proper treatment [6].

Manual identification of brain tumors and tracking their changes over time are tedious and error-prone
activities [7]; hence, automated systems are required to replace the conventional manual methods. In the
last decade, the results of deep neural networks (DNNs) exhibited excellent performance, which is
also evident from the recent multimodal BraTS challenges [8]. Another well-known technique of deep
learning is convolutional neural networks (CNN), which shows excellent performance both for 2D
and 3D medical images [9,10]. Similarly, the transfer learning technique is typically utilized in case of
limited availability of data and computational resources to save time [11]. This technique uses the
knowledge acquired for one task to solve related ones [12]. Feature fusion is the detection of co-related
features in order to fuse them to identify and compact a set of salient features to improve the detection
accuracy. Furthermore, to reduce the time and space complexity, intelligent feature selection is typically
required [13,14].

1.1. Significant Challenges and Motivation

In the multimodal brain tumor classification task, several challenges exist, which reduce automated
system performance. In the classification task, two steps are usually performed—features extraction
and classifiers-based classification. The features extraction is an essential step in pattern recognition,
which predicts an object based on its crucial characteristics like shape, color, names, and a few more.
However, the performance of classifiers depends on the strength of the extracted features. The recent
success of deep learning in the medical domain reflects the interest of researchers of computer vision.
However, all extracted deep learning features are normally not useful for correct classification and they
might consume much time during the execution process. Moreover, the similarity among some tumors
like T2 and Flair tumors is also very high, as demonstrated in Figure 1, which makes this classification
process even more complicated. Further, the T1 tumors and T1 contrast-enhanced tumors have shallow
contrast, which is another challenge for correct feature extraction.
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In this work, we propose a deep learning scheme for multimodal brain tumors classification.
To handle the problem of shallow contrast, we implemented a linear contrast enhancement technique,
which was further refined through histogram equalization. Transfer learning was used for feature
extraction from two different CNN models and the fusion was performed. The motivation behind the
fusion of two CNN models was to get a new feature vector with more information. Although this
process improved accuracy, the computational time was affected. To further enhance efficiency and
computational time, we proposed a feature selection technique. The robust features obtained using
this technique were later classified through the Extreme Learning Machine (ELM).

1.2. Major Contributions

• We divided the image into two clusters based on a K-Means clustering algorithm and applied
edge-based histogram equalization on each image. Further, the discrete cosine transform (DCT)
was utilized for local information enhancement.

• Deep learning features were extracted from two pre-trained CNN models through transfer learning
(TL). The last FC layer was used in both models for feature extraction.

• The Partial Least Square (PLS) based features of both CNN models were fused in one matrix.
• The robust features were selected using correntropy-based joint group learning. The robust

features were finally classified using the ELM classifier.
• Three datasets such as BRATS 2015, BRATS 2017, and BRATS 2018 were used for the experiments

and the statistical analysis to examine the scalability of the proposed classification scheme.

2. Related Work

Classification of multimodal brain tumors (i.e., T1, T2, T1CE, and Flair) required the determination
of altered features, such as shape and texture in the MRI Image [16]. The popular method of diagnosis of
these tumors—which spread widely among computer vision researchers—is a computer-aided diagnosis
(CAD) system [1,17]. In a CAD system, two main stages are involved—first, tumor preprocessing and
detection, and second, classifying the tumor into a relevant category. In this work, we focused on the
classification task of multimodal brain tumors. For classification, we used the BRATS series based on few
top submissions [18–21]. Amin et al. [22] introduced a CNN framework for brain tumor classification.
In the presented method, the DWT fusion process was performed to improve the original MRI scan
and then a partial diffusion filter was employed for noise removal. Later on, they used a global
thresholding algorithm for tumor extraction that passed to the CNN model for classification of tumors
into the related categories. Five BRATS datasets, namely, BRATS2012, 2013, 2015, 2018, and BRATS2013
were used and showed improved performance on the fusion approach. Sajjad et al. [23] presented a
CNN-based multimodal tumor classification system. They initially segmented the tumor regions in
the MRI scans using CNN. Then, they performed an extensive data augmentation to train a good CNN
model. Later on, they fine-tuned the pre-trained CNN model using augmented brain data. The last
layer was used as a classification of tumors in the presented method and it showed that augmented
data gave better results on the selected datasets.

Sharif et al. [24] presented an active deep learning system for the segmentation and classification of
brain tumors. They initially performed contrast enhancement, and the resultant image was passed to the
Saliency-based Deep Learning (SbDL) method, for the construction of a saliency map. The thresholding
was applied in the next step, and the resultant images were used to fine-tune the pre-trained CNN
model Inception V3. Further, they also extracted dominant rotated local binary pattern (DRLBP)
features, fused with CNN features. Later on, a PSO-based optimization was performed and the
optimal vector was passed to the Softmax classifier for final classification. They used BRATS 2015, 2017,
and 2018 datasets for evaluation, and achieved improved classification accuracy. In [25], the authors
presented a CNN-based scheme for the classification of brain tumors. They considered the problem
of structural variability of the tumor around the adjacent regions. For this purpose, they designed
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small kernels to keep the weights of each neuron very small. Taking advantage of these weights, they
achieved an accuracy of 97.5%.

Vijh et al. [26] presented an adaptive particle swarm optimization (PSO) with the Otsu method to find
the optimal threshold value. Later, they applied anisotropic diffusion (AD) filtering on brain MRI images
to cancel noise and improve image quality. Features were extracted from enhanced images that were used
both for training the CNN and performing the classification. Other methods were also introduced in the
literature for brain tumor classification, such as a generative adversarial network (GAN)-based
approach [19], artificial neural network (ANN)-based learning [27], ELM-based learning [28],
residual network [29], standard-features-based classification [30,31], adaptive independent subspace
analysis [32], transfer learning-based tumors classification [33], and Excitation DNN [34]. In addition,
Toğaçar et al. [35] proposed a hybrid method based on CNN and feature selection, for the classification
of brain tumors. They achieved an improved accuracy of above 90%. In the above techniques, they
did not provide the computational time. However, the computational time was most needed for this
current era for each automated system. The more recent, Muhammad et al. [36] presented a detailed
review on multi-grade brain tumor classification. They presented a detailed description of brain
tumor classification (BTC) steps like preprocessing of tumor, deep learning features, and classification.
They discussed detailed limitations and achievements of existing deep learning techniques for BTC.
In addition, they also presented the importance of transfer learning for deep learning feature extraction.

3. Proposed Methodology

In this section, the proposed methodology for multimodal brain tumor classification using deep
learning is presented. The proposed method consists of five core steps—linear contrast stretching, deep
learning features extraction using transfer learning, a correntropy-based joint learning approach along
with ELM for best features selection, the PLS-based fusion of the selected features, and finally the
ELM-based classification. The testing of the proposed method was performed on the BRATS datasets.
The performance of the approach was checked using standard performance measures like accuracy and
false negative rate (FNR). Furthermore, the performance of the proposed work was also reported by
measuring the execution time. A detailed flow of the proposed methodology is illustrated in Figure 2.
In the following, the technical description of each step is provided.
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3.1. Linear Contrast Enhancement

Improving the graphic features of an image is the primary objective of contrast enhancement. It is
a preprocessing step that is used in many applications like biomedical imaging, agriculture infections
diagnosis, and some others [37–42]. The impact of low contrast images is not useful for feature
extraction, as visually, tumors are not visible and error prone. Therefore, in this step, we improved the
linear contrast of an image, which showed the main impact on the tumor region. For this purpose,
we implemented a hybrid technique. In this technique, initially, we split the image into two parts
using the K-Means clustering algorithm. Then, edge-based texture histogram equalization (HE) was
applied. Later on, DCT was applied to combine both clusters in one image. The resulting image had
enhanced contrast as compared to the original one. The mathematical formulation of this method is
given as follows:

Consider, we have a dataset ∆ = {τ1, τ2, τ3, . . . , τN}, τN ∈ Rd. Consider τ(x, y) is an MRI image
of dimension N ×M where N = 256 and M = 256, rows, and columns, respectively. Let τi denotes the
average of clusters Ki then using this, the criterion function is defined as follows:

S =
∑K

i=1

∑
τ∈Ki
|τ− τi|

2, (1)

where S denotes the sum of square error of all pixels, τi means input images, and K implies the number
of clusters that are initialized in this work. In K-Means, the Euclidean distance was used to as criterion
distance, which was defined as follows:

D(τi, yi) =

√∑n

i=1
(τi − yi)

2, (2)

where τi and yi are two vectors. This formulation obtained two clusters. Using resultant images
defined by τ1(x, y), we employed edge-based texture HE, where τ1(x, y) ∈ S. For the resultant image
τ1(x, y), the gradient was computed as follows:

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2, (3)

where Gx and Gy denotes x derivatives and y derivatives of τ1(x, y), respectively. Later, the edge map
was constructed using a threshold function, as follows:

EMp(x, y) =
{

1 G(x, y) < T
0 G(x, y) ≥ T

, (4)

From this equation, we considered the pixels with values higher than the threshold (T = 0.55).
These pixels were used for texture histogram computation (HC). Later on, α and β were calculated,
where α denotes minimum and β denotes maximum pixel value. The grey levels whose value lied
between α and β, were represented as HC. Finally, the cumulative distribution function (CDF) and
the transfer functions were applied to obtain an enhanced image. This was defined by Equations (5)
and (6), as follows:

CDF(i) =
∑n

i=0
Th(i), (5)

Fτ = τ0 + (L− 1− τ0)CDF, (6)

The resultant image τ2(x, y) ∈ CDF(i)&Fτ was passed to the DCT method to refine the local
contrast of the tumor region. Mathematically, this was computed as follows:

τxy =


1
√

M
x = 0, 0 ≤ y ≤M− 1√

2
M Cosπ(2y+1)x

2M 1 ≤ x ≤M− 1
, (7)
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Hence, using τxy, the DCT method was applied to an image τ2(x, y), as follows:

τ3(x, y) = τxy × τ2 × τxy, (8)

As τxy is a real orthogonal matrix and its inverse could be computed as:

[τ3(x, y)]−1 = τxy × τ2 ×
[
τxy

]t
= 1, (9)

where t denotes the transpose of an image. Hence, the representation of the final DCT enhanced image
τ3(x, y) is depicted in Figure 3. In this figure, the sample enhancement results are presented for each
step (top to bottom).

Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 20 

 

where 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦 denotes 𝑥𝑥 derivatives and 𝑦𝑦 derivatives of 𝜏𝜏1(𝑥𝑥, 𝑦𝑦), respectively. Later, the edge 
map was constructed using a threshold function, as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥, 𝑦𝑦) = �1 𝐺𝐺(𝑥𝑥, 𝑦𝑦) < 𝑇𝑇
0 𝐺𝐺(𝑥𝑥, 𝑦𝑦) ≥ 𝑇𝑇, (4) 

From this equation, we considered the pixels with values higher than the threshold (𝑇𝑇 = 0.55). 
These pixels were used for texture histogram computation (HC). Later on, 𝛼𝛼 and 𝛽𝛽 were calculated, 
where 𝛼𝛼 denotes minimum and 𝛽𝛽 denotes maximum pixel value. The grey levels whose value lied 
between 𝛼𝛼 and 𝛽𝛽, were represented as HC. Finally, the cumulative distribution function (CDF) and 
the transfer functions were applied to obtain an enhanced image. This was defined by Equations (5) 
and (6), as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) = ∑ 𝑇𝑇ℎ(𝑖𝑖)𝑛𝑛
𝑖𝑖=0 , (5) 

𝐹𝐹𝜏𝜏 = 𝜏𝜏0 + (𝐿𝐿 − 1 − 𝜏𝜏0)𝐶𝐶𝐶𝐶𝐶𝐶, (6) 

The resultant image 𝜏𝜏2(𝑥𝑥, 𝑦𝑦) ∈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖)&𝐹𝐹𝜏𝜏  was passed to the DCT method to refine the local 
contrast of the tumor region. Mathematically, this was computed as follows: 

𝜏𝜏𝑥𝑥𝑥𝑥 = �

1
√𝑀𝑀

   𝑥𝑥 = 0, 0 ≤ 𝑦𝑦 ≤ 𝑀𝑀 − 1

�2
𝑀𝑀

  𝐶𝐶𝐶𝐶𝐶𝐶 𝜋𝜋(2𝑦𝑦+1)𝑥𝑥
2𝑀𝑀

 1 ≤ 𝑥𝑥 ≤ 𝑀𝑀 − 1
, (7) 

Hence, using 𝜏𝜏𝑥𝑥𝑥𝑥, the DCT method was applied to an image 𝜏𝜏2(𝑥𝑥, 𝑦𝑦), as follows: 

𝜏𝜏3(𝑥𝑥, 𝑦𝑦) = 𝜏𝜏𝑥𝑥𝑥𝑥 × 𝜏𝜏2 × 𝜏𝜏𝑥𝑥𝑥𝑥, (8) 

As 𝜏𝜏𝑥𝑥𝑥𝑥 is a real orthogonal matrix and its inverse could be computed as: 

[𝜏𝜏3(𝑥𝑥, 𝑦𝑦)]−1 = 𝜏𝜏𝑥𝑥𝑥𝑥 × 𝜏𝜏2 × [𝜏𝜏𝑥𝑥𝑥𝑥]𝑡𝑡 = 1, (9) 

where 𝑡𝑡 denotes the transpose of an image. Hence, the representation of the final DCT enhanced 
image 𝜏𝜏3(𝑥𝑥, 𝑦𝑦) is depicted in Figure 3. In this figure, the sample enhancement results are presented 
for each step (top to bottom). 

 
Figure 3. Results of the proposed hybrid local contrast enhancement using the MRI images of the 
Multimodal BRATS 2018 dataset. The results are shown from top to bottom. 

  

Figure 3. Results of the proposed hybrid local contrast enhancement using the MRI images of the
Multimodal BRATS 2018 dataset. The results are shown from top to bottom.

3.2. Deep Learning Features

The deep learning features were extracted using two pre-trained deep CNN models—VGG16 and
VGG19. The visual representation of both models is shown in Figures 4 and 5, respectively.

The VGG16 model consisted of 12 convolution layers, 15 ReLu activation layers, five max-pooling
layers, three fully connected (FC) layers, and one Softmax layer, as a classification layer. The input
layer size was 224× 224× 3. The number of filters in the first convolution layer was 64, and the filter
size was 3 × 3 × 3, along with a stride of 1 × 1. In the next convolution layer, the number of filters
was not updated but the filter size was updated to 3 × 3 × 64. Further, the dimension of learnable
weights was 3 × 3 × 64 × 64, which were 3 × 3 × 3 × 64 in the first convolution layer. The learnable
weights of each convolution layer were updated according to the number of filters and the filter size.
In the first max-pooling layer, a 2× 2 filter size was opted along with the same stride 2× 2. After the
convolution layers, three FC layers were added. The learnable weights dimension of the first FC layer
was 4096× 25088. After a 50% dropout, the weights matrix size of the second FC layer was 4096× 4096.
Another dropout layer was added and a ratio of 50% was set. The resultant weight matrix used as an
input of the third layer (denoted as FC8) returned a weight matrix of dimension 1000× 4096. Finally,
the Softmax function and the classification layers were added for the final classification.
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VGG19 model consists of a series of 16 convolution layers, 19 ReLu activation layers, four
max-pooling layers, three FC layers, and one Softmax layer as a classification layer. The input layer
size was 224× 224× 3. The number of filters in the first convolution layer was 64, and the filter size
was 3× 3× 3. This filter size was updated according to the number of filters. In the first max-pooling
layer, a 2× 2 filter size was opted along with the same stride. After the convolution layers, three FC
layers were added. The weights dimension of the first FC layer was 4096× 25088. After a 50% dropout,
the weights matrix size of the second FC layer was 4096× 4096. The resultant weight matrix used as an
input of the third layer (denoted as FC8) returned a weight matrix of dimension 1000× 4096.
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3.3. Network Modification for Transfer Learning

Using domain adaptation transfer learning (TL) [43], we retrained both models (VGG16 and
VGG19) on the BRATS datasets, without changes in any parameters. In the tuning process, first,
we loaded the brain datasets and set the training/testing ratio to 60:40. Further, the labels of each image
were also defined. Then, we set input and output layers for training. This process was conducted for
both deep learning models. In this paper, for the VGG16 model, the input convolution layer (conv_1)
was employed, where the number of filters was 64, and the filter size was 3× 3× 64. The selected output
layer was FC8. Then, we performed activation on this layer and trained a new modified CNN network
that included only the brain image features. The last two layers, namely, the classification and Softmax
layers were removed. In the output, the resultant learnable weights vector length was 4× 4096, and the
feature-length was 1× 1000. Hence, for n images, the feature vector length was N× 1000, denoted by ηi.
Similarly, for the VGG19 model, the last two layers were removed. The convolution layer (conv_1) was
employed as an input with 64 filters, and the filter size was 3× 3× 64. The selected output layer was
FC8, which we chose for the activation function. The activation function was performed on this layer
and trained a new modified CNN network that included only the brain image features. The dimension
of the learnable weight matrix was 4× 4096, and the length of the extracted feature vector was 1× 1000.
For n brain images, the feature vector length should be N × 1000 and should be denoted by η j.

3.4. Feature Selection

The main motive of the feature selection step was to remove the redundancy among features and
select only those features that were robust for the correct classification. The second motive of this step
was to minimize the number of predictors, which helped in the fast execution of the testing process.
To inspire with these two essential functionalities, we implemented a technique named correntropy via
mutual learning and ELM (CML-ELM). The working of this method is presented in Algorithm 1:

Algorithm 1 Proposed feature selection method using CML-ELM.

Input: ηi, ηi ∈
{
η1, η2, η3, . . . , ηi

}
Output: Sw(i), Sw(i) ∈

{
Sw(1), Sw(2), . . . , Sw(i)

}
Start
Step 1: Parameters Initialization

Sw(1) = ηi, i = 0, 1, 2, 3, . . . n
α−1 = 0
α0 = 1
LR = LR0

Step 2: For i = 1 to K
do

bi =
αi−2−1
αi−1

Ai = Sw(i) + bi(Sw(i) − Sw(i− 1))
Step 3: Update Sw(i + 1)
Step 4: Find the minimum value of LR among (LR(i−1),
2LR(i−1), 3LR(i−1), . . . )
:- f (Sw(i)) ≤ g(LRi, Ui)Sw(i + 1)
Step 5: Passed computed LR values in ELM classifier
Step 6: Find MSER for ELM classifier
Step 7: If MSER≥ 0.1
Update LRi+1

Step 8: αi+1 =
1+

√
1+42

i

2
End For
End
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In the above algorithm, the notation ηi denotes the original feature vector of the VGG16 deep
learning model, Sw(i) means selected feature vector, LR denotes regularization parameter, bi is a
selected parameter, Ai is an affine combination of Sw(i) and Sw(i− 1), MSER denotes mean squared
error, computed by Equation (10), and the updating of features Sw(i + 1) are done by Equation (11).

MSER =
1
n

∑K

i=1

(
LRi − L̂Ri

)2
, (10)

Sw(i + 1) = argmin Sw
1
2
||Sw −V ||2F

1
LRi

fns(Sw), (11)

Sw(i + 1) = argmin
Sw(1),...Sw(D)

1
2

∑D

j=1
||Sw( j) −V j ||

2
2 +

p0

LRi
fns ||Sw( j) ||2, (12)

V = Ai
−

1
LRi f ′(Ai)

, (13)

where the LRi denotes the observed features, and ˆLRi denotes the predicted features. Each time,
the MSER was calculated, and if its value was greater than or equal to 0.1, then the features were
updated, iterating this process for 1000 times. If the target was not achieved, then the last iteration
features were selected for the classification. Finally, a robust vector was obtained, where the dimension
of this vector was X1 ×K and was denoted by ηSw(1), where the K stood for the number of selected
features and X1 denoted the total number of images. This feature selection process was also performed
for the VGG19 feature vector η j and obtained a robust feature vector of dimension X2 ×K and denoted
by ηSw(2), where X2 was the number of observations, and K represented the number of selected features.

3.5. Feature Fusion and Classification

Finally, the selected feature vectors were fused in one matrix using the PLS-based fusion approach.
Consider ηSw(1) and ηSw(2) are two selected feature vectors of dimension X1 ×K and X2 ×K. Suppose
ηSw( j) represents a fused vector of dimension X3 ×K. Further, we assumed that the central variables
→

U and
→

V were zero mean, where
→

U ∈ ηSw(1) and
→

V ∈ ηSw(2). Let δuv =
→

U
→

V and δvu = δT
uv

((
1
n − 1

)
δuv

)
represent between set covariance among vectors

→

U and
→

V. The PLS held correlated features for fusion.
Further, the fusion process through PLS also minimized the number of predictors. Mathematically,

the decomposition method among
→

U and
→

V was defined as follows:

→

U =
∑d

i=
ηi ηSw(1i)T = E, (14)

→

V =
∑d

i=
ηi ηSw(2i)T = F, (15)

When using PLS, a pair of directions among ui and vi was found, as follows:

{ui; vi} = arg max
uTu=vTv=1

Cov
(
→

U
T

u,
→

V
T

v
)
, (16)

{ui; vi} = argmax
uTu=vTv=1

uTδuv v, f or i = 1, 2, 3, . . . d a = 1, (17)

These pairs were combined in one matrix and a resultant vector was obtained with X3 × K
dimension. The fused vector was represented by ηSw( j). Later on, this vector was passed to ELM [44]
for the final classification. The formulation of ELM was given as follows. For L hidden layers node,
the activation function g(x) was defined as follows:
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∑L

i=1
βigi(ui) =

∑L

j=1
βig

(
ui.u j + Bi

)
, (18)

βT = O, (19)

where L denotes a hidden layer, which was initialized as one in this work, βi denotes the output
weight vector, ui is the input weight vector coming to the hidden layer, Bi denotes the offset value,
H is the output hidden layer node, ui.u j means an inner product of ui, and O is the expected output.
Equation (19) was solved as:

β̂ELM = argmin
β
||βTH −O||, (20)

To further improve the stability of ELM, we defined a minimization function as:

min
w

1
2
||β||+

1
2

c
∑N

i=1
||εi ||

2 s.t. βTh(ui) = ti − εi, (21)

where εi denotes training error, ti indicates corresponding labels to the sample ui, and c denotes the
penalty parameter. The labeled results of the proposed architecture are given in Figure 6.
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3.6. Experimental Results and Analysis

We present the classification results for the proposed ELM classifier using three datasets, namely,
BraTS 2015, BraTS 2017, and BraTS 2018. For all datasets, a 60–40 split ratio was used along with
10-fold cross-validation. The results are provided for two different pipeline procedures, namely;
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(i) feature extraction from FC layer seven and a performed feature selection approach that followed
the feature fusion and classification and (ii) which followed the proposed architecture, as given in
Figure 2. For the sake of comparison, we also provided the results for four well-known classifiers, like
Naïve Bayes, Multiclass Support Vector Machine (MSVM), Softmax, and Ensemble Tree, as baselines.
The performance of all classifiers was validated by the following measures, namely accuracy and FNR
measures. Furthermore, the clock time taken by each classifier was also reported to give the reader an
idea about the classification time during the testing process. All simulations of the proposed technique
were conducted on MATLAB 2019b (MathWorks, Natick, MA, USA). The personal Desktop Computer
with 16 GB RAM and 128 GB SSD was used for these experiments. A graphics processing unit (GPU)
was also utilized for feature extraction and classification, which significantly helped in improving the
classification time. The execution time was also noted during the testing process; however, it was not
consistent and was only based on the execution platform.

3.7. Results for the BraTS 2015 Dataset

Table 1 presents the classification results for the BraTS 2015 dataset. The results were provided for
the proposed classifier, as well as the existing well-known classifiers, such as Naïve Bayes, MSVM,
Softmax, and Ensemble Tree. These results were provided for two experimental pipeline procedures,
as mentioned above. Apart from the validation measures in terms of accuracy and FNR, the results
were also provided for the classification time in seconds. The entries in the bold represent the best
results. It can be seen from Table 1 that the minimum accuracy achieved was 91.48% for Softmax.
The maximum accuracy of 98.16% (FNR = 1.74%) was achieved by the ELM classifier, which used the
proposed method.

Table 1. Classification results for the BraTS 2015 dataset.

Classifier
Feature Selection

Technique
Validation Measures

Accuracy (%) FNR (%) Testing Time (s)

Naïve Bayes Pro-FC7 93.29 6.71 117.68
Proposed 94.19 5.81 104.02

MSVM
Pro-FC7 92.59 7.41 136.31

Proposed 94.66 5.34 101.66

Softmax
Pro-FC7 91.48 8.52 96.69

Proposed 93.98 6.02 81.02

Ensemble Tree
Pro-FC7 92.43 7.57 137.60

Proposed 95.67 4.33 104.59

ELM
Pro-FC7 96.02 3.98 99.42

Proposed 98.16 1.74 87.41

Pro-FC7 defines feature extraction from the FC7 layer and performed feature selection, as well as fusion, and ‘Proposed’
denotes the proposed classifier architecture, as given in Figure 2. The best values are shown in bold.

The proposed selection scheme also reduced the classification time during the testing process.
In Table 1, time is given for all classifiers, which clearly shows that the time for the proposed method was
lesser than that compared to Pro-FC7. The classification time for Softmax was minimum (81.02 s), using
the proposed method. Though the classification time for the proposed classifier was not minimum
(87.41 s), it was still quite close to Softmax and considerably lower, as compared to the rest of classifiers.

The results of the proposed method on the ELM classifier were also verified by the confusion
matrix values presented in Table 2. The diagonal values showed the correct classification rate of each
tumor class. The maximum achieved accuracy of Pro-FC7 was 96.02% for ELM (Table 1), which could
also be verified by the confusion matrix in Table 3.
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Table 2. Confusion matrix of the proposed method for the BraTS 2017 dataset (Proposed).

Class T1 T1CE T2 Flair
T1 98.42% <1% 0% <1%

T1CE 1% 96.00% 2% 1%
T2 0% 0% 99.46% <1%

Flair <1% <1% <1% 98.80%
Grey background shows accuracy rate.

Table 3. Confusion matrix of ELM using Pro-FC7 approach for the BraTS 2017 dataset.

Class T1 T1CE T2 Flair
T1 97.16% <1% 2% 0%

T1CE <1% 95.24% 3% 1%
T2 <1% 2% 97.60% 0%

Flair 0% 2% 3% 94.00%
Grey background shows accuracy rate.

3.8. Results for the BraTS 2017 Dataset

Table 4 presents the classification results for the BraTS 2017 dataset. Results are provided for
the proposed method along with several other well-known classifiers, such as Naïve Bayes, MSVM,
Softmax, and Ensemble Tree. These results were provided for two experimental pipeline procedures,
as mentioned above. Apart from the validation measures in terms of accuracy and FNR, results
were also provided for the classification time in seconds. It can be clearly seen from Table 4 that the
ELM classifier, which used the proposed method, had an accuracy of 97.26% and an FNR of 2.74%.
The minimum met accuracy was 90.09% for Softmax.

Table 4. Classification results for the BraTS 2017 dataset.

Classifier
Feature Selection

Technique
Validation Measure

Accuracy (%) FNR (%) Testing Time (s)

Naïve Bayes Pro-FC7 91.59 8.41 197.46
Proposed 93.66 6.34 104.59

MSVM
Pro-FC7 90.09 9.91 211.62

Proposed 94.58 5.42 171.42

Softmax
Pro-FC7 91.67 8.33 111.44

Proposed 93.98 6.02 91.25

Ensemble Tree
Pro-FC7 93.69 6.31 147.38

Proposed 95.42 4.58 101.29

ELM
Pro-FC7 95.82 4.18 107.59

Proposed 97.26 2.74 89.64

The best values are shown in bold.

The proposed selection scheme also reduced the classification time during the testing process,
as was evident from the results shown in the last column in Table 4. The classification time for ELM
was minimum (89.64 sec) using the proposed method, which clearly showed the improved efficiency
of the ELM classifier.

The results of the proposed method on the ELM classifier could also be verified by the confusion
matrix in Table 5. The diagonal values showed the correct classification rate of each tumor class, which
were 96.24%, 98.66%, 97.20%, and 97% for the T1, T1CE, T2, and Flair tumors. The maximum achieved
accuracy of Pro-FC7 was 95.82% for ELM, which could be further verified by the results in Table 6.
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Table 5. Confusion matrix of the proposed method for the BraTS 2017 dataset.

Class T1 T1CE T2 Flair
T1 96.24% 2% 1% <1%

T1CE <1% 98.66% 0% 1%
T2 2% 0% 97.20 <1%

Flair 1% 0% 2% 97.00%
Grey background shows accuracy rate.

Table 6. Confusion matrix of ELM using the Pro-FC7 approach for the BraTS 2017 dataset.

Class T1 T1 CE T2 Flair
T1 94.20% 4% 1% <1%

T1 CE 4% 94.84% 3% 2%
T2 0% 3% 96.68% <1%

Flair <1% 1% 2% 96.02%
Grey background shows accuracy rate.

3.9. Results of the BraTS 2018 Dataset

Table 7 presents the classification results for the BraTS 2018 dataset. Results were provided for the
proposed method, as well as for other well-known classifiers, such as Naïve Bayes, MSVM, Softmax,
and Ensemble Tree. These results were provided for two experimental pipeline procedures, as discussed
earlier in Section 3. It can be seen from this table that the maximum achieved accuracy was 93.40%
for the ELM classifier, using the proposed method. The noted FNR rate was 6.60%. The minimum
achieved accuracy was 89.49%, using the proposed method for the Naïve Bayes classifier.

Table 7. Classification results for the BraTS 2018 Dataset.

Classifier
Feature Selection

Technique
Validation Measure

Accuracy FNR Testing Time (s)

Naïve Bayes Pro-FC7 87.63 12.37 204.31
Proposed 89.49 10.51 117.62

MSVM
Pro-FC7 88.19 11.81 207.56

Proposed 91.34 8.66 167.49

Softmax
Pro-FC7 90.26 9.74 131.31

Proposed 92.42 7.58 91.63

Ensemble Tree
Pro-FC7 89.16 10.84 151.34

Proposed 91.79 8.21 106.12

ELM
Pro-FC7 91.69 8.31 97.04

Proposed 93.40 6.60 63.83

The best values are shown in bold.

The classification accuracy was also computed for Pro-FC7 to analyze the proposed results.
For Pro-FC7, the maximum achieved accuracy was 91.69% for the ELM classifier. The accuracy of ELM
using the proposed method and Pro-FC7 was further verified through Tables 8 and 9. In both these
tables, the diagonal values represent the correct predicted rate of each tumor class, such as T1, T2,
T1CE, and Flair.

Time was measured for each classifier during the testing process and presented in Table 7. We used
tic-toc commands to compute the testing computational time of proposed method. In this table, it was
observed that the best execution time was (63.83 s) for the ELM classifier, using the proposed method.
However, this time was based on the platform that was used like GPU, system RAM, etc. Based on the
presented results of accuracy and the testing execution time, the effectiveness of the proposed method
was apparent for the accurate and efficient brain tumor type classification.
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Table 8. Confusion matrix of the proposed method for the BraTS 2017 dataset.

Class T1 T1CE T2 Flair
T1 89.40% 7% <1% 3%

T1CE 3% 94.60% <1% 2%
T2 2% 4% 93.20% <1%

Flair 1% 0% 3% 96.00%
Grey background shows accuracy rate.

Table 9. Confusion matrix of ELM using the Pro-FC7 approach for the BraTS 2017 dataset.

Class T1 T1CE T2 Flair
T1 88.18% 6% 3% <3%

T1CE <1% 92.16% 6% 1%
T2 1% 7% 91.62% <1%

Flair 2% <1% 5% 92.14%

Grey background shows accuracy rate.

3.10. Results of the Contrast Enhancement

Figure 7 shows the importance of the contrast enhancement step. In this figure, it can be seen that,
if the contrast enhancement step is not employed, the results show a decrease of almost 7% of accuracy
for all BraTS datasets.Diagnostics 2020, 10, x FOR PEER REVIEW 15 of 20 
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3.11. Statistical Analysis of Results

To examine the stability of the proposed method results, a detailed statistical analysis was
conducted in terms of variance, standard deviation, and standard error mean (SEM). The noted values
were obtained after 1000 iterations. The detailed analysis of the proposed method for the BraTs2015
dataset is given in Table 10. In this table, the accuracy of ELM had low variability, and SEM was 0.1862,
which was better than that compared to other methods. Table 11 shows the detailed analysis of the
proposed method using the BraTs2017 dataset. The accuracy of ELM was better than that compared to
other listed classifiers (SEM is 0.0754). Table 12 illustrates the analysis results for the BraTs2018 dataset.
Here, the SEM for the proposed method was 0.2875. As compared to other classifiers, it was better,
and the results were stable after the selected iterations. Overall, the results of the proposed method
were more stable for all listed classifiers. Moreover, we also plotted the confidence interval of ELM at
different confidence levels (CL), such as 90%, 95%, 99%, etc., as shown in Figures 8–10. As shown in
Figure 8, at 95% CL, the margin of error was 97.763 ± 0.365 (±0.37%). Similarly, in Figures 9 and 10,
the margin of error at 95% CL was 97.1 ± 0.148 (±0.15%) and 92.79 ± 0.564 (±0.61%), respectively.



Diagnostics 2020, 10, 565 15 of 19

Based on these values, it was shown that our method was significantly better than that compared to
other classifiers.

Table 10. Detailed statistical analysis of the proposed method using the BraTS 2015 dataset.

Method Min (%) Avg (%) Max (%) σ2 σ SEM

Naïve Bayes 92.47 93.33 94.9 0.493 0.7021 0.4054
MSVM 92.19 93.42 96.66 1.016 1.0083 0.5821
Softmax 91.63 92.8 93.98 0.920 0.9593 0.5539

ET 92.98 94.32 95.67 1.206 1.0981 0.6340
ELM 97.37 97.76 98.16 0.104 0.3225 0.1862

The best values are shown in bold. Min, Avg, and Max are the minimum, average, and maximum accuracy,
respectively. SEM—standard error of mean.

Table 11. Detailed statistical analysis of the proposed method using the BraTS 2017 dataset.

Method Min (%) Avg (%) Max (%) σ2 σ SEM

Naïve Bayes 91.04 92.35 93.66 1.144 1.0696 0.6175
MSVM 92.67 93.62 94.58 0.608 0.7797 0.451
Softmax 90.29 92.13 93.98 2.2693 1.5064 0.8697

ET 93.16 94.29 95.42 0.8512 0.9226 0.5326
ELM 96.94 97.1 97.26 0.017 0.1306 0.0754

The best values are shown in bold. Min, Avg, and Max are the minimum, average, and maximum accuracy,
respectively. SEM—standard error mean.

Table 12. Detailed statistical analysis of the proposed method using the BraTS 2018 dataset.

Method Min (%) Avg (%) Max (%) σ2 σ SEM

Naïve Bayes 87.42 88.45 89.49 0.7141 0.8450 0.4879
MSVM 86.69 90.01 91.34 1.1704 1.0818 0.6246
Softmax 91.04 91.73 92.42 0.3174 0.5633 0.3252

ET 88.64 90.21 91.79 1.6537 1.2859 0.7424
ELM 92.18 92.79 93.40 0.2480 0.4980 0.2875

The best values are shown in bold. Min, Avg, and Max are the minimum, average, and maximum accuracy,
respectively. SEM—standard error mean.
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4. Discussion

We discuss the results of the proposed method from a critical point of view. The labeled results
are illustrated in Figure 6. Three BraTs datasets were used for the validation of the proposed method.
The numerical results are presented in Table 1, Table 4, and Table 7. The results presented in these
tables were validated through two pipeline procedures, as mentioned in Section 3. The results showed
that the accuracy of Pro-FC7 was less, as compared to the proposed architecture. The main reason
for the degradation of the classification accuracy was the number of features. For the architecture of
VGG19, the feature length on FC7 was 4096, whereas, the feature length of FC8 was 1000; therefore,
during the selection process, the target MSER could not be met. Moreover, due to higher number of
features, the execution time was also higher for Pro-FC7, as compared to the proposed method.

To give the reader an idea of comparison with the existing techniques, we briefly mentioned some
published results. In [24], the authors presented a deep-learning-based system and used the BraTs
dataset series for the experimental process. They achieved an accuracy of 97.8%, 96.9%, and 92.5%
for the BraTs2015, BraTs2017, and BraTs2018, respectively. Sajjad et al. [23] presented a deep learning
model and evaluated this on two datasets—Brain tumor and Radiopaedia. They achieved an accuracy
of 94.58% and 90.67%, respectively, on both. Toğaçar et al. [35] achieved an average 96.77% accuracy
for the classification of healthy and tumor MRI images. The proposed method achieved an accuracy of
98.16%, 97.26%, and 93.40%, which was better than that compared to the accuracy reported for the
state-of-the-art techniques. Additionally, the worst time complexity of our algorithm was O

(
n3 + k

)
+C,

where k represents the number of iterations and C is a constant term.
In addition, we also calculated the Mathew correlation coefficient (MCC) measure for the ELM

classifier; the results are given in Table 13. In this table, it is shown that the MCC values were closer
to 1, which showed the better prediction performance of the proposed scheme.
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Table 13. Calculation of the Mathew correlation coefficient (MCC) value for the ELM classifier.

Dataset Pro-FC7 Proposed MCC

BRATS2015

√
0.8690

√
0.8804

BRATS2017

√
0.8523

√
0.8764

BRATS2018

√
0.8036

√
0.8244

The better values are shown in bold.

5. Conclusions

This paper presents a fully automated deep learning system, along with contrast enhancement
for multimodal brain tumor classification. The strength of this work was in three steps. First, in the
preprocessing step, contrast stretching using edge-based texture HE was employed to increase the local
contrast of the tumor region. Secondly, the selection of robust deep learning features by implementing
correntropy via mutual learning and ELM (CML-ELM) was utilized. Using CML-ELM, the robust
features were computed, which were fused through the PLS-based approach, in a later stage. Third,
the ELM classifier was implemented for the classification of proposed tumors into the relevant
category. The experimental process was conducted on the BraTs datasets and the results showed an
improved accuracy (98.16%, 97.26%, and 93.40%, for the BraTs2015, BraTs2017, and BraTs2018 datasets,
respectively). The feature selection process was not only helpful for improving the classification
accuracy, but also resulted in the reduction of the computational time. Finally, the accuracy results of
the proposed method were stable, which could be concluded on the basis of the presented results.
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