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Abstract: Background and Aim: Arterial wall shear strain (WSS) has been proposed to impact the
features of atherosclerotic plaques. The aim of this meta-analysis was to assess the impact of different
types of WSS on plaque features in coronary artery disease (CAD). Methods: We systematically
searched PubMed-Medline, EMBASE, Scopus, Google Scholar, and the Cochrane Central Registry,
from 1989 up to January 2020 and selected clinical trials and observational studies which assessed the
relationship between WSS, measured by intravascular ultrasound (IVUS), and plaque morphology
in patients with CAD. Results: In four studies, a total of 72 patients with 13,098 coronary artery
segments were recruited, with mean age 57.5 ± 9.5 years. The pooled analysis showed that low
WSS was associated with larger baseline lumen area (WMD 2.55 [1.34 to 3.76, p < 0.001]), smaller
plaque area (WMD −1.16 [−1.84 to −0.49, p = 0.0007]), lower plaque burden (WMD −12.7 [−21.4 to
−4.01, p = 0.04]), and lower necrotic core area (WMD −0.32 [−0.78 to 0.14, p = 0.04]). Low WSS also
had smaller fibrous area (WMD −0.79 [−1.88 to 0.30, p = 0.02]) and smaller fibro-fatty area (WMD
−0.22 [−0.57 to 0.13, p = 0.02]), compared with high WSS, but the dense calcium score was similar
between the two groups (WMD −0.17 [−0.47 to 0.13, p = 0.26]). No differences were found between
intermediate and high WSS. Conclusions: High WSS is associated with signs of plaque instability
such as higher necrotic core, higher calcium score, and higher plaque burden compared with low
WSS. These findings highlight the role of IVUS in assessing plaque vulnerability.
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1. Introduction

Atherosclerosis is the major cause of cardiovascular (CV) disease, and related morbidity,
hospitalization, and mortality worldwide [1,2]. The disease starts with increased intima-medial
thickness before plaque formation and luminal narrowing. Despite the well-established stages
of atherosclerosis, factors impacting plaque formation and progression in the same or different
arterial segments remain not fully ascertained. Endothelial dysfunction is the earliest manifestation
of atherosclerosis, followed by fatty streak formation, which is contributed to by the interplay of
conventional CV risk factors, vascular biology, and local hemodynamic forces [3,4]. An important
mechanical factor in the process of atherosclerosis is wall shear stress (WSS) which is the fractional
force of blood exerted tangential to the vessel wall. It reflects the parallel hemodynamic force created
within the endothelium of the arterial wall. WSS is determined by vascular geometry, blood properties,
flow rate, and near-wall velocities [5]. Studies have shown that WSS has different effects on plaque
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burden and composition [6], with high WSS associated with increased plaque vulnerability [7–9].
However, there is no consensus on the importance and applicability of WSS in clinical practice to
justify implementing its assessment routinely.

The aim of this meta-analysis is to assess the impact of different severities of WSS measured by
intracardiac ultrasound (IVUS) on plaque features in coronary artery disease (CAD).

2. Methods

We followed the guidelines of the preferred reporting items for systematic reviews and
meta-analysis (PRISMA) statement [10] amendment to the quality of reporting of meta-analyses
(QUOROM) statement [11]. Due to the nature of the study design (meta-analysis), neither Institutional
Ethics Review Board (IRB) approval nor patient informed consent was needed.

2.1. Data Sources

We systematically searched PubMed-Medline, EMBASE, Scopus, Google Scholar, the Cochrane
Central Registry of Controlled Trials, and ClinicalTrial.gov, up to January 2020, using the following
keywords: “Wall shear strain” OR “WSS” OR “High wall shear strain” OR “High WSS” OR
“Intermediate wall shear strain” OR “Intermediate WSS” OR “Low wall shear strain” OR “Low
WSS” AND “Coronary artery disease” OR “CAD” OR “Ischemic heart disease” OR “IHD” AND
“Atherosclerotic plaque” OR “Plaque morphology”.

Additional searches for potential trials that included the references of review articles and the
abstracts from selected congresses: scientific sessions of the European Society of Cardiology (ESC), the
American Heart Association (AHA), American College of Cardiology (ACC), and European Association
of Cardiovascular Imaging (EACVI) were undertaken. The wild-card term “*” was used to increase the
sensitivity of the search strategy. The literature search was limited to studies in humans and articles
published in English. No filters were applied. Two reviewers (A.B. and I.B.) independently evaluated
each article. Disagreements were resolved by discussion with a third party (M.Y.H).

2.2. Study Selection

The criteria for inclusion in the meta-analysis were (i) studies investigating patients undergoing
IVUS, (ii) reporting coronary WSS and plaque morphology, (iii) reporting types of WSS, and (iv)
articles enrolling human population. Exclusion criteria were: (i) non-coronary WSS, (ii) insufficient
statistical data for effect size, (iii) studies not in humans, (iv) children population, and (v) articles not
published in English. Different types of WSS were defined based on magnitude values expressed with
unit of dynes/cm2, as: low (<10 dynes/cm2), intermediate (≥10–25 dynes/cm2), and high WSS (>25
dynes/cm2) [12].

2.3. Outcome Variables

Key clinical endpoints were the relationship between coronary plaque morphology and types of
WSS. Main outcome measures were coronary plaque morphology: baseline lumen area, plaque area,
necrotic core area, dense calcium area, fibrous area, and fibro-fatty area.

2.4. Data Extraction

Eligible studies were reviewed and the following data were abstracted: (1) first author’s name; (2)
year of publication; (3) study design; (4) types (severity) of WSS (high WSS, intermediate WSS, and
low WSS); (5) patient demographic characteristics; (6) age and gender of study participants; and (7)
IVUS measurements including: lumen area, plaque area, necrotic core area, dense calcium area, fibrous
area, and fibro-fatty area, in different types of WSS.

ClinicalTrial.gov
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2.5. Quality Assessment

Assessment of risk of bias in the studies included in the analysis was evaluated by the same
investigators for each study and was performed systematically using the Quality Assessment
of Diagnostic Accuracy Studies questionnaire (QUADAS-2) optimized to our study questions
(Supplementary 1) [13]. The QUADAS-2 tool has four domains for risk of bias: patient selection, index
test, reference test, and flow and timing, and three domains for applicability: patient selection, index,
and reference test domains.

2.6. Statistical Analysis

The meta-analysis was conducted applying the conventional statistical analysis models using
the RevMan (Review Manager [RevMan] Version 5.1, The Cochrane Collaboration, Copenhagen,
Denmark), and two-tailed p value <0.05 was considered significant. The number of patients, means,
and standard deviations were pooled to weighted mean difference (WMD) and a 95% confidence
interval (CI). Baseline characteristics are reported in median and range. Mean and standard deviation
(SD) values were estimated using the method described by Hozo et al. [14]. Analysis is presented
in forest plots, the standard way for illustrating the results of individual studies and meta-analysis.
Meta-analyses were performed with a fixed-effects model and a random effect was used if heterogeneity
was encountered. Heterogeneity between studies was assessed using Cochrane Q test and I2 index, as
a guide, I2 < 25% indicated low, 25–50% moderate, and >50% high heterogeneity [15]. To assess the
additive (between-study) component of variance, the reduced maximum-likelihood method (tau2)
took into account the occurrence of residual heterogeneity [16]. Publication bias was assessed using
visual inspections of funnel plots and Egger’s test.

3. Results

3.1. Search Results and Trial Flow

Of 2122 articles identified in the initial searches, 126 studies were screened as potentially relevant.
After excluding 102 studies on the basis of title/abstract as not relevant, unrelated to study object,
animal studies, review articles, letter to editor, or not in English language, the remaining 24 full-text
articles were considered for inclusion in the meta-analysis. After careful assessment, 20 of the 24
articles were further excluded according to the eligibility criteria (Table 1) leaving the remaining four
articles to be included in the analysis [7,9,17,18] (Figure 1).

Table 1. Main characteristics of trials included in the study.

Study (Trial) Year Study Design Types of WSS No. of Segments Inclusion Criteria Exclusion
Criteria

Primary
Endpoints

Samady 2011 Observational Low WSS 2249 Abnormal Myocardial
infarction Lumen area

prospective Intermediate WSS noninvasive
stress test or Cardiogenic shock Plaque area

study High WSS stable angina Hemodynamic
instability Necrotic core area

syndromes CABG or PCI Dense calcium
area

Myocardial
infarction Fibrofatty area

Cardiogenic shock Fibrous area

Eshtehardi 2012 Observational Low WSS 3581 Abnormal Myocardial
infarction Lumen area
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Table 1. Cont.

Study (Trial) Year Study Design Types of WSS No. of Segments Inclusion Criteria Exclusion
Criteria

Primary
Endpoints

prospective Intermediate WSS noninvasive
stress test or Cardiogenic shock plaque area

study High WSS stable angina Hemodynamic
instability plaque burden

syndromes CABG or PCI

Timmins 2015 Prospective Low WSS 3871 CAD NR Lumen area

observational Intermediate WSS

study High WSS

Timmins 2017 Observational Low WSS 14,235 Abnormal NR Plaque area

prospective Intermediate WSS noninvasive
stress test or Necrotic core area

study High WSS stable angina Dense calcium
area

syndromes Fibrofatty area

Fibrous area

WSS: wall shear strain; CAD: coronary artery disease; CABG: coronary artery by-pass grafting; PCI: percutaneous
coronary intervention; NR: non reported.
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Figure 1. Flow chart of study section.

3.2. Characteristics of Included Studies

Four studies (four observational) with 72 patients and 13,098 segment measurements were finally
included in the analysis. The mean age of the included patients was 57.5 ± 9.5 years (68% male), of
whom 69% had arterial hypertension and 25% were diabetics (Table 2).
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Table 2. Main characteristics of patients enrolled among trials included in the study.

Study
(Trial) Year Groups No. of

Patients
No. of

Segments Age Year Male (%) HTN (%) DM (%) TC (mg/dL) Triglyceride
(mg/dL)

Smoking
(%)

Samady
2011 L-WSS 20 * 205 54 ± 10 * 65 70 35 186 ± 13 115.5+ 25

I-WSS 1034 NR NR NR NR NR NR NR

H = WSS 27* 1010 NR NR NR NR NR NR NR

Eshtehardi
2012 L-WSS 3851 * 50 ± 10 * 60 60 26 181.5 ± 34 114 ± 95 22

I-WSS

H = WSS

Timmins
2015 L-WSS 5 * 3871 * 62.1 ± 7.6 65.5 72.2 23.6 NR NR NR

I-WSS 61.7 ±
10.2 79.6 67.7 13.0 NR NR NR

H = WSS 62.9 ±
10.3 74.1 74.1 16.7 NR NR NR

Timmins
2017 L-WSS 20 * 1785 54 ±10 * 65 * 70 * 35* 186 ± 16 * 107± 101 * 25 *

I-WSS 413

H = WSS 929

Abbreviations: L-WSS: low wall shear strain; I-WSS: intermediate wall shear strain; H-WSS: high wall shear strain;
HTN: hypertension; DM: diabetes mellitus; TC: total; (*): whole group.

3.3. Characteristics of Coronary Plaques

3.3.1. Differences between Low WSS and High WSS

The pooled analysis showed that the presence of low WSS was associated with larger baseline
lumen area (WMD 2.55 [1.34 to 3.76, p < 0.001]), smaller plaque area (WMD −1.16 [−1.84 to −0.49, p =

0.0007]), lower plaque burden (WMD −12.7 [−21.4 to −4.01, p = 0.04]) and lower necrotic core area
(WMD −0.32 [−0.78 to 0.14, p = 0.04], Figure 2), compared to high WSS. The presence of low WSS was
also associated with smaller fibrous area (WMD −0.79 [−1.88 to 0.30, p = 0.02]) and smaller fibro-fatty
area (WMD −0.22 [−0.57 to 0.13, p = 0.02], Figure 3), compared to high WSS. Dense calcium score did
no differ between the two groups (WMD −0.17 [−0.47 to 0.13, p = 0.26]).

3.3.2. Differences between Intermediate WSS and High WSS

There was a smaller plaque burden in intermediate WSS compared to high WSS (WMD 9.65 [6.52
to 12.7, p < 0.001]). All the other coronary plaque characteristics did not differ between these two types
of WSS: lumen area WMD =1.61 [−3.21 to −0.01, p = 0.05], plaque area, WMD 0.66 [−0.14 to 1.46, p =

0.11], plaque burden, WMD 9.65 [6.52 to 12.7, p < 0.001], and necrotic core area, WMD 0.14 [−0.06 to
0.33, p = 0.17, Supplementary 2]. Moreover, no difference was found between the two groups with
respect to dense calcium score, WMD 0.06 [−0.08 to 0.20, p = 0.40], fibrous area, WMD 0.43 [−0.11 to
0.98, p = 0.12], and fibro-fatty area, WMD 0.13 [−0.09 to 0.36, p = 0.24, Supplementary 3].

3.3.3. Differences between Low WSS and Intermediate WSS

No significant difference was found between low WSS and intermediate WSS with regards to
baseline coronary plaque characteristics: baseline lumen area, WMD 0.96 [−0.12 to 2.04, p = 0.08],
plaque area, WMD −0.43 [−0.99 to 0.13, p = 0.13], plaque burden, WMD −3.13 [−8.71 to 2.46, p = 0.27],
and necrotic core area, WMD −0.18 [−0.45 to 0.08, p = 0.18, Supplement 4]. Furthermore, comparing
intermediate WSS with low WSS showed similar dense calcium score, WMD −0.12 [−0.26 to 0.02, p =

0.09], fibrous area, WMD −0.35 [−0.89 to 0.19, p = 0.21], and fibro-fatty area, WMD −0.05 [−0.12 to 0.02,
p = 0.13, Supplement 5].
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3.3.4. Features of Plaque Vulnerability according to the Type of WSS

Compared with low WSS, the high WSS had clear features for vulnerable plaques at baseline
(Figure 4): higher necrotic core area, WMD −0.32 [−0.78 to 0.14, p = 0.04], higher plaque burden,
WMD −12.7 [−21.4 to −4.01, p = 0.04], and higher fibrous area, WMD −0.79 [−1.88 to 0.30, p = 0.02]
(Figures 2 and 3). There was no significant difference in the features of plaque vulnerability when
comparing either low WSS or high WSS with intermediate WSS (Supplementary 3 and 5).
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of low WSS vs. high WSS.

3.3.5. Risk Assessment of Bias

The assessment of risk of bias and applicability concerns based on the Quality Assessment
of Diagnostic Accuracy Studies questionnaire (QUADAS-2) was optimized to our study questions
(Supplementary 1) [12]. Four domains of criteria for risk of bias and three for applicability were
analyzed, and the risk of bias was assessed as “low risk,” “high risk,” or “unclear risk”. Most studies
had high or moderate level of quality and clearly defined the objectives and the main outcomes
(Supplementary 1, 6, and 7). QUADAS-2 analysis for bias evaluation showed all domains to have low
risk of bias (<30%); expected domains of applicability such as patients’ selection and index test that
had high or unclear risk of 50%, due to lack of adequate exclusion and/or patient recruitment.
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4. Discussion

Despite the well-established description of different stages of atherosclerosis and the role of WSS
as a mechanical factor in coronary plaque formation, many debates about the impact of different types
of WSS on plaque features and progression exist. Some studies have shown that the presence of a
normal or increased WSS has a protective effect on the endothelial function mediated by inhibition of
endothelial proliferation such as anti-inflammatory effect, prevention of apoptosis of endothelial cells,
and increased expression and activity of antioxidant enzymes in endothelial cells [19]. Other studies
have also shown a relationship between high WSS and plaque vulnerability [20,21].

Findings: Our analysis shows that low WSS was associated with larger baseline lumen area
smaller plaque area, lower plaque burden, and lower necrotic core area. Furthermore, low WSS had a
smaller fibrous area and smaller fibro-fatty area compared with high WSS. In addition, no differences,
in these parameters, were found between low WSS and intermediate WSS, or between intermediate
WSS and high WSS.

Data interpretation: Animal studies have shown that low WSS promotes atherosclerosis
development through loss of the physiological flow-oriented alignment of the endothelial cells,
proliferation of smooth muscle cells, and transmigration of macrophages, that promote oxidative
stress [22,23]. Although animal studies have shown varied remodeling responses to low WSS [4,24],
some prospective human studies demonstrated an association between coronary low WSS and
constrictive arterial remodeling [25,26]. Furthermore, constrictive arterial remodeling in low-WSS
segments has been proposed as an adaptive mechanism to normalize local WSS to a more physiological,
vasculo-protective level [4]. Contrary to those findings, our meta-analysis has shown that high WSS is
associated with clear features for vulnerable plaque such as: higher necrotic core area, higher dense
calcium score, and higher plaque burden compared to low WSS. These findings are supported by
previous studies which showed that high WSS plays an important role in maintaining vulnerable
plaques and proposed it as a contributor to plaque rupture and thrombosis of advanced atherosclerotic
plaques in human coronary [27,28] and carotid arteries [29,30]. In addition, a human carotid autopsy
study demonstrated that high WSS segments with increased macrophage levels constitute a significant
substrate for plaque rupture [31].

The concept of vulnerable plaque is more complex and is not limited only to the propensity
toward thrombosis [32]. Based on measures of fibrous area, a thin cap of 23 ± 19 µm near the rupture
site carries higher risk compared with a thickness of 20–65 µm [33]. Such a fact suggests the possibility
of potential rupture particularly when accompanied by higher necrotic core area, higher calcification,
and more macrophages within the fibrous cap [33,34]. Our findings show a fibrous cap of thickness
exceeding 65 µm in the low and high WSS, but the necrotic core area and calcification were more
pronounced in high WSS, which is another reason to suggest the presence of vulnerable plaques in
high WSS. In summary therefore, it seems that plaque cap thickness is not the sole predictor of plaque
stability, as previously thought, but rather the combination of plaque contents, degree of calcification,
and WSS together determine potential vulnerability. This finding is supported by the plaque stability in
extensive coronary calcification compared with mild and moderate calcification which carry significant
risk of acute coronary syndrome [35].

Limitations: The limitation of this study was the lack of a randomized clinical trial and the
small sample volume that would limit the strength of the findings. Another limitation is the lack of
clinical follow-up data on the studied patients, which would have strengthened the issue of plaque
vulnerability. Future studies should focus on the relationship between plaque morphology and cardiac
events. IVUS is an expensive investigation and has limited application in intervention cardiology,
hence the limited number of IVUS publications that are available for analysis. We relied on the
WSS measurements as they were published, so did not have any hand in controlling the accuracy
of measurements.

Clinical implications: Our findings support the important role of WSS in maintaining stable
coronary arterial wall function, manifested in the form of plaque morphology, contents, and vulnerability.
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While WSS is currently measured only invasively by IVUS, the move towards non-invasive CT-based
measurements of other arterial luminal function, e.g., FFR (fraction flow reserve), could predict a future
development of similar algorithms that could accurately measure WSS in high risk patients.

5. Conclusions

High WSS is associated with higher necrotic core, higher calcium score, and higher plaque burden
compared with low WSS, suggesting features of potential vulnerability. These findings highlight the
role of IVUS in detecting the vulnerable plaque in CAD.
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