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Abstract: The possibility to assess molecular-biological and morphological features of particular
breast cancer types can improve the precision of resection margin detection and enable accurate
determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable
differentiation of breast-cancer subtypes and evaluation of resection margin, without performing
conventional histological procedures, here we apply cross-polarization optical coherence tomography
(CP-OCT) and compare it with a novel variant of compressional optical coherence elastography
(C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used
70 excised breast cancer specimens with different morphological structure and molecular status
(Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer). Our first aim was to
formulate convenient criteria of visual assessment of CP-OCT and C-OCE images intended (i) to
differentiate tumorous and non-tumorous tissues and (ii) to enable more precise differentiation among
different malignant states. We identified such criteria based on the presence of heterogeneities and
characteristics of signal attenuation in CP-OCT images, as well as the presence of inclusions/mosaic
structures combined with visually feasible assessment of several stiffness grades in C-OCE images.
Secondly, we performed a blinded reader study of the Ac of C-OCE versus CP-OCT, for delineation of
tumorous versus non-tumorous tissues followed by identification of breast cancer subtypes. For tumor
detection, C-OCE showed higher specificity than CP-OCT (97.5% versus 93.3%) and higher Ac
(96.0 versus 92.4%). For the first time, the Ac of C-OCE and CP-OCT were evaluated for differentiation
between non-invasive and invasive breast cancer (90.4% and 82.5%, respectively). Furthermore,
for invasive cancers, the difference between invasive but low-aggressive and highly-aggressive
subtypes can be detected. For differentiation between non-tumorous tissue and low-aggressive
breast-cancer subtypes, Ac was 95.7% for C-OCE and 88.1% for CP-OCT. For differentiation between
non-tumorous tissue and highly-aggressive breast cancers, Ac was found to be 98.3% for C-OCE and
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97.2% for CP-OCT. In all cases C-OCE showed better diagnostic parameters independently of the
tumor type. These findings confirm the high potential of OCT-based examinations for rapid and
accurate diagnostics during breast conservation surgery.

Keywords: breast cancer; cross-polarization optical coherence tomography (CP-OCT); compressional
optical coherence elastography (C-OCE); image assessment

1. Introduction

Intraoperative detection of breast malignancy margins would allow minimization of the risk of
tumor recurrence in patients undergoing breast conservation surgery (BCS). Intraoperative pathological
estimation can be performed through frozen section analysis and imprint cytology [1]; however,
these techniques are characterized by several restrictions such as resource intensity, sampling only a
small percentage of the surgical margins and limited efficacy, especially for ductal carcinoma in situ
(DCIS) [2]. Consequently, these methods have not been widely adopted [3]. Fluorescent techniques that
utilize molecular contrast, potentially affording surgeons to visualize tumor in the cavity, are currently
in the development [4,5]. Ultrasound elastography has been developed for a number of applications,
and specifically for preoperative diagnosis of breast lesions [6–8]. However, its relatively low spatial
resolution makes it inappropriate to use this method for intraoperative tumor margin assessment.

Optical coherence tomography (OCT) presents a very promising method for surgical tasks solving
due to the clear benefits of this method such as: safety (using a near infrared light source does not risk
tissue damage); accuracy (high resolution ~10–15 micron); there being no need for contrast agents;
and the short duration of image attainment. OCT can be used both in the resected specimen of tumor
and in the surgical cavity. OCT can be added to biopsy needle probes and can be used to guide correct
sampling of tumor biopsies [9–11]. OCT is a promising method for intraoperative guidance during
the resection of breast cancer and for identifying positive margins in specimens from BCS [12–15].
Recently, OCT has been proposed for intraoperative use in distinguishing tumorous and non-tumorous
tissues using handheld probes [16,17]. To overcome the limited imaging depth ~2 mm typical for
OCT (which usually requires sufficiently close approaching of the OCT probe towards the studied
tissue), utilization of endoscopic and/or needle OCT probes are considered [11]. Moreover, it is known
that structural OCT scans exhibit low contrast between tumor and uninvolved dense stromal tissue,
which makes it challenging to accurately assess margin status [18]. In view of this, improvements
in several aspects of OCT attract much attention, in particular, the development of functional OCT
extensions based on polarization effects and stiffness analysis as considered below.

Based on the birefringence of the tissue structure, polarization-sensitive (PS) OCT provides
advanced imaging of collagen fibers in the breast tissue and enhances intraoperative differentiation
of breast cancer [19–21]. Stroma state assessment is fundamentally important, because tumor
collagen matrix plays a crucial role in breast cancer invasion and metastatic spreading [22]. Several
studies have developed quantitative diagnosis algorithms for intraoperative assessing breast cancer
margins and validated them against OCT, both alone and in combination with other modalities [23].
Cross-polarization OCT (CP-OCT) is a variant of PS OCT that allows imaging of the initial polarization
state changes due to both birefringence and cross-scattering in biological tissues [24]. Only orthogonally
polarized backscattered light, which is mutually coherent with the incident wave, contributes to the
cross-polarized (CP) OCT image. CP-OCT is a promising method for differentiating tumorous from
non-tumorous tissues in human breast tissues [25], human brain tissues [26,27], as well as for diagnosis
of bladder cancer [28–31]. OCT can also measure attenuation, which can be helpful for improving
contrast of breast imaging research [32,33].

Attention to the problem of determining tissue stiffness (elastographic mapping) by optical
coherence elastography (OCE) methods has been increasing in recent years [34–37]. Sufficiently high
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resolution of quantitative stiffness maps enabled by compressional OCE opened the possibility to
perform morphological segmentations of tumor tissue constituents very similar to morphological
segmentation of conventional histological images [25,38,39]. In these studies of experimental tumor
models on animals, this technique allowed in vivo monitoring of morphological variation in tumor tissue
during tumor growth and response to therapies. In studies [25,40–42], application of compressional
OCE (C-OCE) for characterization of mechanical properties of excised human breast cancer specimens
was demonstrated. New possibilities for intraoperative assessment of the breast cancer borders
by means of optical coherence micro-elastography (OCME) were reported in a recent study [43,44].
It has been demonstrated that OCME provides additional contrast of tumor compared to OCT alone.
Additionally, the potential of OCME images for evaluation of tumor margins in specimens excised
during BCS was demonstrated in [41,43]. In our previous paper it was shown that CP-OCT and C-OCE
can be helpful in breast cancer margin identification, as well as for grading breast cancer subtypes [25].

For more accurate evaluation of the resection margin, it is advantageous to take into account the
genetic heterogeneity of breast cancer, as well as the variety of molecular-biological and morphological
features influencing prognosis of the disease course (degree of aggressiveness) and treatment
selection [45,46]. Indeed, it was demonstrated that probability of tumor recurrence mainly depends on
molecular-biological characteristic of the tumor [47,48], while an increase in the size of the removed
tissue, free of cancer cells, is not associated with a decrease in the recurrence rate [49].

Various molecular-biological and morphological features of breast cancer are anticipated to
differently influence the polarizing and elastic tumor and peritumoral tissue qualities. This stimulates
interest in evaluation of the clinical potential of polarization-sensitive and elastographic OCT techniques
for determining breast cancer subtypes (malignancy grade) and improving tumor boundary detection
based on the ability of these methods to identify different tumor subtypes. In this way, surgeons are
expected to be provided with essential information that can improve reliability of the positive resection
margin detection during BCS, at least for some breast cancer subtypes.

The goals of this research are (1) to define the visual assessment criteria required for the CP-OCT
and C-OCE images in order to enable differentiation among various breast cancer subtypes; (2) to
determine the diagnostic accuracy (sensitivity and specificity) of C-OCE in comparison with CP-OCT,
for delineation of tumorous and non-tumorous breast tissues and subsequent identification of breast
cancer subtypes in a blinded reader study.

2. Materials and Methods

2.1. Human Breast Specimens

This study was approved by the institutional review board of the Privolzhsky Research Medical
University (Protocol #10 from 28 September 2018). All of the patients included in the study provided
written informed consent. A total of 70 breast tumor tissue specimens were taken from 50 patients
post partial (n = 35) or complete (n = 15) mastectomy with different diagnosis (Table 1). To minimize
the effect tissue degrading, the excised specimens were immediately placed in gauze saturated with
phosphate buffer and closed to prevent dehydration. CP-OCT and C-OCE images of the fresh, un-fixed
breast tissue were acquired within 2 h after surgical excision. The studies were done on specimens with
sizes from 0.5 × 1 cm to 1 × 2 cm. Specimens were taken from central zone of tumors for diagnostics of
breast cancer subtypes and in the peritumoral area for visualization of normal (non-tumorous) breast
tissue. A special motorized table for convenient positioning the specimen under the OCT probe was
used. The entire CP-OCT and C-OCE study of each specimen was no longer than 20 min (including
preliminary sample preparation and orientation).
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Table 1. Clinical specimens’ characteristics and number of imaged specimens.

Diagnosis Number of Specimens Age of Patients (Range) Tumor Size

Benign breast conditions
Non-tumorous breast tissue 20 43–68 -

Fibroadenoma/fibroadenomatosis 4 35–48 ≤1 cm

Malignant breast lesions
Ductal carcinoma in situ (DCIS) 5 44–63 ≤1 cm
Invasive ductal carcinoma (IDC)

of scirrhous structure 24 41–82 ≤2 cm

Invasive ductal carcinoma (IDC)
of solid structure 10 41–82 ≤2 cm

Invasive lobular carcinoma (ILC)
of solid structure 7 48–72 ≤2 cm

2.2. Multimodal OCT Device

This study used a common path spectral domain multimodal OCT system with a central
wavelength of 1310 nm and spectral width of 100 nm, with an axial resolution of 10 µm, lateral
resolution is 15 µm, a scanning depth of 2 mm in air, a scanning speed of 20,000 A-scans per second.
The OCT-system acquired 3D blocks of OCT data, 2 mm in depth (in air) over 2.4 × 2.4 mm2 area and
2D lateral scanning with a similar field of view were acquired in 26 s. The CP-OCT and C-OCE images
were generated in real time during the acquisition process. For living tissues, real-time angiographic
imaging was also possible by processing the same data [50]. For the described OCT studies, the total
scanning time along a 1–2 cm trajectory on a biopsy sample was 3–5 min depending on the number of
stitched images.

Structural 2D (cross-sectional images) CP-OCT images were constructed in two virtual channels,
one of which was co-polarized with the incident polarization (co-polarization channel) and the
other one was orthogonal (cross-polarization channel) to the incident polarization, respectively [24].
CP-OCT aims to obtain the information contained in the cross-polarization channel, which allows
one to form cross-polarization images caused by birefringence of the tissue from optically anisotropic
structures (evaluate the state of connective tissue component), as well as due to contribution of coherent
cross-polarization backscattering on non-spherical particles and particles with dimensions much larger
than the wavelength. In view of low informativity of the co-polarization images (as found in previous
studies [25]), only cross-polarization images were used for diagnostic conclusions in this study.

An advanced variant of phase-sensitive compression OCE [37,39,51–55] was used to visualize
inter-frame strains in the tissue and subsequently map the Young modulus. The probe was slightly
pressed onto the studied sample surface, and strain distribution in the probe vicinity was reconstructed.
Strain mapping was based on estimation of axial gradients of interframe phase variations of the OCT
signal using the “vector” method [51,53]. The name “vector” is due to the fact that, without explicitly
singling out amplitude and phase, the complex-valued OCT signals in this method are considered
as vectors in the complex plane, and the phase is singled out at the very last step of the processing.
Such vector representation allows one to perform flexibly-tuned amplitude-weighted averaging over
the processing-window area. As a result, noisy contributions of small-amplitude pixels and, at the same
time, especially strong phase errors (by ~π rad.) are very efficiently suppressed. This allows obtaining
strain maps with fairly high quality even without periodic averaging (which is very important for
the one-directional single-step loading of the tissue used in the described studies). In addition to
the exceptionally high tolerance to various measurement noises, the vector method is very efficient
computationally, so that the elastographic processing of the acquired sequence of several hundreds of
OCT scans requires ~5–10 s using a “typical” PC without the necessity of GPU computations.

Another important point is that the estimated interframe phase-variation gradient is averaged
over a processing window, the dimensions of which being the main factor determining the resolution
of the resultant OCE scans. For a rectangular processing window with comparable axial and lateral
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sizes, the resolution in strain maps is also comparable in these directions and corresponds to ~ 1
2 of

the window size. For the described system, the window size was ~90–100 µm, which defined the
strain-mapping resolution ~45–50 µm. Such a window size was chosen empirically as a compromise
between worse quality of the OCE-images for smaller windows (because of insufficiently averaged
noise) and too-strong smoothing of spatial inhomogeneities for larger windows.

The next important point is quantification of the tissue Young’s modulus, to enable which a
reference silicone layer with preliminary calibrated stiffness (with the Young’s modulus in the range
50–100 kPa) was used as described in [42,54–56]. Of key importance in the used variant of C-OCE
technique is that all OCE images are formed using a pre-selected pressure level (4 kPa in the described
study) standardized over the entire image area, despite the fact that for real OCE scans, the local
pressure over the lateral coordinate usually varies several times because of the non-ideally planar
boundary of the sample, its mechanical inhomogeneity, etc. The pressure standardization technique
is based on the usage of the reference silicone layer as a sensor of local pressure as described in
detail in [55]. To synthesize such a single “standardized OCE image”, a series of initial structural
OCT-scans acquired during monotonic compression of the sample was first processed to obtain a
series of cumulative-strain maps as described in [54,57,58]. Then vertical A-scans corresponding to the
selected pressure were picked up from the initial series of cumulative-strain maps and reassembled
to synthesize a single cumulative-strain image in which all A-scans now correspond to the same
preselected pressure onto the tissue [55]. To be sure that the strain in silicone can be considered
linearly proportional to stress (pressure), high linearity of silicone was specially verified as described
in [42,54,55]. Real biological tissues usually demonstrate a pronouncedly nonlinear stress–strain
law. The described C-OCE method allows one to determine this law by plotting the strain in the
linear precalibrated silicone against strain in any region of interest in the tissue beneath the silicone.
The elasticity of the tissue can then be estimated as the tangent Young’s modulus (the slope of the
stress-strain curve) corresponding to the desired pre-selected pressure. It was empirically found that
for breast-cancer tissue the sought tangent modulus could be conveniently estimated as the slope of the
chorde corresponding to the pressure range 4 ± 1 kPa. At lower pressures, very small strain of stiffer
regions was difficult to estimate, whereas at higher pressures, the elasticity contrast among various
tumor components became worse because of strong nonlinearity-induced stiffening of the initially
softer components of the tumor (see examples in [55]). Without such standardization the intrinsic elastic
nonlinearity of breast-cancer tissues may result in uncontrollable variability of the estimated elastic
modulus in different measurements and even different parts of the same image. This unpredictable
variability may be rather significant (several times and greater) even for apparently moderate strains
within a few percent [42,55]. Thus, the developed pressure-standardization procedures were critically
important for enabling meaningful quantitative comparisons of elastographic data obtained from
different measurements.

The so-obtained OCE-images were represented in the color-coded form, such that stiffer areas
(those with weaker strain) are shown in blue, and soft areas, where deformation is greater, are shown
in red.

2.3. Histological Study

After CP-OCT and C-OCE imaging of the freshly-excised sample with yet non-modified optical
and biomechanical properties, the scanned area was marked on the specimen with histological ink.
Then the specimen was fixed in 10% formalin for 48 h and resectioned through the marked area, so that
the plane of the histological sections coincided to the cross-sectional CP-OCT and C-OCE images.
For the histological evaluation, haematoxylin and eosin (H&E) staining was used. Two independent
histopathologists interpreted the histological slices photographed in transmitted light with a Leica
DM2500 DFC (Leica Microsystems, Wetzlar, Germany) microscope, equipped with a digital camera.
Based on histopathological analysis, all samples were classified into tumorous and non-tumorous
breast tissues. The revealed histological types of breast tissue include: adipose tissue with streaks of



Diagnostics 2020, 10, 994 6 of 19

connective tissue (number of specimens n = 20); fibroadenomatosis/fibroadenoma (n = 4); DCIS (n = 5);
invasive lobular carcinoma (ILC) (n = 7); invasive ductal carcinoma (IDC) of scirrhous (n = 24) and
solid (n = 10) structure (Table 1). In addition, to assess tumor aggressiveness (prognosis of the
disease course) immunohistochemistry (for n = 46 samples) was performed, identifying five molecular
subtypes of the tumors: Luminal A, Luminal B (Her2/Neo-), Her2/Neo+, Non-luminal, Triple-negative
cancer (TNC). Luminal A and Luminal B (Her2/Neo-) are reported to be low-aggressive tumors
characterized by predominantly favorable prognosis of disease course and treatment in comparison
with Her2/Neo+, Non-luminal and TNC [24]. Furthermore, it should be noted that Luminal A and
Luminal B subtypes were characterized by scirrhous architectonics, while Her2/Neo+, Non-luminal,
TNC had solid structure.

The results of histopathology were compared with the corresponding CP-OCT-based and
C-OCE-based findings. For the blinded reader study, all images were divided into 4 groups: adipose
and normal stromal breast tissue, benign breast tissue (fibroadenoma/fibroadenomatosis), non-invasive
DCIS, and images portraying cancerous features of invasive low and highly-aggressive breast cancer.

2.4. Reader Analysis of CP-OCT and C-OCE Images

A blinded reader study was performed to evaluate the statistical performance of assessing
tumorous and non-tumorous breast tissues based on the CP-OCT imaging (first test) and C-OCE
visualization (second test). In the study, 115 CP-OCT and 115 C-OCE images from 50 patients were
interpreted by 6 readers specially trained for this OCT-based assessment (2 biologists experienced in
optical imaging, but unskilled in recognizing breast cancer pathology; 2 post-graduate students of the
Medical University unexperienced both in optical imaging and in recognizing breast cancer pathology;
2 surgeons skilled in detecting breast cancer pathology, but without work experience in optical imaging)
who were unaware whether the image contained cancer or not. The readers were given a training set
of sample CP-OCT and C-OCE images (3 images of each histological type of breast tissue).

The criteria evaluated by the readers are summarized in Tables 2 and 3. Each image group had its
own set of visual criteria. The reader’s goal was to distinguish between tumorous and non-tumorous
breast tissues. If an image was considered to represent non-tumorous breast tissue, the reader indicated
a score of “0” whether it was normal breast tissue or fibroadenoma. If the reader identified malignant
lesion marks, a score from “1” to “3” was assigned to the sample depending on the estimated tumor
aggressiveness. The score of “1” means that the reader thinks that the image represents non-invasive
DCIS; a score of “2” means that the reader considers the cancer to be invasive, but less aggressive;
a score of “3” means that the reader thinks that invasive cancer is more aggressive.

The first test was based on assessment of signal architecture in cross- polarization images (Table 2).
The cross-polarization channel enables more contrast visualization of the presence and state of
connective tissue in comparison with the co-polarization OCT images.

Structural features in the CP-OCT images were distinguished by the following features of the
scattering intensity and lateral uniformity of the signal attenuation (Table 2):

(i) the average level of the CP-OCT signal throughout the image is visually estimated as “low” like
in Figure 1(b5) or “high” for the used 0–50 dB signal range, where “low” corresponded to intensities
below 25 dB, i.e., the noise range in the used scale, and “high” related to the level above 25 dB on the
used scale like in Figure 1(b2);

(ii) the presence of structures with a sharp boundary between contrasting-in-brightness regions
with well-circumscribed boundary architecture like in Figure 1(b3) (which was graded as “yes”/“no”);

(iii) the attenuation rate as estimated by the penetration depth of the probing radiation
(“high” attenuation like in Figure 1(b5) and “low” like in Figure 1(b2));

(iv) the uniformity of attenuation along the interior border of the structural CP-OCT image
(“uniform” like in Figure 1(b2)/“non-uniform” like in Figure 1(b4)).
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Table 2. Visual assessment criteria of cross-polarization optical coherence tomography (CP-OCT)
images for distinguishing between non-tumorous and tumorous breast tissue.

Normal
(Non-Tumorous)

Breast Tissue
(n = 20)

Fibroadenoma/
Fibroadenomatosis

(n = 13)
DCIS (n = 10)

Low-Aggressive
Invasive Breast
Cancer (n = 47)

Highly-Aggressive
Invasive Breast
Cancer (n = 25)

Main criterion:

Typical architecture
honeycomb

structure, areas of
high intensity signal

predominance of
areas with high
signal intensity

alternating signal of
high, medium and
low intensity; the

presence of
structures with no
signal with clear

boundaries (ducts)

alternating signal of
medium and low

intensity

homogenous low
intensity signal

Additional criteria:

Signal penetration depth high high high high low

Structures with clear
(contrasting) boundaries no no yes no no

Uniformity of the OCT signal
attenuation along the inferior

border of the image
uniform uniform highly uneven non-uniform uniform

Final score 0 0 1 2 3

n—number of images.

Table 3. Visual assessment criteria of compressional optical coherence elastography (C-OCE) images
for distinguishing between non-tumorous and tumorous breast tissue.

Normal
(Non-Tumorous)

Breast Tissue
(n = 20)

Fibroadenoma/
Fibroadenomatosis

(n = 13)
DCIS (n = 10)

Low-Aggressive
Invasive Breast
Cancer (n = 47)

Highly-Aggressive
Invasive Breast
Cancer (n = 25)

Main criterion:

Typical stiffness pattern uniform low stiffness level over the
C-OCE image

low stiffness level of
the stiffness

throughout the
image with

high-contrast zones
with strongly

increased stiffness

non-uniform high stiffness level over the
C-OCE image

Additional criteria:

Predominance of uniform
distribution of high

stiffness values (>500 kPa)
no no no no yes

Presence of multiple
moderately contrast inclusions

of high stiffness
(Mosaic structure)

no no no yes no

Final score 0 0 1 2 3

n—number of images.

The second test was based on the analysis of stiffness values distributions on C-OCE images.
Stiffness maps are presented in a color palette, where hard areas (blue—above 500 kPa) indicate the
presence of tumor cells, and soft regions (red—below 100 kPa) represent adipose and connective
tissues. At the same time, tissues with intermediate stiffness (the predominance of orange and yellow
colors corresponding to ~200–400 kPa) correspond to the presence of such degenerative changes of
breast-tissue stroma as fibrosis or hyalinosis of collagen fibers. The threshold values for stiffness
(Table 3) of the main types of breast-tissue components were identified as described in detail in our
previous work [25], in which accurate comparison of histological and OCE images was performed.

Main and additional criteria of subsuming the images to one or another group were formulated
for cross-polarization and C-OCE images, the additional criteria of visual assessment being needed for
more precise differentiation among different malignant states (Tables 2 and 3).



Diagnostics 2020, 10, 994 8 of 19

Diagnostics 2020, 10, x 2 of 19 

 

n—number of images. 

Main and additional criteria of subsuming the images to one or another group were formulated 
for cross-polarization and C-OCE images, the additional criteria of visual assessment being needed 
for more precise differentiation among different malignant states (Tables 2 and 3). 

 

Figure 1. Representative depth-wise co- and cross-polarization OCT images (a,b) of non-tumorous 
and tumorous breast tissue with the corresponding histology (c). (a1–c1) Adipose tissue with streaks 
of connective tissue; (a2–c2) fibroadenomatosis/fibroadenoma; (a3–c3) DCIS; (a4–c4) invasive ductal 
carcinoma (IDC) of scirrhous structure (low-aggressive breast cancer subtype); (a5–c5) IDC of solid 
structure (highly-aggressive breast cancer subtype). (a1–a5) OCT images in co-polarization channel; 
(b1–b5) OCT images in cross-polarization channel; (c1–c5) histological images, haematoxylin and 
eosin (H&E) staining. Abbreviations: A—adipose, СТ—connective tissue, FA—fibroadenomatosis, 
ADH—atypical ductal hyperplasia, DCIS—ductal carcinoma in situ, TS—tumor stroma, TC—cluster 
of tumor cells. 

2.5. Statistical Analysis 

The results of the blinded reader study of CP-OCT and C-OCE images analysis were collected 
for determining the diagnostic accuracy for distinguishing: (1) non-tumorous breast tissues (n = 33) 

Figure 1. Representative depth-wise co- and cross-polarization OCT images (a,b) of non-tumorous
and tumorous breast tissue with the corresponding histology (c). (a1–c1) Adipose tissue with streaks
of connective tissue; (a2–c2) fibroadenomatosis/fibroadenoma; (a3–c3) DCIS; (a4–c4) invasive ductal
carcinoma (IDC) of scirrhous structure (low-aggressive breast cancer subtype); (a5–c5) IDC of solid
structure (highly-aggressive breast cancer subtype). (a1–a5) OCT images in co-polarization channel;
(b1–b5) OCT images in cross-polarization channel; (c1–c5) histological images, haematoxylin and
eosin (H&E) staining. Abbreviations: A—adipose, CT—connective tissue, FA—fibroadenomatosis,
ADH—atypical ductal hyperplasia, DCIS—ductal carcinoma in situ, TS—tumor stroma, TC—cluster of
tumor cells.

2.5. Statistical Analysis

The results of the blinded reader study of CP-OCT and C-OCE images analysis were collected for
determining the diagnostic accuracy for distinguishing: (1) non-tumorous breast tissues (n = 33) from
tumor (n = 82); (2) non-invasive DCIS (n = 10)) from invasive breast cancer (n = 72); (3) low-aggressive
invasive tumors (Luminal A, Luminal B (Her2/Neo-)) (n = 47) with favorable prognosis from highly
aggressive invasive tumors (Her2/Neo+, Non-luminal, TNC) (n = 25) with unfavorable prognosis;
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(4) non-tumorous breast tissues (n = 33) from low-aggressive invasive tumors (n = 47), and (5)
non-tumorous breast tissues (n = 33) from highly-aggressive invasive tumors (n = 25).

The statistical analysis was performed using Statistica 10.0 and IBM SPSS Statistics software.
The assessment of the informative value and diagnostic capabilities of the studied methods

(CP-OCT and C-OCE) was carried out with an estimation of their sensitivity (Se), specificity (Sp),
and diagnostic accuracy (Ac). Based on the sensitivity and specificity values, Receiver operating
characteristic (ROC) curves were constructed, which show the dependence of the number of true
positive rate (TP) on the number of false positive rate (FN). For quantitative characterization of the
ROC curves, we evaluated the area under the ROC curve (AUC), i.e., the area bounded by the ROC
curve and the axis of the false positive rate [59]. The higher the AUC, the better the classifier is.

The inter-reader agreement was calculated using Cohen’s kappa coefficient (k): k ≥ 0.81—perfect
agreement; 0.61 ≤ k < 0.80—substantial agreement; k < 0.6—poor agreement [60].

3. Results

3.1. Visual Assessment of the CP-OCT and C-OCE Images for Distinguishing between Non-Tumorous and
Tumorous Breast Tissue

The results based on the CP-OCT and C-OCE images for representative cases of the non-tumorous
and tumorous breast tissue and differentiation among highly-aggressive breast-cancer subtypes are
shown in Figures 1 and 2.
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Figure 2. Representative depth-wise C-OCE images (a1–a6) of non-tumorous and tumorous breast tissue
with corresponding histological images (b1–b6). (a1–b1) Adipose tissue with streaks of connective
tissue; (a2–b2) fibroadenomatosis/fibroadenoma; (a3–b3) DCIS; (a4,a5–b4,b5) IDC of scirrhous structure
(low-aggressive breast cancer subtypes); (a6–b6) IDC of solid structure (highly-aggressive breast cancer
subtype). Abbreviations: A—adipose, CT—connective tissue, ADH—atypical ductal hyperplasia,
FA—fibroadenomatosis, DCIS—ductal carcinoma in situ, TS—tumor stroma, TC—cluster of tumor cells.

Figure 1 shows five types of representative CP-OCT and histological images: “adipose
tissue with streaks of connective tissue” (a1–c1)/”fibroadenomatosis/fibroadenoma” (a2–c2)/“DCIS”
(a3–c3)/invasive low-aggressive breast cancer of scirrhous structure (a4–c4)/invasive highly-aggressive
breast cancer of solid structure (a5–c5).
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Benign breast tissue states are characterized by high signal-penetration depth and uniformity of the
signal attenuation along the inferior border in co- and cross-polarized structural OCT images (Figure 1).
The hallmark of normal adipose (fatty) tissue is a “honeycomb” structure with low sparse scattering,
while fibrous structures are characterized by high uniform scattering in co- and cross-polarized
structural OCT images (Figure 1(a1–c1)). Fibroadenoma is characterized by a predominance of
high-intensity OCT signal in co- and cross-polarization channels (Figure 1(a2–c2)) in comparison with
normal breast tissue that has a dense structure due to the presence of large fibrous collagen fibers
(Figure 1(c2)).

Cases suspicious for malignancy are characterized by general reduction in signal intensity and
its penetration depth, irregular inferior border. All these features cause heterogeneity of the image.
In particular, DCIS (Figure 1(c3)) is characterized by the presence of localized structures with low
signal intensity and clear boundaries in the surrounding fibrous stroma with a high signal intensity
in the cross-polarization channel (Figure 1(b3)). In co-polarization channels DCIS is not detectable
(Figure 1(a3)).

In case of invasive breast cancer, the OCT signal in the cross-polarization channel for
highly-aggressive (Figure 1(b5)) and less-aggressive (Figure 1(b4)) cancer subtypes is greatly different.
IDC of solid structure (highly-aggressive) demonstrates a uniform low-level OCT signal, which is
associated with an increased density of tumor cells and an almost total absence of anisotropic (fibrous)
structures in this tumor subtype (Figure 1(b5)). For IDC of scirrhous structure (less-aggressive subtype),
the heterogeneity of the OCT signal was observed: an alternating signal of medium and low intensity
was revealed (Figure 1(b4)). On the corresponding histological images, there were clusters of tumor cells
surrounded by connective tissue in a state of fibrosis and hyalinosis (Figure 1(c4)), which clearly leads
to an increase in the level of OCT signal in these areas. It should be noted that in these cases, there is
no pronounced contrast between low-aggressive (Figure 1(a4)) and highly-aggressive (Figure 1(a5))
breast cancer subtypes in the co-polarization channel.

Thus, in the structural OCT images, the most informative is the cross- polarization channel
showing both regions with fairly high cross-polarization backscattering and (corresponding to the
presence of connective tissue) and regions with a reduced cross-polarization signal (corresponding
to the clusters of tumor cells), see Figure 1(b1–b5)). Therefore, in view of low informativity of the
co-polarization images, only cross- polarization images were used for diagnostic accuracy analysis in
this study.

The C-OCE image of the normal mammary gland (normal connective tissue and adipose tissue)
is characterized by the lowest stiffness (Figure 2(a1)). However, fibroadenomatosis/fibroadenoma is
characterized by a slight overall increase in stiffness (Figure 2(a2)) and the presence of well-localized
areas with an increased elastic modulus in the regions of atypical ductal hyperplasia (ADH).

C-OCE images of malignancy demonstrate the appearance of regions with pronouncedly increased
stiffness. Moreover, for IDC of solid structure (highly-aggressive), these areas occupy up to 90% of
the entire image, which sharply distinguishes this breast cancer subtype (Figure 2(a6)). The ducts
filled with tumor cells for DCIS are visualized as high-contrast zones with strongly increased stiffness
(Figure 2(a3)) which coincide well with the histological image. The surrounding fibrous tissue is
characterized by fairly low stiffness values (Figure 2(a3)). The OCE images of IDC of scirrhous structure
demonstrate an increased stiffness in the regions of the clusters of tumor cells and significantly lower
stiffness in the regions of the tumor stroma, causing multiple moderately contrast inclusions with
elevated stiffness, which represents a feature of low-aggressive tumor subtype (Figure 2(a4–a5)).

In addition, it is necessary to mention that images of IDC of scirrhous structure and fibroadenoma
may have similar patterns that may be challenging to differentiate for the reader. To solve this problem
an additional criteria (Table 3) of “presence the numerous and less contrasting inclusions of increased
stiffness” was included in cases of IDC (Figure 2(a4)) in contrast to single inclusions in cases of
fibroadenoma (Figure 2(a2)) and DCIS (Figure 2(a3)).



Diagnostics 2020, 10, 994 11 of 19

3.2. Diagnostic Accuracy of CP-OCT and C-OCE Based on Visual Assessment of Images

The results of the two tests, using the identified main and additional criteria, separately in CP-OCT
images and C-OCE images demonstrate their great agreement among the readers. The concordance
coefficient in the determination of tumorous or non-tumorous breast tissue in the analysis of CP-OCT
images between two researchers was k = 0.68, between two post-graduate students k = 0.93, between
the two surgeons k = 0.80. The concordance coefficient in the detection of tissue type in the analysis of
C-OCE images between two researchers was k = 0.86, between two post-graduate students k = 0.93,
between the two surgeons k = 0.82.

To demonstrate the variability of the test results, ROC-curves were presented for each reader
(Figures 3 and 4). ROC-curves analysis confirmed that visual assessment of CP-OCT and C-OCE
images has a high diagnostic value for differentiating non-tumorous and tumorous breast tissue
(AUC values for all readers were 0.90–0.97 and 0.93–0.99, respectively) and also for distinguishing
between low- and highly-aggressive invasive breast-cancer subtypes (AUC values for all readers were
0.84–0.90 and 0.80–1.00, respectively) (Figure 3c, Figure 4c). Slightly lower values were obtained for
differentiation between non-invasive breast lession and invasive breast cancer (AUC values for all
readers were 0.74–0.93 and 0.86–0.95, respectively) (Figure 3b, Figure 4b). The ROC-curves show that
the best results were demonstrated by the researches experienced in optical imaging.
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Figure 3. Receiver operating characteristic (ROC)-curves showing the results of visual assessment
CP-OCT images for distinguishing non-tumorous breast tissue from tumor (a), DCIS from invasive
breast cancer (b), low-aggressive invasive breast cancer from highly aggressive (c), non-tumorous
breast tissue from low-aggressive breast cancer (d), non-tumorous breast tissue from highly aggressive
breast cancer (e) for six “blinded” readers.
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Figure 4. ROC-curves showing the results of visual assessment of C-OCE images for distinguishing
non-tumorous from tumorous breast tissue (a), DCIS from invasive breast cancer (b), low-aggressive
invasive breast cancer from highly-aggressive (c), non-tumorous breast tissue from low-aggressive breast
cancer (d), non-tumorous breast tissue from highly-aggressive breast cancer (e) for six “blinded” readers.

The results of the blinded reader analysis are summarized in Table 4, showing the sensitivity,
specificity and diagnostic accuracy. Each diagnostic index was averaged among all six readers.
High diagnostic values were obtained for the differential diagnosis of all analyzed groups.
The diagnostic accuracy of distinguishing non-tumorous tissue from tumor was 92.4 ± 2.3% for
CP-OCT and 96.0 ± 3.3% for OCE, which determines the OCE method as more specific for detecting
tumorous tissue.

For the first time, the diagnostic efficiency of CP-OCT and C-OCE methods for the differential
diagnosis of non-invasive from invasive breast cancer was established (Se = 90.1 ± 5.7%,
Sp = 70.6 ± 11.3%, Ac = 82.5 ± 7.1% and Se = 90.5 ± 5.3%, Sp = 92.0 ± 6.1%, Ac = 90.4 ± 2.7%,
respectively). Furthermore, we demonstrated the possibility to differentiate invasive low-aggressive
breast cancer subtypez with a favorable prognosis from highly-aggressive breast cancer subtypes
with a poor prognosis for treatment and the course of the disease (Se-83.5 ± 10.5%, Sp-93.5 ± 6.0%,
Ac-87.8 ± 6.5% and Se-87.3 ± 13.8 ± 6.5%, Sp-98.0 ± 3.1%, Ac-89.5 ± 10.0%, respectively). In both cases,
it was demonstrated that C-OCE showed the best diagnostic indicators (Table 4).

Additionally, we performed a diagnostic analysis of the possibility to distinguish non-tumorous
breast tissue from low- and highly-aggressive breast cancer subtypes. It has been shown that the
diagnostic accuracy of the difference between non-tumorous breast tissue and a low-aggressive subtype
of cancer is 88.1 ± 6.0% for CP-OCT and 95.7 ± 4.1% for C-OCE. The diagnostic accuracy of the
difference between non-tumorous breast tissue and highly-aggressive cancer is 97.2 ± 2.8% for CP-OCT
and for C-OCE—98.3 ± 2.2%.

Thus, we demonstrated the possibility to use CP-OCT and C-OCE methods for detecting
different breast cancer subtypes on the resection margin which would minimize the risk of recurrence
and reoperations.
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Table 4. The results of diagnostic test for visual assessment of the CP-OCT and C-OCE images.

AUC (Range) Sensitivity (Se), % Specificity (Sp), % Diagnostic
Accuracy (Ac), %

CP-OCT imaging

Non-tumorous versus tumorous
breast tissue 0.90–0.97 92.0 ± 4.0 93.3 ± 6.0 92.4 ± 2.3

DCIS versus invasive breast cancer 0.74–0.93 90.1 ± 5.7 70.6 ± 11.3 82.5 ± 7.1
Low-aggressive versus

highly-aggressive breast cancer 0.84–0.90 83.5 ± 10.5 93.5 ± 6.0 87.8 ± 6.5

Non-tumorous breast tissue versus
low-aggressive breast cancer 0.85–0.95 85.1 ± 8.8 95.8 ± 4.9 88.1 ± 6.0

Non-tumorous breast tissue versus
highly-aggressive breast cancer 0.94–1.00 98.1 ± 4.4 95.8 ± 4.9 97.2 ± 2.8

C-OCE imaging

Non-tumorous versus tumorous
breast tissue 0.93–0.99 95.0 ± 5.1 97.5 ± 2.7 96.0 ± 3.3

DCIS versus invasive breast cancer 0.86–0.95 90.5 ± 5.3 92.0 ± 6.1 90.4 ± 2.7
Low-aggressive versus

highly-aggressive breast cancer 0.80–1.00 87.3 ± 13.8 98.0 ± 3.1 89.5 ± 10.0

Non-tumorous breast tissue versus
low-aggressive breast cancer 0.91–0.98 95.8 ± 6.5 95.8 ± 3.7 95.7 ± 4.1

Non-tumorous breast tissue versus
highly-aggressive breast cancer 0.97–1.00 98.6 ± 3.2 97.5 ± 2.7 98.3 ± 2.2

3.3. Assessment of Human Breast Cancer Margins

The tests performed in this study demonstrated that, in distinguishing the norm from
low-aggressive cancers (and, moreover, highly aggressive ones), the analysis of both CP-OCT and C-OCE
images the both methods enable high diagnostic accuracy. However, when searching for the transition
between IDC of scirrhous structure and non-cancerous tissue, the C-OCE-based stiffness mapping
(Figure 5c) visualizes the tumor margin much more clearly in comparison with the cross-polarization
images (Figure 5b).
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CP-OCT image in the cross-polarization channel and (c) is the C-OCE images of the same area.
HS denotes hyalinized stroma, and TC—clusters of tumor cells.
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4. Discussion

The results presented here show the high diagnostic value and efficiency of CP-OCT and
C-OCE methods for differential diagnosis of non-tumorous and tumorous breast tissue, with the
further prospect of intraoperative determination of the “positive” margin of tumor resection during
breast-conserving surgery in real time. In addition, the diagnostic efficiency of CP-OCT and C-OCE
methods for differentiation between non-invasive and invasive breast cancers, as well as between
invasive low-aggressive breast cancer subtype with a favorable prognosis (Luminal A, Luminal B
(Her2/Neo-)) and highly aggressive breast cancer subtypes with a poor prognosis for course of the
disease (Her2/Neo+, Non-luminal, TNC).

In previous studies, only standard visual imaging criteria, such as signal intensity and high/low
stiffness, were used for differentiation between tumorous and non-tumorous breast tissues. In this
study, additional analysis criteria were proposed, which made it possible to increase the diagnostic
sensitivity and specificity, significantly reducing the number of erroneous diagnoses. We identified such
additional analysis criteria as the presence of structures and the characteristics of signal attenuation
in depth on cross-polarization images, as well as the presence of inclusions and mosaic structure on
C-OCE images with visually feasible assessment of several stiffness grades.

Previous works have demonstrated that conventional, intensity-based OCT can provide
differentiation between tumorous and non-tumorous breast tissues through both quantitative [18,61–63]
and qualitative [32,61,63] assessment of the OCT signal. Several studies demonstrated that OCE has the
high potential to delineate tumor in breast tissue based on elevated elasticity on a microscale [33,40,41,44].
A recent study [16] demonstrated the ability of structural OCT to identify positive margins in specimens
from BCS. The qualitative assessment of OCT images showed the high diagnostic accuracy of
structural OCT for distinguishing normal and cancerous tissue within the resection bed following
wide local excision of the human breast: sensitivity of 91.7% and specificity of 92.1% [16]. Additionally,
visual assessment of C-OCE images for evaluation of tumor margins in specimens excised during
breast-conserving surgery also provides high sensitivity of (92.9%) and specificity (96.4%) [43].

Breast cancer is a highly heterogeneous disease, both morphologically and genetically. The surgical
approach and the amount of resection depend on the subtype of breast cancer, which, as this study
has shown, can be determined in rapid OCT-based tests, including the possibility of intraoperative
use. The C-OCE and CP-OCT images provide additional contrast between tumor and normal tissue
in comparison with structural OCT. C-OCE and CP-OCT analysis of excised tissue specimens can
distinguish between normal and cancerous tissues by identifying the heterogeneous and disorganized
connective tissue structures indicative for malignancy. We have demonstrated that differences in the
microstructural features of cross-polarization and stiffness images enable differentiation between highly
and low-aggressive breast cancer subtypes confirmed by histopathology. For this purpose, the main and
additional criteria for assigning an image to a particular group were formulated, which are necessary
for a more accurate differentiation of malignant conditions among themselves. For example, a uniform
low-intensity in CP-OCT images and a uniform high level of stiffness in C-OCE images characterize
tumor of a solid structure, while tumor tissue of a scirrhous structure in the immediate vicinity of
non-tumorous breast tissue can also retain homogeneity, or it can lose it and may be represented by
different levels of signal intensity and stiffness.

ROC curves were constructed as a measure of overall accuracy for each reader when
non-cancerous tissue was distinguished from tumor by CP-OCT and C-OCE methods (Figure 3).
In this case, C-OCE showed higher specificity (97.5 ± 2.7% vs. 93.3 ± 6.0%) and diagnostic accuracy
(96.0 ± 3.3% vs. 92.4 ± 2.3%) compared to cross-polarized images. This fact may be caused by the
difficulty in interpreting qualitative OCT criteria based on signal intensity by readers, in comparison
with the criteria for interpreting quantitative OCE images that usually have more contrast and visually
easier assessable differences. Overall, for differentiation between tumorous and non-tumorous tissues,
the C-OCE method has proved to be more efficient.
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Additionally, for more specific differentiation between non-invasive breast cancer and invasive
breast cancer, the following diagnostic parameters were determined for CP-OCT and C-OCE methods:
Se = 90.1± 5.7%, Sp = 70.6± 11.3%, Ac = 82.5± 7.1% and Se = 90.5± 5.3%, Sp = 92.0± 6.1%, Ac = 90.4± 2.7%,
respectively. For distinguishing between invasive low-aggressive and highly-aggressive breast cancer
subtypes, the CP-OCT and C-OCE gave the following results: Se = 83.5 ± 10.5%, Sp = 93.5 ± 6.0%,
Ac = 87.8 ± 6.5% and Se = 87.3 ± 13.8 ± 6.5%, Sp = 98.0 ± 3.1%, Ac = 89.5 ± 10.0%, respectively. Therefore,
in both cases, C-OCE showed better diagnostic indicators (Table 4).

The diagnostic accuracy of the difference between non-tumorous breast tissue and low-aggressive
breast cancer for CP-OCT and C-OCE was found to be fairly high, 88.1 ± 6.0% and 95.7 ± 4.1%,
respectively. Even higher was the Ac of CP-OCT and C-OCE for the difference between non-tumorous
breast tissue and highly-aggressive breast cancer (97.2 ± 2.8% and 98.3 ± 2.2%, respectively).

Accurate determining of the boundaries of tumor resection is more feasible for tumors of a solid
structure in comparison with tumors of scirrhous structure that may resemble fibroadenomas in
OCT-based images. However, the performed targeted histological examination has given a clue for
better understanding of the causes of stiffness increase or decrease and made it possible to define
additional criteria that improved the diagnostic accuracy of C-OCE for various breast cancer subtypes
detection, including non-invasive and low-aggressive tumors.

Thus, the formulated additional (clarifying) criteria for visual assessment of CP-OCT and C-OCE
images provided a higher diagnostic accuracy in differentiation between tumorous and non-tumorous
breast tissues with various grades of aggressiveness. In the future, this will increase the value of these
OCT-based methods in detecting the boundaries of tumor resection during BCS.

5. Conclusions

Both CP-OCT and C-OCE data may be helpful to a surgeon–oncologist for more accurate detection
of a “clean” resection margin during breast-conserving surgery. The test based on assessment of
C-OCE images has shown higher diagnostic accuracy (96%) and sensitivity (95%) in comparison with
CP-OCT images (Se—92%, Ac—92.4%) for breast cancer detection. Furthermore, the preformed study
demonstrated high potential of CP-OCT and C-OCE for differentiating particular molecular-biological
and morphological subtypes of breast cancer with assessment of the tumor aggressiveness, which is
important for subsequent treatment selection.
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