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Abstract: Evidence from recent research shows that automatic visual evaluation (AVE) of photographic
images of the uterine cervix using deep learning-based algorithms presents a viable solution
for improving cervical cancer screening by visual inspection with acetic acid (VIA). However,
a significant performance determinant in AVE is the photographic image quality. While this
includes image sharpness and focus, an important criterion is the localization of the cervix region.
Deep learning networks have been successfully applied for object localization and segmentation
in images, providing impetus for studying their use for fine contour segmentation of the cervix.
In this paper, we present an evaluation of two state-of-the-art deep learning-based object localization
and segmentation methods, viz., Mask R-convolutional neural network (CNN) and MaskX R-CNN,
for automatic cervix segmentation using three datasets. We carried out extensive experimental
tests and algorithm comparisons on each individual dataset and across datasets, and achieved
performance either notably higher than, or comparable to, that reported in the literature. The highest
Dice and intersection-over-union (IoU) scores that we obtained using Mask R-CNN were 0.947 and
0.901, respectively.

Keywords: deep learning; uterine cervical cancer; uterine cervix segmentation; automated visual
evaluation; Mask R-CNN; MaskX R-CNN

1. Introduction

According to the World Health Organization (WHO), there were about 570,000 new cases of invasive
cervical cancer diagnosed in 2018, representing almost 7% of all female cancers [1]. Early detection
and treatment of cervical cancer/pre-cancer can improve survival rate. Various screening modalities
include the Pap test, Visual Inspection with Acetic acid (VIA), and Human Papillomavirus (HPV)
type detection. The VIA test is conducted by applying dilute (3–5%) acetic acid to the cervix during
a gynecological exam, which causes temporary whitening of HPV infected tissue, and then visually
inspecting the cervix [2]. However, while the VIA is simple and inexpensive, high subjectivity has been
reported in [3] where an agreement rate of only 56.8% (538/948 cases) was obtained from 20 expert
colposcopists (12 general gynecologists and 8 gynecologist-oncologists).

Recently, a deep learning-based method called Automatic Visual Evaluation (AVE) was shown to
have the potential to replace VIA as an automatic screening application [4]. The method shows promise
for use in low-to-medium resource settings with high disease burden particularly for pre-menopausal
women in the age group (25–49) who tend to exhibit higher incidence of visually detectable cervical
pre-cancer. The algorithm utilizes an object detection network which is trained using images from
a longitudinal cervical cancer screening study in Costa Rica. The training of the network requires
bounding boxes surrounding the cervix in the images. While bounding boxes are convenient for AVE,
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they are coarse annotations that may contain a significant amount of irrelevant information, such as
clinical instruments (the speculum and swab) and other non-cervical tissues (vaginal walls). In AVE,
the impact of these artifacts is offset by the large number of images used in the study. However,
for tracking lesions on cervical tissue for potential future use with automated diagnostic or therapeutic
recommendations, it would be desirable to develop a high-quality automatic cervix segmentation
technique. Further, accurate cervix boundary extraction is necessary for determining the cervix type.
Also, detecting the squamo-columnar junction or the transformation zone (T-zone) [5,6] is aided by this
process. In this paper, we evaluate the use of recent deep learning-based techniques to automatically
localize and segment the cervix region.

In order to improve and make a segmentation algorithm robust, it is necessary to train it on
a large number of images acquired using a variety of devices (e.g., digital and film camera and
smartphone) from different geographic regions. In this work, we use three datasets collected in
different geographical regions using different data acquisition devices. The datasets have large intra-
and inter-dataset variability with respect to object illumination, lighting conditions, object color, object
position, size, and other related visual factors. Our observation of the images in these datasets is that
while they capture the natural variety in cervix appearance, they are subject to wide variations in
image quality [7]. Image quality is a combination of the coverage of the anatomical region of interest,
focus, illumination, reduced specular reflection off the cervix, absence/reduced presence of clinical
instruments, such as the speculum and swab, and variety in camera zoom levels. Also, a large fraction
of the images in the datasets are weakly annotated with bounding boxes only. Of the small fraction of
images that are strongly annotated with segmentation masks, almost half of them are labeled by more
than one expert for each image. This introduces the need to manage multiple “ground truths” due to
inter-observer variability among the experts annotating the images (Figure 1) [8].

Our goal is to investigate state-of-the-art deep learning methods for automatic cervix region
segmentation that are resilient to variation in expert annotation and robust across diversity in
cervix appearance. Toward this end, we evaluate the algorithms on multiple strongly and weakly
annotated datasets to demonstrate not only the robustness, but also the advantage in using weakly
annotated images as a part of the training set instead of just employing a large number of strongly
annotated images.

Main contributions of this work include: (1) comparing two state-of-the-art deep learning
segmentation algorithms, namely, Mask R-convolutional neural network (CNN) [9] and MaskX

R-CNN [10] for cervix segmentation through (2) extensive single and multi-dataset evaluation using
three large cervix image datasets; and, (3) demonstrating improvement through higher Dice metric and
intersection-over-union (IoU) scores on the same dataset(s) used in prior studies. The rest of the paper
is organized as follows: Section 2 reviews the related studies that have been reported in the literature,
Section 3 describes the two deep learning architectures that we use in this work; Sections 4 and 5
present the experiments, the results and the discussion; Section 6 concludes the study in this paper.

2. Related Work

We broadly divide prior work done in segmenting cervix regions in photographic cervical images
into two categories: (1) those that use conventional image processing techniques, and may use
traditional machine learning approaches; and, (2) those that apply deep learning approaches.

2.1. Conventional Image Processing Techniques

Conventional image processing techniques require human expertise in selecting and extracting
visual (or pixel-based) features that separate the cervix region from non-cervix regions. They are
hampered by: (i) variability in image appearance (e.g., presence of blood, specular reflection from
the moistened tissue, texture variation due to pathology, and occlusion due to medical instruments);
and, (ii) feature selection and representation for maximizing discrimination between the cervix region
from non-cervix regions. In [11], K-means clustering and Otsu’s method are applied to extract the
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cervix region after the step of specular reflection removal, by replacing the region with patches of
similar texture and color. The segmentation is based on thresholding pixel values in HSV and LAB
color space, which might not be robust across data sets when either color or lighting condition changes.
An IoU score of 0.79 is reported in [11]. In [12], cervix segmentation serves as the first step for the
cervix image registration workflow; similar to [11], a fuzzy C-means clustering approach is employed
for cervix segmentation and is reported to achieve an average IoU score of 0.76. In [13], cervix images
captured using cell-phone cameras are segmented through the combination of edge detector, red-color
component filter, curvature filter, and thresholding. The researchers report an average Dice score of
0.9, on a small set of 151 images. Curvature features are used in [14,15] with additional information
provided by shape priors, the proposed curve evolution with the shape prior model achieves an average
Dice measure of 0.81. In addition to the above image processing techniques, statistical modeling
methods have also been employed for cervix segmentation in the literature. In [16], the probability
function is defined by adding a circular/elliptical prior to the existing framework with K-means clusters
from [14]. The model is shape-based in which the cervix can be considered either as circular or elliptical,
and the reported average Dice score is 0.75. In [17], the probability of a pixel being part of cervix is
calculated by maximizing the likelihood function. The performance measure used in [17] is the ROC
(receiver operating characteristic) curve which has an AUC (area under curve) with approximate value
0.9 and is obtained from 250 sample images acquired from only 4 patients. Sparse representation
and group sparsity based feature selection are employed in [18–20] to segment the biomarker of
acetowhitened [6] area on cervix, and a sensitivity improvement of 0.12 and specificity of 0.05 is
achieved [19] using discriminative sparse representation compared with the sparse representation
approach used in [20].

2.2. Deep Learning-Based Techniques

Although deep learning techniques have been widely applied for segmentation tasks in various
medical image modalities, few research groups report applying them for cervix region segmentation
in photographic images of the uterine cervix. The deep learning U-Net [21] algorithm was applied
for the work reported in [22] on 6692 images from the Intel & MobileODT Cervical Cancer Screening
Competition [6]; these images were cropped into 32 × 32 pixel patches; the quantitative results
were not reported, however, this might be because, similar to [17], the cervix segmentation was just
used as preprocessing for the subsequent classification network. In [23–25], a convolutional neural
network (CNN) model is implemented over a cervix dataset collected by MobileODT (Kaggle Dataset);
the reported average Dice score is 0.67. Very recently, one research group applied Mask R-CNN on
cervix segmentation tasks, the obtained (Dice, IoU) score is (0.8711, 0.765) on “Kaggle Dataset” as
reported in [26]. We use the same dataset in our study and compare our results with these techniques.

3. Data

Three datasets were used in this evaluation. They are the Costa Rica Vaccine Trial (CVT) dataset,
the Atypical Squamous Cells of Undetermined Significance/Low-grade Squamous Intraepithelial
Lesion (ASCUS/LSIL) Triage Study (ALTS) dataset, both collected by the National Cancer Institute
(NCI), and the “Kaggle Dataset” which is from the Intel & MobileODT Cervical Cancer Screening
Competition hosted on Kaggle.

3.1. CVT Dataset

The Costa Rica Vaccine Trial (CVT) was conducted by the NCI and its partners in agreement
with the Ministry of Health of Costa Rica [27,28]. After receiving the HPV16/18 vaccines, women
participating in the study were referred to colposcopy if the cervical lesion persisted or if they had
high grade cytology at any time during the trial. The images of the uterine cervix of women referred to
colposcopy were acquired (with permission obtained during enrollment in the study) on photographic
film and digitized. The dataset, which we call set A, consists of 3398 images (from 1674 unique patients)
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that we split into 80%/20% training and testing partitions. The split is performed randomly on the
patient level to ensure that no woman’s images are in both training and testing. This prevents data
leakage that might be brought about by using multiple images captured from the same woman in both
the training and test sets. All the images in this dataset have cervix segmentation masks created by an
expert gynecologist. From this CVT set we derived our two subsets: (i) Amask which refers to the subset
of images that have the fine segmentation masks; and, (ii) Abox which refers to the subset of images
that only have coarse bounding box surrounding the cervix.

3.2. ALTS Dataset

As reported in [29], the atypical squamous cells of undetermined significance/low-grade squamous
intraepithelial lesion (ASCUS/LSIL) Triage Study (ALTS), also conducted by the NCI, was a randomized
clinical trial conducted in the United States that was designed to determine the optimal management
plan for low-grade cervical abnormalities. The ALTS image data used in our work, that we call set B,
is a subset of 939 images taken from the ALTS study for the purpose of studying observer variability
in visual interpretation of cervical abnormalities. These images were annotated using the Boundary
Marking Tool (BMT) developed by the National Library of Medicine (NLM) by several medical experts
in cervical oncology. To resolve small variations in the boundary markings from multiple expert
observers, our naïve approach was to define the union of these individual boundaries as the final
ground truth (GT) for each image (Figure 1). Next, the bounding box annotations are created by
plotting a rectangular box tightly enclosing the obtained union. One should only use dataset B entirely
for training or testing, but not for both since the patient ID associated with each image is not available
and randomly splitting the dataset would result in data leakage. From this dataset we derived our two
subsets Bmask and Bbox.
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Figure 1. Atypical Squamous Cells of Undetermined Significance/Low-grade Squamous Intraepithelial
Lesion (ASCUS/LSIL) Triage Study (ALTS) dataset image examples (Original Image), the samples of
experts’ annotations (GT1–GTn ) and the final ground truth (Final GT), the white blobs denote the
cervix region. Note that the 2nd row image is labeled by 2 experts with only 2 annotation masks, so the
3rd column is blank. The 1st and 3rd row images have 3 or more than 3 (not shown) annotation masks.
The “Final GT” is decided as the union of all the available masks of that image.

3.3. Kaggle Dataset

This dataset containing 1448 training images and 512 testing images is collected by MobileODT
using their digital cervical imaging device for Enhanced Visual Assessment (EVA). It is part of the data
hosted on Kaggle [6] for the “Intel & MobileODT Cervical Cancer Screening Competition” whose goal
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is to develop novel algorithms that classify the images into the three cervix types related to the age
progression in women (Figure 2). The image annotations include cervix region contours which were
made available by Fernandes [25]. The quality of these images varies widely, and includes motion blur,
presence of the speculum and its reflection on the cervix tissue, poor lighting, poor camera positioning,
among other flaws. From this “Kaggle dataset” we derived our two subsets Cmask and Cbox.
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Figure 2. Example images from Kaggle [6] showing cervix images of different types. Type 1 is on the
top row, while Types 2 and 3 are on the middle and bottom rows, respectively.

For the testing split of Datasets A and C, no bounding box annotation is generated since bounding
boxes for the tested images are not needed in evaluating the segmentation performance. We denote the
available mask/bounding box annotations as “mask” or “box”. “mask” refers to the mask annotations
generated for the training split of the dataset(s). We summarize in Table 1 the quantitative details of
the three datasets used:

Table 1. Quantitative details of Datasets A, B, and C.

Dataset Training Split Testing Split

A 2797 (from 1354 women) 601 (from 320 women)

B This dataset contains 939 images, which are used, either (1) all as training data; or (2) all as
testing data. All the images have mask annotations and box annotations.

C 1448 502

4. Methods

As mentioned earlier, we investigate two state-of-the-art deep learning architectures, viz., Mask
R-CNN and MaskX R-CNN, for the cervix segmentation problem. We categorize our datasets into
strongly or weakly labeled subsets (mask and box). Strongly labeled sets have fine cervix boundaries
from which we derive masks of the cervix region, while weakly annotated sets have only the bounding
box around the cervix region. Mask R-CNN can only be trained using strongly annotated data; however,
MaskX R-CNN can be trained using both dataset types. For example, we train a MaskX R-CNN model
on a combination of weakly annotated data and strongly annotated data that was also used to train the
Mask R-CNN model. We compare the segmentation results using five strategies: (1) simple single- and
cross-dataset training and testing: training and testing data is sourced from only one dataset, but the
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dataset used for training or testing could be different; (2) boosting with bounding box information:
evaluate segmentation performance when adding weakly annotated images to a strongly annotated
training set; (3) modified weak annotations: where bounding boxes are relaxed to include neighboring
pixels to allow uncertainty in expert observer annotation; (4) multi-dataset training and testing: training
and/or test data are pooled from multiple datasets; (5) different training strategies: where training is
done end-to-end or stage-wise; and, both Mask R-CNN and MaskX R-CNN, described below, are built
on an underlying “backbone” network (e.g., ResNet50, ResNet101 [30]) that we compare results across.

4.1. Mask R-CNN

Mask R-CNN [9] is an extension of the Faster R-CNN [31] deep learning architecture for
segmentation of object “instances” in an image. It adopts the same two-stage procedure as Faster
R-CNN, where the first stage is a Region Proposal Network with a Feature Pyramid Network [32]
structure, followed by a second stage predicting the class and bounding box in parallel. In addition,
a mask branch is added in the second stage which is used to predict binary masks of the objects,
yielding finer spatial definition. A feature pyramid structure extracts features on different scales for
both the region proposal and classification (Figure 3). This may aid in improving accuracy and speed
compared with single-scale feature map structures. Furthermore, a novel image region of interest (RoI)
alignment technique, RoIAlign [9], is applied to compute the exact values of the input features at four
regularly sampled locations in each evenly split RoI bin. Bilinear interpolation is employed to avoid
the information loss brought by simply pooling and quantizing. Since the supervised architecture
requires training with strongly annotated image data, we focus on training and testing Mask R-CNN
using single or multiple datasets where mask ground truth is available (i.e., Amask, Bmask, and Cmask).
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4.2. MaskX R-CNN

Several other deep learning methods in the R-CNN family also require strongly annotated data,
limiting their use when only object bounding boxes are available. The MaskX R-CNN [10] network was
created to address this “data annotation gap” in the training process by taking advantage of both types
of annotations, bounding box and mask. Briefly, MaskX R-CNN augments the Faster R-CNN bounding
box prediction model with additional mask processing which consists of a small convolutional neural
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network (weight transfer network) and a Multi-Layer Perceptron (MLP), together known as “mask
heads” (Figure 4). MaskX R-CNN can be trained using two strategies, depending on how “mask heads”
are used: (i) stage-wise training; and, (ii) end-to-end training.Diagnostics 2019, 9, x FOR PEER REVIEW 7 of 16 
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4.2.1. Stage-Wise Training

Since MaskX R-CNN is built upon Faster R-CNN by adding mask heads; its training can be
separated into two stages. In the first stage, a Faster R-CNN is trained using only the bounding box
ground truth provided. In the second stage, the mask heads are trained while freezing the bounding
box head and features. We provide only a small number of mask ground truth images in the second
stage to help the mask heads learn to convert the bounding box prediction weights obtained in the first
stage to fine mask boundary predictions. Taking our datasets A and B as an example, we train the
network using training split of Abox and Bbox in the first stage and then use the related Amask or Bmask
only in the second stage. Finally, we evaluate the network on the test splits of both A and B datasets.
We also apply this training strategy over all possible combinations of our datasets A, B, and C.

4.2.2. End-to-End Training

It was reported in both [9] and [10] that simultaneous multi-task training can achieve better
performance than working with each task separately in stage-wise training for the COCO dataset.
In our scenario, we also conduct end-to-end training which jointly trains the bounding box head and
the mask heads. Note that the bounding box weight gradient is not computed to avoid the class-specific
weight discrepancy problem as stated in [10]. We train the same dataset combinations in this manner
as we do in stage-wise training; the comparison is discussed in later sections. This is an interesting
study because the COCO dataset comprises images that are quite different in appearance and content,
while our images are very similar overall, particularly in the cervix region.

4.3. Implementation Details

We resize images such that their shorter edge is 532 pixels and maintain the image aspect ratio.
The training is done on high performance computers powered with Nvidia Tesla V100 graphical
processing units (GPU). We use mini-batch size of 2 images per GPU and an RoI mini-batch size of
512. An RoI is considered acceptable if it has IoU with a ground-truth box of at least 0.5. We train the
algorithm on 1 GPU for 180,000 iterations with a learning rate starting at 0.001 and decaying by 10 times
at iterations 80,000 and 120,000. The weight decay factor and momentum is set to be 0.0001 and 0.9,
respectively. We use ResNet50 and ResNet101 [30] separately as the backbone, with 1 image per GPU
and the same number of iterations, initializing with ImageNet pre-trained weights. We apply only
scaling augmentation, although it is possible that more data augmentation might help in improving
the overall performance.
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5. Evaluation and Discussion

We compare the segmentation results using the Dice and IoU scores calculated from the predicted
segmentation masks. As mentioned above there are five strategies for evaluating the algorithms, viz.
(1) simple single- and cross-dataset training and testing; (2) boosting with bounding box information;
(3) modified weak annotation; (4) multi-dataset training and testing; and (5) different training strategies.

5.1. Single- and Cross-Dataset Training and Testing

We train Mask R-CNN with Amask and Cmask separately and test each of the models on respective
test subsets. We use the following 4 training and testing scenarios: (1) train with Amask, test on test
split of A; (2) train with Cmask, test on test split of C; (3) train with Amask, test on test split of C; and,
(4) train with Cmask, test on test split of A. By observing the results of steps (1) and (2) we can evaluate
the performance and inspect the robustness of Mask R-CNN in fully supervised learning within the
same dataset. Meanwhile, to understand the difference in performance across datasets, we compare
the quantitative results of steps (1) and (3), as well as of (2) and (4), where the same model is tested on
different datasets.

Also, for MaskX R-CNN we apply the same 4 training scenarios with only slight differences.
For example, for the stage-wise training of (1) above, we trained the first stage Faster R-CNN with
A_box and then we trained the second stage mask heads with Amask. We tested the trained model on the
test split within the same dataset, as well as across datasets. We further compared each of the 4 testing
results of MaskX R-CNN with the corresponding result obtained from Mask R-CNN, in order to (1)
observe the performance difference between the two deep learning architectures on the same task; and,
(2) as a verification on the correctness of test results from the two architectures. The segmentation
results are visualized in Figure 5 with both ground truth and predicted contours marked, and the
quantitative results are provided in Table 2.
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Figure 5. Visualization and Comparison of results from Mask R-CNN and MaskX R-CNN tested on
datasets A and C. The 1st row images are test results from MaskX R-CNN, the 2nd row images are
results from Mask R-CNN. The green lines are the ground truth marked by human experts, red lines
are model predictions.

From Table 2, we see that for training and testing with the same dataset: (i) Mask R-CNN achieves
best (Dice, IoU) scores on dataset A of (0.9446, 0.8970) with ResNet50, as compared to the best scores
on dataset C of (0.9197, 0.8673) achieved using ResNet101; and, (ii) MaskX R-CNN network achieves
best scores on dataset A of (0.9418, 0.8925) with ResNet101, as compared to best scores on dataset C of
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(0.8867, 0.8153) also using ResNet101. Note that we obtain higher scores for dataset A as compared
to C for both network architectures. A possible interpretation is that dataset C images are inherently
more complex for this task, or there are insufficient number of images for representing the variety in
cervix appearance.

Table 2. Results for training within and across datasets (“BaseNet” denotes the basic deep learning
structure used in feature pyramid and region proposal network). The green bold font highlights the
compared results obtained in single dataset training and testing, and red bold font highlights the
compared results obtained in cross-dataset training and testing.

Training
Dataset

BaseNet

Testing Results on A

Mask R-CNN MaskX R-CNN

Dice IoU Dice IoU

A
ResNet50 0.9446 0.8970 0.9405 0.8902

ResNet101 0.9438 0.8960 0.9418 0.8925

C
ResNet50 0.9107 0.8401 0.8664 0.7711

ResNet101 0.9164 0.8497 0.8902 0.8075

Testing Results on C

A
ResNet50 0.7385 0.6296 0.7798 0.6646

ResNet101 0.7578 0.6456 0.7704 0.6547

C
ResNet50 0.9106 0.8572 0.8788 0.8058

ResNet101 0.9197 0.8673 0.8867 0.8153

We have also investigated the widely used image object segmentation method, U-Net [32],
and compared the U-net results with Mask R-CNN and MaskX R-CNN in our study. Compared with
the Mask R-CNN (IoU: 0.8970) and MaskX R-CNN (IoU: 0.8925) presented above, U-Net achieved a
significantly lower IoU (0.741). Note that the U-Net is trained using the train split of dataset A and
tested on the test split of dataset A, and segmentation sample images are shown in Figure 6 below:
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Figure 6. U-Net segmentation examples. Left: original image; middle (red): ground truth; right (blue):
automatic segmentation. The top-row segmentation has an intersection-over-union (IoU) score of 0.834,
the bottom-row segmentation has an IoU score of 0.671.

As shown in Table 2, we also conducted training and testing across datasets. When we train the
model on A, test the model on C, Mask R-CNN achieves best (Dice, IoU) scores of (0.7578, 0.6456),
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and MaskX R-CNN achieves (0.7798, 0.6646). Note that these scores are considerably lower than when
dataset C was trained and tested on itself. When we reverse the training and testing roles, and train on
C and test on A, Mask R-CNN achieves (0.9164, 0.8497), and MaskX R-CNN achieves (0.8902, 0.8075)
both using the ResNet101 backbone.

Observation: when training on dataset C the performance is approximately stable across network
architectures (Mask R-CNN or MaskX R-CNN) and across test datasets (A or C); when training on
dataset A, performance is approximately stable across network architectures, but differs significantly
across test datasets. Results in Table 3 show that our methods outperform the state of the art from
Section 2.

Table 3. Baseline performance for cervical region segmentation from previously reported studies.

Ref. Images Measurements

[11] 110 from 100 women IoU: 0.79

[12] NA IoU: 0.76

[13] 151 Dice: 0.90

[14] 278 (subset of Dataset B) Dice: 0.75

[16] 378 (subset of Dataset B) Dice: 0.81

[17] 250 from 4 women AUC: 0.90

[18–20] 100 sensitivity: 0.71
specificity: 0.82

[22] Dataset A IoU: 0.74

[23–25] 1480 (Dataset C) Dice: 0.67

[26] Dataset A (Dice, IoU): (0.8711, 0.765)

Since dataset B should not be split into training and test subsets, we use the dataset here for testing
only. As shown in Table 4, we obtain higher scores using the model trained with dataset C than the
one trained with dataset A.

Table 4. Results for training on dataset A or C and testing on dataset B.

Training
Dataset

BaseNet

Testing Results on B

Mask R-CNN MaskX R-CNN

Dice IoU Dice IoU

A
ResNet50 0.8443 0.7522 0.8345 0.7377

ResNet101 0.8481 0.7569 0.8359 0.7395

C
ResNet50 0.8863 0.8166 0.8700 0.7904

ResNet101 0.8873 0.8186 0.8747 0.7976

5.2. Boosting with Bounding Box Information and MaskX R-CNN

As discussed in Section 5.1, the performance of cross-dataset testing may be significantly impacted
when the training data is not sufficiently representative of the test data; this happens when we train
with dataset A and test on dataset C. This negative impact may be expected to worsen when the
quantity of strongly labeled data is very small. We investigate the effectiveness of MaskX R-CNN
for training when we have a large collection of weakly annotated data, but only a small collection of
strongly annotated data. Specifically, we train MaskX R-CNN with the (weakly annotated) Abox and
Cbox data pooled with the (strongly annotated) Amask data. MaskX R-CNN may play a significant role
in this case, by using both and Cbox for training the bounding box head and Amask for training the mask
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head. We carry out this procedure and compare this result with the one obtained in Section 5.1. Table 5
shows the Dice/IoU scores obtained.

Table 5. MaskX R-CNN DIC/IoU scores obtained with datasets A and C_box .

Training
Dataset

BaseNet
Testing Results on A Testing Results on C

Dice IoU Dice IoU

A + C_box
ResNet50 0.9418 0.8922 0.8993 0.8220

ResNet101 0.9410 0.8910 0.8910 0.8093

Compared with training with only Amask, as described in Section 5.1, and adding the additional
Cbox data in training, the MaskX R-CNN achieves (Dice, IoU) scores of (0.9418, 0.8922), using ResNet50,
on dataset A, and (0.8993, 0.8220), using ResNet50, on dataset C. The performance on dataset A remains
similar to the results of training and testing on dataset A reported in Table 2; this shows that the model
is robust on dataset A with respect to the mixture of Amask and Cbox for training. Furthermore, a large
performance boost of (0.1195, 0.1574) in (Dice, IoU) up from previously obtained 0.7798, 0.6646, when
training on A, testing on C can be observed, showing that the segmentation is improved by utilizing
additional bounding box information in MaskX R-CNN. Figure 7 shows the segmentation example of
this model tested on datasets A and C.
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Figure 7. Segmentation examples of MaskX R-CNN trained with A + C_box. Top row: images from
dataset A. Bottom row: images from dataset C. The green line denotes the ground truth boundaries,
the red line indicates the automatic boundaries.

5.3. Modified Weak Annotation

We notice variation among the cervix fine boundaries that are marked by different experts.
This implies that the weak annotations might also vary. We evaluate the resilience of the segmentation
algorithm to variations in bounding box size. For this, we create three datasets by relaxing Cbox
annotation boundaries by 10, 20, and a random number of pixels in the range (0, 35). Then we train the
first stage with these modified bounding box annotation sets. We use the same Amask in the second
stage to train the mask heads. We compare the three corresponding results with those we presented
in the previous section. Note that we are using images of approximate size 530 × 400 pixels, so any
changes of magnitude 10–30 pixels could add significant noise to our training dataset and models.

As shown in Table 6, we find that when a bounding box is extended in size, the performance
(Dice, IoU) of our model remains stable (0.9376, 0.8850) on the strongly annotated dataset A. As for
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dataset C, we get a Dice score of 0.8413 if the bounding boxes are extended by random numbers of
pixels, and this is higher than the 20-pixel extension results and lower than the 10-pixel extension
results. We can see that our models remain relatively stable and robust to the modifications on training
dataset. Comparing the Dice and IoU scores between Tables 5 and 6, we find that the performance
on dataset C drops after extending the bounding boxes, and degrades further if we keep doing so.
This is consistent with our expectations since dataset C only provides bounding box annotation and the
testing performance should be highly correlated with the visual content within the bounding boxes.

Table 6. Quantitative results for stage-wise training (ResNet50) using dynamic bounding box sizes.

Training
Dataset

Dynamic
Modifier

Testing Results on A Testing Results on C

Dice IoU Dice IoU

A + C_box

10 pixels 0.9376 0.8850 0.8635 0.7670

20 pixels 0.9369 0.8829 0.8280 0.7164

Rand (0, 35)
pixels 0.9387 0.8863 0.8413 0.7350

5.4. Multi-Datasets Training and Testing

We further examine the segmentation performance on both Mask R-CNN and MaskX R-CNN
trained with more than one dataset, using seven (7) box and mask dataset combinations for training
and testing. Firstly, we train the Mask R-CNN with combinations of Amask, Bmask, and Cmask. We also
train a MaskX R-CNN with the same dataset but with the bounding box in the first stage and mask in
the second stage. Secondly, we train MaskX R-CNN only, utilizing combinations of mask and bounding
box components of the three datasets. In each training dataset combination, we have at least one mask
dataset and at most two bounding box datasets. Results are shown in Table 7 below.

Table 7. Results when training with multiple datasets. The “(box)” denotes that only the bounding box
annotations of this dataset are used in training; otherwise, mask annotations are used. Best results are
highlighted in bold font.

Training
Dataset

Testing
Dataset

BaseNet
Mask R-CNN MaskX R-CNN

Dice IoU Dice IoU

A + C

A
ResNet50 0.9446 0.8971 0.9138 0.8458

ResNet101 0.9469 0.9009 0.9231 0.8622

C
ResNet50 0.9161 0.8630 0.8866 0.8073

ResNet101 0.9200 0.8694 0.8758 0.7908

A + B

A
ResNet50 0.9442 0.8966 0.9437 0.8956

ResNet101 0.9442 0.8964 0.9421 0.8932

C
ResNet50 0.8176 0.7230 0.8158 0.7159

ResNet101 0.8219 0.7216 0.8066 0.7017

A + B + C

A
ResNet50 0.9454 0.8985 0.9376 0.8852

ResNet101 0.9462 0.8999 0.9325 0.8713

C
ResNet50 0.9159 0.8623 0.8985 0.8228

ResNet101 0.9213 0.8700 0.8904 0.8010
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Table 7. Cont.

Training
Dataset

Testing
Dataset

BaseNet
Mask R-CNN MaskX R-CNN

Dice IoU Dice IoU

A + B +
C(box)

A
ResNet50 N/A N/A 0.9387 0.8870

ResNet101 N/A N/A 0.9376 0.8857

C
ResNet50 N/A N/A 0.8915 0.8102

ResNet101 N/A N/A 0.8866 0.8021

A(box) + B +
C(box)

A
ResNet50 N/A N/A 0.9244 0.8623

ResNet101 N/A N/A 0.9050 0.8311

C
ResNet50 N/A N/A 0.8841 0.7966

ResNet101 N/A N/A 0.8819 0.7945

A(box) + B +
C

A
ResNet50 N/A N/A 0.9318 0.8751

ResNet101 N/A N/A 0.9353 0.8809

C
ResNet50 N/A N/A 0.8962 0.8190

ResNet101 N/A N/A 0.8869 0.8038

A(box) +
B(box) + C

A
ResNet50 N/A N/A 0.9294 0.8710

ResNet101 N/A N/A 0.9308 0.8732

C
ResNet50 N/A N/A 0.8928 0.8139

ResNet101 N/A N/A 0.8906 0.8096

Observations: overall, for Mask R-CNN, training with all the strongly annotated datasets, Amask,
Bmask, and Cmask together gives the best performance. When substituting the weakly annotated dataset(s)
for the corresponding strongly annotated datasets, we can still achieve comparable performance using
MaskX R-CNN.

5.5. Comparing Stage-Wise Training to End-to-End Training

Results presented so far for MaskX R-CNN use stage-wise training, however, according to [10],
this approach could be suboptimal. To evaluate this assertion, we evaluate end-to-end training for
MaskX R-CNN on datasets A and C and compare its performance with those obtained above. Table 8
shows the results which indicate the end-to-end training, indeed, improve segmentation performance.

Table 8. Performance comparison between stage-wise training and end-to-end training strategies,
quantitative results obtained by testing datasets A and C using ResNet50 as BaseNet.

Training
Dataset

Training
Strategy

MaskX R-CNN

Testing Results on A Testing Results on C

Dice IoU Dice IoU

A + C
Stage-wise 0.9138 0.8458 0.8866 0.8073

End-to-end 0.9452 0.8980 0.9081 0.8368

As for timing, for stage-wise training and taking “A + C” as an example, training MaskX R-CNN
takes 5 h on ResNet50 and 6.5 h on ResNet101 for training two stages. On the other hand, end-to-end
training takes 4 h on ResNet50 and 5.3 h on ResNet101.
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5.6. Error Cases

We also study images that have relatively low Dice and IoU scores, which we denote as “error
cases”. In Figure 8, we show examples of such cases (Dice score < 0.9) due to mismatch with pre-defined
ground truth; most of these have the presence of visual distractors such as pubic hair, intra-uterine
devices (IUDs), the speculum, and even parts of human hands. In some images we even find that the
cervix region occupies less than 50% of the entire image. We also observe that low Dice/IoU scores could
be a result of false negatives of the ground truth annotations, suggesting subjectivity in the markup.
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6. Conclusions

In this work, we have presented an investigation of state-of-the-art deep learning methods for
automatic cervix region segmentation and their resilience to variation in expert annotation and their
robustness to diversity in appearance of cervix in the image. Toward this goal, we evaluated the
algorithms on multiple strongly and weakly annotated datasets, both for homogeneous (“within
dataset”) and heterogeneous (“across datasets”) data. We also explore the effect of training with a mix
of a small fraction of strongly annotated data and a large fraction of modified weakly annotated data
from a different dataset, thereby evaluating the reliability and robustness of the models to perturbations
and variations in expert observer annotations.

From the results we obtained, we can see that dataset C is more challenging and, perhaps,
representative of the real world variety in image acquisition. Further, we achieved our best performance
when using all three datasets in training a Mask R-CNN. When substituting the weakly annotated
dataset(s) for the corresponding strongly annotated datasets, we can still achieve comparable
performance using MaskX R-CNN. More importantly, we find that with MaskX R-CNN, the cross-dataset
performance can be significantly boosted with additional data having only bounding box annotations.
This is a promising finding suggesting that using more weakly annotated image data can serve as a
surrogate when fine-boundary segmentation is of insufficient quantity.

Accurate cervix segmentation can help in disease tracking and perhaps even assist in automated
longitudinal analysis after biopsy or training an artificial intelligence (AI) algorithm to augment
therapeutic decision-making. It can also assist in retrieving images with similar lesions for visual
analysis in large datasets. As next steps, we plan to continue optimizing the algorithm with respect to
segmentation performance.
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