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Abstract: Understanding the thermodynamics of the duplication process is a fundamental step
towards a comprehensive physical theory of biological systems. However, the immense complexity of
real cells obscures the fundamental tensions between energy gradients and entropic contributions that
underlie duplication. The study of synthetic, feasible systems reproducing part of the key ingredients
of living entities but overcoming major sources of biological complexity is of great relevance to deepen
the comprehension of the fundamental thermodynamic processes underlying life and its prevalence.
In this paper an abstract—yet realistic—synthetic system made of small synthetic protocell aggregates
is studied in detail. A fundamental relation between free energy and entropic gradients is derived
for a general, non-equilibrium scenario, setting the thermodynamic conditions for the occurrence
and prevalence of duplication phenomena. This relation sets explicitly how the energy gradients
invested in creating and maintaining structural—and eventually, functional—elements of the system
must always compensate the entropic gradients, whose contributions come from changes in the
translational, configurational, and macrostate entropies, as well as from dissipation due to irreversible
transitions. Work/energy relations are also derived, defining lower bounds on the energy required for
the duplication event to take place. A specific example including real ternary emulsions is provided
in order to grasp the orders of magnitude involved in the problem. It is found that the minimal work
invested over the system to trigger a duplication event is around ~10~!3 J, which results, in the case
of duplication of all the vesicles contained in a liter of emulsion, in an amount of energy around ~1 kJ.
Without aiming to describe a truly biological process of duplication, this theoretical contribution
seeks to explicitly define and identify the key actors that participate in it.

Keywords: protocell duplication; artificial life; thermodynamics of life; thermodynamics of
duplication; stochastic thermodynamics

1. Introduction

How living beings have been able to overcome the entropic forces to develop increasingly complex
individuals which, in turn, maintain their functionality is an open question and one of the hardest
problems of modern science [1-12]. The exhaustive analysis of the energy flows in real living entities
collides with the extreme complexity of even the simplest bacteria. Therefore, one must first set what
are the physical defining properties of living beings and, then, try to attack the problem by cutting it into
pieces. Each piece should incorporate a key or several key features, simple enough to accept a rigorous
analysis, but complex enough to shed light to certain facets of the problem. The later integration
of all pieces, however, will likely be much more than building a puzzle, for it is clear that the cross
dependencies between all the building blocks will introduce an additional layer of complexity.

Following this philosophy, we will focus here on two crucial properties of living beings, according
to accepted definitions of life discussed among scholars [13-17]. Specifically, we will concentrate
on systems able to: (i) Capture material resources and turn them into building blocks by the use
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of externally provided free energy—and eventually undergo a duplication cycle and (ii) Keep its
components together and distinguish itself from the environment. It is assumed that the compartment
contains the metabolic and information system—if any. Our simplified system, thus, will lack
two crucial features of living beings, namely, (iii) To process and transmit inheritable information
to progeny and (iv) To undergo Darwinian evolution through variation of the copied inheritable
information and a successive selection of the better progeny. We will thus focus on the thermodynamic
properties of the duplication process, and we will skip all the complexity arising from other phenomena.
It is worth to recall here that this kind of approach, where the essential physics of the duplication
problem is addressed has a long history, dating back to the late thirties of the 20th century, with the
highly influential works of N. Rashevsky [1].

In contrast to the usual top-down approaches followed in biology, we will address this problem
using a bottom-up approach. In such kind of approaches to life-related phenomena, physical building
blocks and chemical processes are externally assembled and triggered, creating artificial, synthetic
entities that mimic some of the crucial properties of living beings. Consistently, this approach has been
named Artificial Life [16,18-20]. Artificial cells, or, protocells are usually composed by emulsions [21]
made of mixtures of lipids, precursors, and water [15,16,19,20,22-28]. The foundation of this approach
is based on three main starting points: First, it provides a framework where energy imbalances trigger
the emergence of cell like aggregates [21], second, it is possible to externally drive simplified metabolic
reactions [15,16,26,28], and, third, it uses the same type of building blocks—mainly lipids—that
compose an important part of the structure of most of the living organisms [29]. Crucial to our
aims, it is worth to remark a couple of recent results: First, numerical approaches have shown that
duplication dynamics as a consequence of energy imbalances due to geometrical frustration is expected
in those systems, if properly driven out of equilibrium [30]. Second, recent experiments succeeded
in duplicating real artificial protocells through a specific oil-in-water droplet system with replicating
information templates [31]. This result is certainly remarkable, but our approach does exclude the
role of any information/replication dynamics. In doing so, we explore how far can we go by just
taking into account general stability properties and energy imbalances to explain and characterize
the duplication process. The work presented here runs in parallel to an interesting complementary
approach taken in [32], where the kinetics involved in the duplication events of synthetic systems was
studied in detail.

In this paper we will work with a generic emulsion system [21]. We will make use of the well
understood free energy landscape of such systems, where the contributions coming from aggregate
geometry and size have been long studied [21,33,34], as well as the non-trivial contributions of the
entropic terms [35,36]. The impact of a changing energy landscape—which eventually can favour
a duplication event—will be studied from a generic non-equilibrium situation making use of modern
methods arising from the emerging field of Stochastic Thermodynamics [37-42]. Within this framework,
the evolution of the system can be studied following the individual trajectories in the phase space and,
importantly, exact relations between energy and work can be obtained, even in out of equilibrium
cases. In addition, relations between energy, entropy and information arise naturally [43,44].

The remainder of the paper is organized as follows: In the next section, we describe the
thermodynamics of the abstract emulsion system in detail. We derive its free energy landscape,
Section 2.1, the equilibrium distributions, Section 2.2, and the detailed balance condition over
transitions, Section 2.3. Next, in Section 2.4, we expose the generic protocol that drives the system
towards the occurrence of a duplication event. We end the section where the system is presented by
exploring the orders of magnitude involved in these kind of systems, Section 2.5. Here we analyze the
quantitative values of the thermodynamic functionals presented generically in the previous sections
for a real microemulsion system. The thermodynamic analysis of the duplication thresholds is the
core of section III. First, we derive a general relation for duplication probabilities, Section 3.1. Then,
in Section 3.2, we explore the consequences of this result for a system evolving in a quasi-static
fashion. Section 3.3 generalizes the previous equilibrium approach by providing an exact equality
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between probabilities of duplication thresholds in a specific non-equilibrium scenario, in which the
relaxation process that may eventually lead to duplication happens between two states which may not
be in equilibrium. This equivalence leads us to define general duplication scenarios and derive the
general conditions of duplication, as well as the amount of work invested over the system to trigger
a duplication event, and the conditions for the perpetuation of the duplication cycle. Section 3.4 refers
to the free energy/entropy relations for the perpetuation of the duplication cycle in time. The final
section is devoted to discuss the implications of the presented results. The whole paper is aimed to be
self-contained and details of the derivations are provided in the Appendix A to make it understandable
to non-specialized audiences.

2. The System

Our system is conceived as being an abstract emulsion in a kind of reaction tank of volume Vgyst
connected to a heat reservoir at inverse temperature f = %—we setkg = 1. Let X = (Xy,..., X1),
where X; is a specific kind of lipid species populating the system and Y = (Y1, ..., Yp), where Y; is a
specific kind of precursor/surfactant species populating the system. Let Xiot = (X1 tot, ---» XI.tot), Yiot =
(Y1 tots - Y tot) the total amount of molecules of the different species of lipids and precursors that lie
in aqueous solution inside our volume. We refer to Xiot, Ytot as the boundary conditions. As we shall see,
they may change in time, under the action of an external protocol.

Due to the hydrophobic/hydrophilic nature of the surfactant molecules, we assume that (part of
them) tend to aggregate in spheroidal compartments. Surfactants are supposed to populate the surface
of the aggregates. No assumptions are made on the specific nature of the membranes or the interior of
the aggregates, leaving the discussion always in a general plane. A state 0, of our system is described
by a 3-tuple:

O = O'H(Xa, Ya,n) ,

where X, = (X1,a, - X10) and Y, = (Y14,.... Yp,) are the amount of lipids and precursors forming
aggregates, respectively, and n the number of aggregates present in the volume. In general, and if
no confusion can arise, we refer to a given state as ¢, instead of o, (}_ia, Y,, n) for notational simplicity.
We keep the label subscript “,” accounting for the number of aggregates only for notational
convenience. When we introduce time dependence, we write ¢, = 0,,(Xa(t), Ya(t),n(t)). Not all
molecules will be part of the aggregates. Therefore, we must account for these molecules in bulk.
Consistently, given a state oy, ( Xa, Ya, n) occuring under the boundary conditions Xtot, Ytot, we wil have
that f(b = Xiot — Xa = (X1ps - X1 p) and Yb =Yt — Y, = (Y1p, ..., Ypp) are the amount of lipids and
precursors in bulk, respectively.
A macrostate or coarse-grained state &, is defined as the 4-tuple:

On = 5_n(itot/ l?’tot/ n, P(Un|&n)) ’

where p(0,|0,) is the probability distribution of finding ¢, as a particular realization of this
macrostate. This macrostate can be realized through any state containing Xiot, Yiot and 1 protocellular
aggregates following the distribution p(0,|5,). In case of time dependence we write &, =
O (Xiot (1), Yiot (), 1, p(03]57))-
2.1. Gibbs Free Energy Landscape

The thermodynamic landscape of our system is given by the Gibbs free energy of the state 0y,

G (Un ) = GitotrYtot (Jn)

The Gibbs free energy is always defined over states of the system and depends on both the
state 03, and the boundary conditions Xiot, ?tot. Therefore, the same state will have energy changes
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if the boundary conditions change. Each macrostate has a uniquely defined free energy functional.

For notational simplicity, we drop the subscript if no confusion arises.

Kot Yiot”
The complex nature of these type of emulsions results in a free energy functional with several
blocks, which we construct step by step. First, we focus on the free energy contribution of a single

protocellular aggregate, containing X lipids, Y, and precursors, Ga:

Ga(Xz‘/ Yi) = Z AVX,-Xi + Z AVYiYi + Ggeo ’ (1)
i<L i<P

where Apy, and Apy, are the changes in chemical potential when moving lipids and surfactants from
bulk into the i-th aggregate, and Gge, is a geometric term expressing shape and surface contributions
to the free energy of the aggregate. This geometric term accounts for the membrane properties of the
system, and is computed according to the existence of a minimum energy configuration or perfect
protocellular aggregate, which can be directly computed as the optimal packing from the knowledge
to the sizes and geometries of the precursor molecules. The geometrical term thus reads:

Ggeo = TA+ 5 +x f (H=Ho)dA @

where 7 is the surface tension, & the compressibility coefficient, and x the elastic bending modulus of
the lipid membrane. The integral is the second order expansion of the contribution of the Helfrisch
Hamiltonian to the overall free energy, being H the curvature of the membrane—as a function of some
coordinates parametrizing the membrane surface—of the current aggregate and Hy the curvature of
the perfect aggregate. The integral is computed over the whole area of the membrane, A [33,34].
Once we have properly characterized the free energies of a single aggregate, we proceed to
construct the free energy of the whole state 0;,. The next task will be to compute the entropy for
a system in the state 0, = an(y(a, Ya, n) under the boundary conditions f(tot, Ytot. To compute the
entropy of such state, we apply directly Boltzmann’s definition over the amount of configurations the

state 0y, can adopt, Q)?t i t(Un) [45]:

S ((7”) = log QXtOUYtOt (Un>

Clearly, S(on) = S, v (on). However, we do not write this dependence explicitly for the sake
of readability, if no confusion can arise. This entropic term has two contributions, the translational
entropy and the configurational entropy. We start with the translational contribution. We consider that
the system of n indistinguishable aggregates has 3n degrees of freedom and that each aggregate diffuse
around within a volume Vsyst = 1V, and that (£,,) is an appropriate length scale for such a diffusive

process. Accordingly, one has that the amount of configurations provided by the translational term is:

- (i)

We emphasize that, in the approach take here, (¢,,) has been chosen as a typical volume unit

whose purpose is to render the argument of the logarithm dimensionless—for a deeper discussion
on the choice of the right length scale see [35,36]. For each configuration described above, we must
account for the potential degeneracy of states, or, in other words, the amount of configurations given
by the amount of molecules in bulk and forming the aggregates. For each chemical species, e.g., the i-th
lipid, this amount of configurations is
~ Xi,tot
Xi,a

Therefore, assuming that there are no cross dependencies among the different chemical species,
one has that the amount of configurations of molecules in bulk and aggregates is:
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~ H H Xi,tot Yi,tot
i<Lk<P Xi,a Yi,a

Considering these two contributions, the entropy term reads:

B 1 [/ nVq itot | [ Yitot
S("”)‘l"g[n!( ) Qg( ) (sza>

The overall entropy of the state 0, = Un(ia, Ya, n), under the boundary conditions given by
Xtotr Ytot/ S(O’n) = IOg thot/?tot (O'n), is:

S(on) = nlog<<z‘:i>>+
+Zlog< ztot> +Zl g<ll/tot> , (3)

i<L i<P

where we used the fact the log(ab) = loga + log b and the Stirling approximation for the factorial for
the first term, namely log n! ~ nlogn — n. Collecting all the above ingredients, we have that the Gibbs
free energy of the system in the state 0, = 0, ()?a, ?a, n) under boundary conditions Xiot, Ytot becomes:

Glon) = ) #xXiot + ) B Yitor +
i<L i<P
+ Y Ga(X;,Y;) = TS(ow) (4)
i<n

with the standard chemical potentials yy and 5. of lipids and precursors, respectively.

2.2. Helmholtz Free Energy

Let the system be subject to the boundary conditions Xtot, Ytot. In equilibrium, the probability
that the system is in the particular state ¢, belonging to the macrostate &, is given by the Boltzmann
distribution, p(0,|0,) [45]:

» efﬁG(‘TH) 5
p((T”'a”) - Z(a’n) ’ ( )
being Z (&) the partition function, namely:
Z([j’n) = Z gfﬁG(Un) . (6)
0n €0y
Accordingly, the Helmholtz free energy of the macrostate &, F(7,) is:
1
F@n) = —10g 2(0n) = (G)a, = gH () )

being (..)7, the average over all states of the macrostate and H(G,) the entropy of the
macrostate, namely:

H(0n) = — ) p(0ulou)log p(onldn)

=

where p(0,|7,) is now defined as:

p(on|on) = o~ B(G(ou)+F(0u))
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We point out that we will refer to a given probability distribution associated to a macrostate 7,
either as p(0y |04 ) or p|5,, indistinctly. We finally recall that we assume that the equilibrium distribution
macrostate 7, is such that:

argmin {Gitot,Ytot (Un)} - arggn in {GitO"YtOt (U)} ’

0 €0y

where we emphasized the dependency on the boundary conditions Xiot, Ytot only for clarity. In words,
we assume that the equilibrium distribution is defined around the absolute minimum of Gibbs free
energies, and that such a minimum is unique.

2.3. Detailed Balance Condition in Duplication

The process of duplication/fusion of aggregates is of special interest for us, since it is the basis of
duplication. It is assumed to satisfy the following transition rates between states:

- - kit - -
Un(Xa/Ya/n> _n> Un+l(XarYa/n+1)

— — k;n — —
Un(Xa/ Ya/n) — Oup—1 (Xa/ Ya/n - 1) s
where the kinetic constants relate as:

k= k;{e*ﬁéc(gnﬁwrl) , (8)

where 6G(0y,044+1) = G(0y41) — G(03). Detailed balance condition is also assumed for any other
transition between states. Therefore, for any two states 03, € ¢, and 0,41 € 7,41, thanks to the detailed
balance condition given in Equation (8) and assumed for all transitions, one has that, between two
arbitrary states 7, 0’:

plc/ —o) kg "
plo = o) " ki = mhslon) ©)

Importantly, we recall that the functional G must be computed under the same boundary
conditions Xiot, Yiot in any evaluation of the difference, i.e.,:

0G(o,0') =G(c') = G(o) = Ggmtymt((r’) - Ggmt,ﬁot(g)

2.4. The Driving Protocol

Let us assume that at time t = 0 the system is in contact to a thermal reservoir at inverse
temperature f, and in an equilibrium macrostate 0, that is—see Figure 1):

1

PoRIER) = Frms

e_.BG(Ug)
)

From this moment on, we run a protocol that changes the energy landscape, without separating
the system from the heath bath neither changing the whole system’s volume, Vsyst. This protocol runs
from t = 0 to t = T—see Figure 1b,c. For example, suppose that we add new lipids and that we switch
on a light that triggers a metabolic reaction that transforms lipids into precursors, thereby creating
new surfactants. We call this protocol ¢(t). In general, it will affect the L + P variables of our system.
Therefore, the protocol ¢(t) consists on a list of—maybe interdependent—protocols:

Y(t) = (P1(t), s pL(E), pria(t), s pLip(t))

where the first L elements ¢ (f), ..., ¢ () explicit the action of the protocol on the lipids Xj, ..., X1,
abundance and the last P elements ¢ 1 (t), ..., ¢r+p(t) explicit the change due to the protocol on the
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precursors Y1, ..., Xp abundance. Let us be more specific on the action of the protocol. Assume that
at time ¢ the boundary conditions of our system are given by Xiot(t), Yiot(t). The application of the
protocol a for short time interval [t, t + é] to the boundary conditions, denoted by 8 (Xiot(t), Yiot(t))
will lead the boundary conditions to change as:

op(Xiot (1), Yiot (1)) = (Xq(t) + 8¢y (1), ...
ey Yl(t) + 6¢r+1 (t)¢L+1(t)/---) .

(a) (b) l (©) l (d) (e)

Figure 1. Schematic characterization of the role of the protocol ¢ (¢). (a) At time f = 0 the system
is in contact to a thermal reservoir at inverse temperature g, and in an equilibrium state containing
1 aggregate. (b,c) The protocol starts by increasing the number of lipids and precursors and providing
energy that may trigger chemical reactions. The action of the protocol is depicted by the red arrow.
This process may change the energy landscape provided by Equation (4) and thereby destabilize the
structure of the aggregates, eventually creating more and more frustration in the surface. (d) At time T
the energy gradients favour the duplication and the protocol stops. (e) The system relaxes towards an
equilibrium state containing 2 aggregates.

The above transformation of the boundary conditions will lead the system to change its macrostate,
from ¢ to &9, This transition can be done through a set of stochastic trajectories, which will be referred
to as L[t,t + J]. At T the system will be at the macrostate &, ; and we will stop the protocol—see
Figure 1d—letting the system relax towards an equilibrium state, achieved at time T.—see Figure 1d.
The distribution of states p, 7 is assumed to obey the standard equilibrium Boltzmann statistics:

5 L 66
p(o’T""l 0'T°°1) = ———¢ B,
n—+ n—+ Z(O’;+1)

We assume that a duplication event has taken place in the time interval [T — J, 7] and that the
relaxation process happening at the interval [T, Too| does not imply a change in the number of protocell
aggregates. We remind that the whole process takes place in contact to a heat reservoir with inverse
temperature B and at a constant volume Vgyst.

2.5. An Example: Ternary Emulsions

To grasp the orders of magnitude involved in our problem, we take a particular example of
the above general system, in line to the one described in [26,27]. From this example, we perform
a rough estimation of the orders of magnitude involved in the computation of the free energies of
a single aggregate. For the sake of readability and extension, the computations provided here are not
as detailed as in the other parts of the paper. We refer the interested reader to [21,26,27,46-48] for the
detailed discussions on the orders of magnitude and potential experimental set ups.

Suppose that we have a Winsor type IV ternary emulsion made of a single lipid, X = decanoic acid
anhydride, (CoHyg — CO — O — OC — CyHyy), a single precursor, Y = decanoic acid, (CoHy9 — COOH),
and water. Equation (1) now reads:

Ga(X, Y) = AuxX + AuyY + Ggeo
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Apry can be calculated from their partition coefficient—i.e., the fraction of lipids found in bulk solution
as opposed to the aggregates. Estimations give this value to be around 14% [46]. If k{\ /ky, is the ratio
between precursor molecules going from bulk to aggregates and precursor molecules going from

aggregates to bulk, this reads:
K+
—{ ~ 0.14
kY
Therefore, using Equation (8), and setting 8 = 1/kpT, one can approximate the energy gain of
moving a decanoic acid molecule from bulk to aggregate, Auy, as

Apy ~log(0.14)kgT ,

where kp is the Boltzmann constant, kp ~ 1.38 x 10723 J/K At T = 300 K, and N being the Avogadro
number, the above equation leads to:

NaApy = —4.9 k] /mol
Since the decanoic acid anhydride (CoH19—CO-O-OC-CgHj9) has two hydrophobic chains, we set
Aux =2Apy =~ —9.8kJ/mol ,

which in turn evaluates to a partition coefficient of ~2%. For the geometric term given by Equation (2),
we make the assumption that y, @ > «, therefore the contribution of the Helfrisch hamiltonian will not
be taken into account. The surface tension and the compressibility parameters, v, « can be estimated as
v ~ 459 mN/m and a ~ 5.80 x 107* Nm> [26]. We assume a spherical lipid core of X, precursor
molecules, whose individual molecular volume Vx = 0.54 nm?

aggregate has a radius, Reore (X ), of:

. Thus, the spherical core of the

3Vx .\ /3
7T

Rcore(xc) ~ (4Xc
The whole aggregate, including the surface molecules, displays a radius, R.(X,), of
Ro(Xc) ~ Rcore(Xc) + Kt s

where /; is the length of the tail of the surfactant molecules, which is considered constant. The optimal
number of surfactant molecules, Y* (X, ) for this amount of molecules in the core of the aggregate is

then computed as:
4
Yi(Xe) = RA(X) (10)
0
We assume that the tail length of the surfactants is around /; = 1.4 nm and that their effective

head area ap = 25 A? [21]. The typical radius of oil droplets is around 100 nm leading to a volume of
~ 4.1 x 10® nm3, i.e., ~0.004 femtoliter, which—assuming a typical water-to-oil ratio of 10:1—gives
a system volume of 0.044 femtoliter per droplet. Therefore, a milliliter of emulsion has an order
of magnitude of 10! oil droplets. From the ratio of precursor to droplet volume, it follows that
X & 7.62 x 10°. With an optimal packing number of surfactants Y*(X.) computed from Equation (10)
and a partition coefficient of 14%, one can estimate a total of Y. = 5.7 x 10° surfactant molecules.
With these values, a rough estimation of the orders of magnitude of the free energy of a single aggregate
whose packing is optimal, G (X, Y), is given by:

IGH(X,Y)| ~1071] (11)

This example gives us an orientation about the energy scales involved in our problem.
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3. Duplication Thresholds

We proceed now to explore under which circumstances the application of the protocol results into
a duplication event. The goal is to obtain an inequality which, when observed, a duplication event
is expected to take place. This will be related to the amount of work performed from the protocol.
We perform the analysis from a quasi-static approach and from a more general non-equilibrium
approach. First of all, we derive a general condition for the transition probabilities among macrostates,
which does not require, a priori, equilibrium conditions.

3.1. Transition Probabilities between Macrostates

Now we take a close analysis on the process happening in the interval [t, f 4 5], where 0 < t < T.
We drop the indices , because, we consider transitions between any two states, and, by now, there
will not be necessarily a duplication event in consideration. At time t the Gibbs free energy landscape
suffers a change imposed by the protocol ¢ (). The initial state, ¢, is therefore perturbed and may no
longer be necessarily in equ111br1um The system then relaxes to '+, which may not be in equilibrium,
too. The boundary conditions (Xtot, Yiot) are considered constant after the change imposed by the
protocol at time ¢ until time ¢ + &. The probability of jumping from macrostate & to macrostate &+ is
given by:

p(FT t+(5 ZZP tlo_ (T _>0_t+(5)

ot gt+é

Thanks to the detailed balance condition, one can rewrite the backwards transition as:

(et =) = ) pe'|a)plo’ = o )g(t t+0),

ol gt+o

where g(t,t + 9) is a function that depends on the states, ot, otT% which, written in a suitable form for

further developments, reads:
BOG(4t+5)
g(tt+0) = —— T
eln p(0’1+(§‘5—f‘+5)

Now, we derive the probability that we chose a given trajectory o to ¢7_ , from the ensemble

n+1
Y.[t,t + 6] of trajectories that go from &* to &*+°—see Figure 2. This probability distribution is referred
to as p'*?%, and is defined as:

t+6 ooy = P(‘Tt|‘~7t+5)l7(f7t_>‘7t+6)
p3o(dt, o) = p(ot — 5t+9) : (12)

Conversely, we can define the backwards version of the above probability distribution, namely,

pitl as
P+ t+6 B\ — P(UH(S‘WH)P(MM — ')
pl (o', 0t) = (5T = 1) . (13)

The probability pt° accounts for the probability of a given trajectory in case of time reversal of
the protocol action. It is straightforward to check that both p'%? and pi*? are well defined probability
distributions—i.e., that they sum up to 1. With the above defined distributions, the above computations
lead to:

p(ﬁ-t+5_>0-
W =L L (e )b+ 0)
g o

The above equation is the average over all paths of the last element of the sum, namely:
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St4S . at BSG(£t+6)
N < e > ) (14)
z

5t s tio p(et[5t)
p(ot =) In o+ 673)

e [t,t+6]

where the brackets (...) denote average over all the microscopic trajectories X[t, t + 6] between states
ot — o'*? that realize the transition from macrostate & to macrostate & +°.

GT° S[r —6,7] G

Figure 2. Trajectories between macrostates. At time T — ¢ the macrostate containing 1 aggregate receives
the action of the protocol and transits to a macrostate containing 2 aggregates. This transition can
performed through any of the trajectories connecting the states that realize one or the other macrostate.
The ensemble of trajectories connecting these two macrostates is called [t — §, T]. Forward trajectories
are depicted with solid lines. Dashed lines correspond to time reversal trajectories, i.e., trajectories
obtained through the protocol running under time reversal.

3.2. Quasi-Static Approach

The first exploration corresponds to the situation in which the transitions triggered by the protocol
P(t) are performed quasistatically, that is: They are so slow that all the trajectories X[0, T] can be
considered a succession of equilibrium states. Applying the general relation given by Equation (14) we

arrive, after cancellations, at:
P((Tt _>6t+6) Z((NTH‘S)

p((THé N 54) - Z(Fft) ’

and we then recover, as expected, the equilibrium relation for the backwards and forwards probabilities:

p(@' — ') — o~ BOF(tt+9)

p (&t+(5 N &t) ’ (15)

where 0F(t,t + 6) is the increase of the Helmholtz free energies—see Equation (7)—through the interval
[t, £+ 6]
OF(t,t +6) = F(&') — F(¢")

As stated in the description of the protocol (), we assume that a duplication event has taken
place in the time interval [T — J, T]. To study this case, we recover the subscripts ,, ;41 accounting for
the number of aggregates in the system. This will imply that, at time T — §, we had the system in a
macrostate 7 and that at time T the system transitioned towards a macrostate state 0,41 For that to
happen spontaneously, we need that:

~T—0 ~ ~ ~T—0
pon " = Oia) > p(Ohq = 00 °)

and, according to Equation (15), one needs that 6F(t,t + J) < 0, which implies:

F(0741) < F(@3°)
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If we take a closer look to the structure of the Gibbs free energy given in Equation (4), we can
refine the above condition. Indeed, since the boundary conditions Xiot, Yiot do not change during
the time interval [T — §, T), the contributions to the change of the free energies will only correspond
to the free energies of the aggregates, due to size and frustration given in Equation (1), and their
associated entropic terms, given by the Shannon entropies of the macrostate and the translational and
configurational entropies of the states, given in Equation (3). After cancellations, we arrive to:

Bo(Ga) < 0S(T—96,T) , (16)
where the increase on the average free energies 6(G,) is defined from Equation (1) as:

i<n+1 i<n 1,7;,[,(5

(S(Ga>=< ) Ga(Xi,Yi)> —<2Ga(Xi,Yi)> , (17)

being the averages taken over the whole set of states belonging to &,/ ; and 0y —9, respectively, and the
entropic gradient 6S(7 — 4, T) is defined as:

0S(t—9,7) =6S(t—9d,7)+0H(t—46,T) . (18)

where 6S(T — 4, T) is the increase of configurational and translational entropies for each state, as given
in Equation (3):

05(t=94,7) = (S(oy41))er,, — <S(U’T§)>&T‘5

And 0H(T — 4, T) the increase on Shannon entropies, namely:

+1

0H(t~06,7) = H(F,q) — H(07 )

Knowing the evolution of free energies, and assuming the quasi-static approach, one can easily
compute the amount of work performed by the protocol 1 (f) to trigger a duplication event. Indeed,
in the quasi static approach, the amount of work éw(t — ¢, T) invested over the system can be identified
with the Helmholtz free energy gradients, namely:

Sw(t—6,7) =0F(t—6,1)

In consequence, the amount of work performed over the system along the protocol, Wy is,
assuming a continuous approach (6F(t,t + ) — dF(t)):

Wy = /OTdF(t) — AF(0,7)

as expected in the case of equilibrium transformations [49].

3.3. Non Equilibrium Approach

We now explore a more general situation, in which the states visited along the trajectory are not
necessarily in equilibrium, and thus, an extra amount of dissipated heat is expected, deforming the
energy/work relations derived in the previous section [37,38,50]—see Figure 3. Our approach does
not consider explicitly other sources of non-equilibrium behaviour, and is focused on the exploration
of the potentials under the assumption that the final and initial states may not be equilibrium ones.
In particular, the hypothesis of detailed balance between different states of the system is always
assumed to hold at the level of microscopic transitions.



Life 2019, 9,9 12 of 22

AF

Figure 3. Irreversible action of the Protocol 1. (a) At t = 0 we have a macrostate &0 in equilibrium
and the protocol induces a change in the boundary conditions that destabilizes the system eventually
making it to jump to a non equilibrium state, producing an amount of entropy BQy(t). Then the
system relaxes—maybe not completely—until the next action of the protocol until there is a stable
division event and the system relaxes completely. (b) Details of the transition, with the thermodynamic
quantities involved. The jump experienced by the system from its previous state is D(p|5(|p o),
and AF is the energy gradient that leads to the new macrostate. The entropy produced through this,
possibly partial, relaxation process is D(p— || p« )—see text.

Specifically, let us consider the case in which at time ¢ the boundary conditions X'tot, Ytot, suffer
a sudden change imposed by the protocol ¢(t). We observe that the change induced by the protocol to
the boundary conditions implies a change on the free energy landscape described by the Gibbs free
energy in Equation (4). The initial state, &, is therefore perturbed and is not necessarily considered
in equilibrium. We consider that, in this irreversible destabilization of the system, an amount of
entropy like:

~ BQy(t)

is produced, due to the non-equilibrium transformation that is associated to the perturbation of the
system after the application of the protocol. This part will not be studied in detail, since it plays no
role in the duplication process. The system then moves to &+¢, which may not be in equilibrium, too.
As above, the boundary conditions (}?tot, ?tot) are considered constant in the interval [t, f 4 J] after the
change imposed by the protocol at time t.

If we do not assume a priori that the starting distribution p(c|7?) is an equilibrium one, we see
that, under the application of Equation (14) we reach a more general relation—see Appendix A
for details:

n( (~T~t — &t+~5)) > ¢ PUOG(E0) iy gy) +OH(E110) (19)
p(5t+0 = &)
where (G (t,t + 9)) 5 1¢) is the increase of Gibbs free energy averaged over all trajectories X[t, t + d]
from &' to #*°. Unfortunately, the above inequality only can give necessary but not sufficient
conditions for duplication. The derivation of an exact equivalence for a restricted range of
situations—yet involving many non-equilibrium cases—is the objective of the next subsection.

3.3.1. Free Energy Structure

To achieve an exact relation between forwards and backwards probabilities of duplication,
we need to develop some equivalences involving information-theoretic measures. These relations
are derived from the exploration of the structure of (6G(t,t+ )). It is important to highlight that,
since we do not assume we are in equilibrium, one cannot use the identity F(¢*) = (G); — B~ H (&)
anymore. Again, we focus our efforts in the study of the time interval [T — ¢, 7], where we assume
that a duplication event has taken place. As above, we recover the subscripts , ;41 accounting for the



Life 2019, 9,9 13 of 22

number of aggregates in the system. We remind that this implies that, at time T — 6 we had the system
in a macrostate state 7 —° and that at time 7 the system transitioned towards a macrostate state &7 1
First relation. Observe that we can decouple the general term (6G(T — 0, T))5[r—s ] as follows: Let p
be the probability distribution of the actual macrostate &', and Pt be the equilibrium distribution
associated to the equilibrium macrostate &', under the conditions imposed by the protocol at time t.
That is, the probability distribution that would correspond to & if it where in equilibrium, &' = &!.
In other words, we have an equilibrium distribution p(cf|5t) ~ ePGh), sharing the support (let p be
a probability distribution defined over the set X’ and let X C X’ such that X = {x; € X' : p(x;) > 0}.
X is the support set of the probability distribution p. In words, the support set is the set of elements
whose probability is larger than 0) set with the actual, possibly non-equilibrium, distribution p):.
After rearrangements one finds that—see Appendix A for details:

<‘BG(T - §)>[7;*5 = H(&g_é) + D(PW*J | |p‘[7;;5) + F(N;t*)/ (20)

where D( Plor-o I p‘&ms) is the Kullback-Leibler divergence or information gain between distributions
Pior-o and Pioz=os defined as [51]:

D sl ) = T pler-dioriog P
On

U;fé‘ ( | nx )

The Kullback-Leibler divergence is a non-negative measure D(p|;r-s|p|5r-s) > 0, and

D(P\gg%HP\ﬁ;ﬂ) =0 ,

only in the case of Plor-0 = Ploroo- In other words, as expected, if transitions are performed between
equilibrium states, no contributions arise from this term. In analogy to the equilibrium Helmholtz free
energy—see Equation (7)—on can define a non-equilibrium Helmholtz free energy of the non-equilibrium
macrostate &, F (&), as follows [43,52,53]:

F(@') = (BG(1)y — H(@') (21)

where the average is over all the states of the macrostate ¢'. If one assumes that the transitions
between states obey the Markov property—see Appendix A for details—one can define the increase
on non-equilibrium Helmholtz free energies, 6. F (T — 4, 7), as:

OF(t—6,7) = F(67 ) —F@7°%)
where F (7, ;) and F (7 —9) are defined following Equation (21). Now, thanks to Equation (20),

one arrives at:
0F(t—46,t)=0D(t—9,T) +0F.(t—6,T) , (22)

being ¢ D(t — 4, T) the increase in the Kullback-Leibler divergence between T — ¢ and 7, namely:

8D(t = 8,7) = D(p iz 1Pz, )~ D(Ploz-sllpgz-o), @)

+1x

and OF, (T — 4, T) the increase on Helmholtz free energy of the equilibrium macrostates associated
to 0, and 7; 9, respectively. The sign of D(t — 6, 7) and its absolute value are important to
understand the extent of the dissipative role of this term. Using the log-sum inequality [51] one is lead
to—see details in the Appendix A:

oD(t—9,7) <0 . (24)
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Again, using the log-sum inequality, one can prove that the above inequality becomes an equality
only if the transitions are among equilibrium states—as expected, i.e., p| o, = Pl and Plos—s =
Plor-s- If this is not the case,

|0D(t—9,7)| >0

Second relation. Recognizing that Equation (9) implies that:

plog — 07 ’)
lnm :5ﬁG(T_5,T) ’
P\On n+1
one can rewrite (6G(T — 4, 7)) as
ot 1
(B6G(T—4,7)) = <log M> , (25)
(@ = 1) [ s

where the average is computed over all trajectories X[t — §,7] from macrostate &} ° to &7 1

Furthermore, markoviantity in the transition probabilities implies that:

p(a,f*‘5|(”7 ) (o7~ 5—>Un+1)
p(c, n+1| n+1) = Z T—6 ~T—5
o0 p(on " = 0,.7)
= ZPL(U;J/U;H)

T—0
U—Pl

Now we develop the (...) part of Equation (25). From the definition of pZ, (077 ~°

Equation (12), and averaging directly, one arrives at:

, 0

+i1) given in

T—0
)= XY b (o 0T log P 2 %)

5
oI 00T, plon ™ = 0y4)

n+1
After some algebra, and using Equation (21), one arrives to a relation involving the global forward
and backwards probabilities—see Appendix A for details:

gT—o
6F(T—6,7) = *D(PLIIPL)HOggr (26)
( Un n+1)
where p{ is the backwards probability of trajectories, defined in Equation (12). Specifically,
D(pZ, |[pZ) reads:

D(pLIpL) = Y Y polon o) x
o (5an+
T— () T
x log PL (0 — 5 %s1) ) (27)
pE(on O'n+1)

If one assumes that there is no dissipation in the trajectory itself, and that the transition between
states is performed in a quasi-stationary way, then D(pZ, ||pL) = 0. We highlight that this is true as
long as the trajectories are balanced and no currents are present in the system. In general, one has that,
due to the non-negativity of the Kullback-Leibler divergence:

D(pLllpe) =0
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3.3.2. Non-Equilibrium Duplication Thresholds and Work Relations

Equation (26) encodes the relation between forward and backwards duplication probabilities.
Indeed, exponentiating, one arrives directly at:
~T—0 ~
PO = 0i) _ o poFesm)-DOnIpL) 28)
AR
The above relation gives us an exact relation between duplication and fusion probabilities in
a general class of non-equilibrium cases. In consequence, Equation (28) provides a necessary and
sufficient condition for the triggering of a duplication event after the application of the protocol ().
The above equation leads to the following duplication threshold:

F(om) < F(@; %) =D(pLIIpL) (29)

If we notice, as we did in the quasi-static case, that we can impose that 6(G) = §(G,), where
0(Gy) is the average increase on the free energy in the aggregates due only to size and frustration,
as given in Equation (17):

B3(Ga) < 0S(—6,7) + DT |IpT) (30)

and 0S(T — ¢, T) refers to the entropic contributions as described in Equation (18). Equations (29) and
(30) explicitly show how the tension between entropic gradients and free energy gains controls the
duplication process. This provides a nice, hands-on example of the imbalance between entropy and
free energy gains that create structure and order that biology needs to overcome in order to endure.

From the order of magnitudes analysis of Section 2.5, we can roughly estimate the numerical
values involved in these inequalities in the case of ternary mixtures containing decanoic acid anhydride,
(CoH1o—CO-O-OC-CgHjy), a single precursor, Y = decanoic acid, (CoH19-COOH), and water. As we
outlined, the amount of aggregates in one milliliter of emulsion is ~10'3. Therefore, if we consider that
just before the duplication the extra free energy was exactly the free energy of the aggregate at the
optimal packing, we have that 6(G,;) ~ G} /n. Since, from Equation (11), we know that G} ~ 10~13,
we have that:

8(G,) ~ 10726 ] /aggregate

From that, considering T = 300 K, we have that 8 = (kpT)~! ~ 1072 J~!, where kg is the
Boltzmann constant. Therefore, from Equation (30) one can estimate the minimum (statistical) entropy
gradient as:

8S(t —6,7) + D(p%,||pT) ~ —107° nats

We recall that this is entropy excludes the contribution of the heat generated in
non-equilibrium transitions.
We now revise the work relations in this general non-equilibrium case. The non-equilibrium work
performed over the system is:
Wy = AF(0,7) . (31)

From the definition of work invested over the system, one can derive the minimum work invested
to trigger a duplication event. Indeed, let us suppose now that we take as the final point the equilibrium
macrostate @,%,, with probability distribution p(c,%,|5,%,). As we said in the description of the
protocol, the action of (t) stops at t = T and then the systems relaxes towards an equilibrium in
a quasi-static way. One can in consequence, calculate the minimal amount of required work invested

over the system through the protocol to trigger a duplication event, to be named W:

W} = AF.(0, Teo)
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With the above relation, one can compute the amount of dissipated work, ngss, due to
non-equilibrium loses:
diss __ *

In consequence, from the definition of the non-equilibrium free energy given in Equation (22),
one can find an exact expression for the dissipated work:

diss __ dD()
wiss — /O = (32)

We observe that, consistently, ngss > 0, due to inequality (24). We now retake the exploration
of the orders of magnitude involved in our problem by using again the example of the ternary
mixture presented in Section 2.5. The free energy of a single aggregate will determine, by construction,
the minimum (non-dissipated) work needed to invest into the system to trigger the formation of an
aggregate. Therefore, thanks to Equation (11), we can bound numerically the order of magnitude of
this work:

Wy > Gy ~107 7]

From this, and knowing from Section 2.5 that the amount of oil vesicles is around 1013 in
a milliliter of microemulsion, we can conclude, under the assumption that a linear increase of volume
to accommodate new protocells does not impact dramatically in the energy landscape, that the amount
of work we need to invest to duplicate the amount of protocells contained initially in a liter of emulsion
is lower bounded as:
Wi(1L) 2 1K

Finally, we can compute the amount of entropy produced throughout the whole process, Sy,
by collecting the entropic terms, and adding the entropy produced by the destabilization of the system
after each application of the protocol, BQ(#):

Sy = AH(0, T +/ p%Hpe dt+/ BQy(t)

Recall, again, that D(p%, ||pL) > 0. We remind that here we did not specify the formal shape
of the last term, corresponding to the heat produced within the non-equilibrium trajectories that
destabilize the system right after the application of the protocol. We warn the reader that the potential
relations between the dissipated work D(7 — ¢, T) and the entropy produced through the relaxation
process, D(pZL, ||pL ) are not studied here, but can contain relevant information for the conditions of
the duplication process. Similar relations are studied in the context of the analysis of the structure
of the second law [54], thermodynamics of computation [55], and work/energy relations in coarse
grained approaches [56].

3.4. The Perpetuation of the Duplication Process

A crucial condition for the emergence of synthetic-living entities is the capacity for perpetuating
the duplication process. In the framework derived above we very briefly revise the key ingredients for
this successive duplications to be maintained. Let us suppose that at time ¢ the system contains 7 (t)
aggregates in equilibrium, i.e., &;( . Following Equation (29), there will be a duplication if, under the
action of the protocol ¢(t), if (Vn(t) € N)(3t > 0), the following condition holds

FOE,) < F@L5) — DT pe) (33)

If we plug Equation (30) we obtain a criteria that explicitly relates the free energy increases of
the aggregates, due to frustration and size, to the entropic gradients. In that context, the duplication
process will go on as long as, (Vn(t) € N)(3t > 0), the following condition holds:
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B3(Gy) < 8S(t+T1—05,t+ 1)+ D(pI7||pt*T) (34)

where 6(G,) is the average increase of free energies of the aggregates due to size and frustration from
n(t) to n(t) + 1in the time interval [t + T — 4, t + 7] and §S(f + T — §,t + T) the increase of the other
entropic components, as defined in Equation (18). Inequalities (33) and (34) are the inequalities that
the protocol must trigger to ensure the continuation of the duplication process. They may be called
inequalities for prevalence. In summary, they tell us that the process can continue if the action of the
protocol is able to trigger an imbalance between entropic contributions and free energy gradients
favouring the equilibrium state containing 7(t) + 1 aggregates as:

A(aggregate free energy) < A(entropic gradients)

In Figure 4 we described a potential trajectory of a successive duplication process. We therefore
derived a specific example of the race between entropy and free energy increases that enables the
perpetuation of the duplication process. Other circumstances must be taken into account. For example,
the volume of the system should increase in proportion to the aggregate number, in order to
keep the concentration of chemical species inside the ranges in which the system remains in the
phase where aggregates are formed. A significant change of this concentrations could result into
a change on the phase of the system, where the preferred structures could no longer be spherical
aggregates. Other circumstances, such as the specific application of the protocol, could also interfere
the duplication process.

7 n+1 n-+2

t

Figure 4. Schematic picture of the conditions for the duplication process to be sustained in time.
Duplication events are indicated by dashed circles. A system with n aggregates—gray line—in
equilibrium receives the action of the protocol changing the energy landscape. Its Helmoltz free
energy increases until a point in which the Helmholtz free energy of a macrostate containing n + 1
aggregates—orange line—is lower than the one for the n aggregates, and a duplication event occurs.
If we switch on the protocol again, the system increases its Helmholtz free energy until a point in which,
eventually, the Helmholtz free energy differences trigger again a duplication event—blue line. If the
protocol is able to destabilize the system from n(t) to n(t) + 1 aggregates for any ¢, the duplication
process will continue unboundedly in time. In this figure we described a quasi-static approach, which
makes use of equilibrium Helmholtz free energies for the sake of clarity. The non-equilibrium case is
thoroughly discussed in the text.

4. Discussion

In this paper we explored in depth the thermodynamics of duplication thresholds in a generic
emulsion system made of an arbitrary set of lipid and precursor species. This feasible, yet artificial
system enables us to overcome the tremendous complexity of the duplication process in actual living
entities, such as cells. The thermodynamic landscape has been carefully constructed, accounting for
the contributions due to surface tension, volume of the aggregates, entropic contributions and total
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amount of chemical species within the systems, all summarized in the definition of the Gibbs free
energy of the state, Equation (4). An abstract protocol is proposed, driving the system away from the
equilibrium state and resulting, eventually, in a duplication event. We approached the problem from
the equilibrium framework, assuming that the process is a succession of equilibrium states, and from a
non-equilibrium perspective, where the visited states may not be equilibrium ones.

Fundamental relations involving free energies and duplication probabilities, Equation (28),
duplication thresholds, Equations (29) and (30), necessary work to be invested over the system by the
protocol to trigger a duplication event, Equation (31), dissipated work, Equation (32) or the conditions
for the perpetuation of the duplication cycle, Equations (33) and (34) have been derived. These relations
invoke the explicit energy landscape provided by the free energies and set the abstract conditions for
a duplication process to be triggered and, eventually maintained. It is worth to emphasize that they
show explicitly the structure of the race between entropic forces and free energy gains to generate
structure and preserve it. The synthetic approach, therefore, enabled us to convey a very detailed
picture of the thermodynamical tensions involved in the process of creation and perdurability of
living entities.

Further explorations should target more systematically specific systems, with quantitatively
testable observables. The study of specific systems should also include the conditions of feasibility;,
in terms of microemulsion phases, of the aggregate duplication, avoiding transitions to non-aggregate
phases, possible in emulsion systems. In the same line, a rigorous exploration of the orders of
magnitude involved in the abstract relations derived above would add a necessary layer towards
the quantification and, eventually, empirical test of the above predictions. Complementarily,
the exploration of the constraints imposed by different protocol strategies could shed light to the
potential prebiotic scenarios, where possibly circadian cycles play a crucial role in creating free
energy sources driving the system towards imbalance, destabilization, and duplication. In addition,
more complex free energy landscapes allowing bilayer membranes, more realistic when compared
to biological structures than the single layer approach used here, could refine the triggering points
for duplication events to occur. In a different direction, an in depth study of the dissipation within
the trajectories themselves—assumed to observe detailed balance in the above developments—would
generalize the approach, making it more realistic and providing predictions on dissipated heat
which could be presumable testable. Finally, the interesting relations involving dissipation and
information measures could be explored to be the seed of further developments linking information
and duplication processes, in line to the results exposed in [31], and, perhaps, clear the conditions
for the emergence of inheritable information—thus the appearance of differentiated traits between
elements of the system—intrinsically linked to the duplication process and, in the long term, trigger
darwinian dynamics.
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Appendix A. Derivation Details

In this appendix we will use a simplified notation in order to emphasize only the technical details.
We will consider the following scenario: The system is at t = 0 in a given macrostate Ay and the
change on the boundary conditions makes it to jump to macrostate A, whose states are denoted by
“x”, following a probability distribution p(x). The system relaxes until macrostate B, whose states are
denoted by y, and follows a probability distribution g(y). Given a macrostate A with a distribution
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p(x), there is a macrostate with the same support but in equilibrium, A, whose probability distribution
will be denoted by p.(x), and follows a Boltzmann-like statistics:

p.(x) = iefﬁG(x) ,
X
where Z, is the normalization constant and G(x). We define B, and g.(y) in a totally analogous way,
defining the Gibbs free energy with the new boundary conditions induced by the application of the
protocol. We will assume that the backwards and forwards transition probabilities obey equilibrium
detailed balance:

m = ¢ POC(Y) where 6G(x,y) = G(y) — G(x)

Derivation of Equation (19). Let

p(B = A) <ewc<w> >
- ) ‘
p(A — B) eln% AB

where ) o, p denotes that the average is performed through all trajectories from A — B. Accordingly,

(B=A
- <e,35c<x,y>_m ) IE§>
A—B

The Taylor expansion of the exponential ensures that e¥ > 1 + x, so, if we know that (¢¥) =1,
then1+ (x) <1,s0 (x) <O0:

B(5G)Ap —In p(B—A) <1n p(x)

pa=8  \"4l) >M =0

Finally, the equality <ln qu;> = H(B) — H(A) follows directly from basic probability

reasoning. Therefore, rearranging that and the above equation, one is led to Equation (19).

Derivation of Equation (24). Given two distributions p g with the same support set, the log-sum inequality
states that:

P x) Ly p(¥)
x — /
Lp@)log s (ZP ) %8 £
with equality only in the case in which p = q. In our case, if we assume that after the transition there
can be a relaxation period—i.e., we approach g, we have that:

Y. X
DGllg.) < Z(ZP x'V) S TP

< Dot ios TEECE,

- Lo logm(x)) — D(pllp.)

Leading to 6D = D(ql|g«) — D(p||p«) <0
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Derivation of Equation (20). Given an arbitrary distribution p(x) and an equilibrium one p.(x) =
Zixe*ﬁc(x) with the same support, one can write

(BG(x ZP x)log p.(x) —log Zx

now the ) 4 denotes that the average is computed over the states of the macorstate A. Identifying
—logZ, as the equilibrium Helmholtz free energy corresponding to p.(x), Fr = —logZy,
and developing the cross entropy term — Y, p(x) log p«(x) as follows:

— Y p(x)log p.(x ZP x)log p(x) + D(pllps)
X
one obtains the desired result.

Derivation of Equation (26). Let f(x,y) = p(x)p(x — y)/p(A — B) and u(y,x) = p(y)p(y —
x)/p(B — A). Now we rewrite the increase on free energy as:

BUOG aon = L flx)log 5o

XY

whose second term can be written as:

X
Y f(x,y)logE
XYy q

Rearranging and using the definition of f(x,y) and u(y, x) one arrives at:

—H(A) - pB=4)
H(B) ~ H(A) = D(fllu) +log O
where H(A), H(B) are the Shannon entropies of macrostates A and B, and D(f||u) the Kullback-Leibler
divergence between f and u.
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