Chemical Diversity of Metal Sulfide Minerals and its Implications for Origin of Life

Yamei Li^{1*}, Norio Kitadai¹ and Ryuhei Nakamura^{1,2*}

- ¹ Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
- ² Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- * Correspondence: yamei.li@elsi.jp; ryuhei.nakamura@riken.jp; Tel.: +81-3-5734-3414

Figure S1. Species-locality distribution of Fe-containing sulfides (top 20).

Figure S2. Species-locality distribution of Ni-containing sulfides (top 12).

Figure S3. Species-locality distribution of Cu-containing sulfides (top 10).

Figure S4. Species-locality distribution of Co-containing sulfides.

Figure S5. Species-locality distribution of Mo-containing sulfides.

Figure S6. Species-locality distribution of Mn-containing sulfides.

Figure S7. Species-locality distribution of W-containing sulfides.

Figure S8. Species-locality distribution of V-containing sulfides.

Figure S9. (a) Locality-mineral distribution of Cu mono-metal sulfide species and chemical diversity with regards to chemical composition, Cu/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Cu(I), Cu(II) and Cu(I,II) valence states.

Figure S10. (a) Locality-mineral distribution of Ni mono-metal sulfide species and chemical diversity with regards to chemical composition, Ni/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Ni(II), Ni(III) and Ni(II,III) valence states.

Figure S11. (a) Locality-mineral distribution of Co mono-metal sulfide species and chemical diversity with regards to chemical composition, Co/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Co(II), Co(III) and Co(II,III) valence states.

				Fe	e, Cu						
Min and Name	Locality	y Cl	Chemical		Valence Stat		Cr		ystal Symmetry		
Mineral Name	Counts	G Con	Composition		Fe	S	Crys	Crystal System		Space Group	
Chalcopyrite	26279	(CuFeS ₂	+1	+3	-2	Te	Tetragonal		I42d	
Bornite	Sornite 5293		Cu ₅ FeS ₄		+3	-2	Ort	Orthorhombic		Pbca	
Cubanite	748		CuFe ₂ S ₃		+2,+3	-2	Ort	Orthorhombic		2/m2/m2/m	
Stannite	632	Cu	Cu ₂ FeSn ₄ S ₄		+2	-2	Tetragonal		al	I42m	
Freibergite	630	Ag ₆ C	u4Fe2Sb4S12	+1	+2	-2	Tetragonal		al	I43m	
Valleriite	229	2[(Fe, Mg,	Cu)S]·1.53[(Al)(OH)2]	+2	+2	-2	Hexagonal		al		
Isocubanite	184	C	CuFe2S3	+1	+2,+3	-2	Cubic			Fm3m	
Idaite	133	C	Cu ₃ FeS ₄	+2	+2	-2	Н	Hexagonal			
				Fe	e, Ni						
Mineral Name			cality Chemical Composition		Valence S		State Cr		rystal Symmetry		
		Locality					NI:	c	Crys	tal	Space
		Counts				Fe	INI	5	Syste	em	Group
Pentlandite		1392	(Ni,Fe)9S8						Cub	oic	Fm3m
Mackinawite		424	(Fe,Ni)1+xS (x		(x = 0-0.07)		+2	-2	Tetrag	onal	P4/nmm
Violarite		361	Fel	Ji2S4		+2	+3	-2	Cub	oic	
Smythite 71 (Fe		(Fe,Ni) _{3+x} S	(Fe,Ni)₃+xS₄ (x ≈ 0-0.3)					Trigo	nal	R3m	
Argentopentlandite		63	Ag(Fe,Ni)s		8				Cub	ic	Fm3m
Godlevskit	e	32	(Ni,	Fe)9S8					Orthorh	ombic	C222

Table S1. Chemical properties of Fe-Cu and Fe-Ni binary metal sulfide minerals.

Mineral Name	Locality Counts	Chemical Composition			
Djerfisherite	57	K6(Fe,Cu,Ni)25S26Cl			
Sugakiite	3	Cu(Fe,Ni)8S8			
Kharaelakhite	2	(Cu,Pt,Pb,Fe,Ni)9S8			
Owensite	2	(Ba,Pb ²⁺)6(Cu ¹⁺ ,Fe ²⁺ ,Ni ²⁺)25S ²⁻ 27			
Samaniite	2	Cu2Fe5Ni2S8			
Ferhodsite	1	(Fe,Rh,Ni,Ir,Cu,Pt)9S8			
Zoharite	1	(Ba,K)6(Fe,Cu,Ni)25S27			
Tarkianite	6	(Cu,Fe)(Re,Mo)4S8			
Maikainite	2	$Cu^{1+_{10}}Fe^{2+_{3}}Mo^{4+}Ge^{4+_{3}}S^{2{16}}$			
Ovamboite	1	$Cu^{1+}10Fe^{2+}3W^{4+}Ge^{4+}3S^{2-}16$			

 Table S2. Sulfide minerals with ternary metal compositions.

 Table S3. X-ray amorphous mineral species in the RRUFF database.

Mineral Name	Chemical Composition				
Delvauxite	CaFe ³⁺ 4(P ⁵⁺ O4)2(OH)8. 4-5H2O				
Diadochite	Fe ³⁺ 2(PO4)(SO4)(OH). 6H2O				
Ekanite	Ca2ThSi8O20				
Evansite	Al3PO4(OH)6. 8H2O				
Georgeite	$Cu^{2+2}CO_{3}(OH)_{2}$				
Ice	H ₂ O				
Jordisite	Mo ⁴⁺ S ²⁻ 2				
Zaratite	Ni ²⁺ ₃ C ⁴⁺ O ₃ (OH) ₄ . 4H ₂ O				