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Abstract: Oxidative stress is one of the most important environmental exposures associated with psy-
chiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous
study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that
were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of
dysregulated genes being enriched for neurodevelopmental processes. To further explore the regula-
tory mechanisms that might account for such profound perturbations, we have now applied small
RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known
to play crucial roles in brain development and response to stress through their capacity to suppress
gene expression and influence complex biological networks. Through these analyses, we observed
more than a hundred differentially expressed miRNAs, including 80 previously reported to be dys-
regulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment
exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and
miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the in-
teraction network with 134 genes enriched with neurobiological function, whereas in the co-treatment
condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related
disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3
location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings
suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation,
might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that
regulate neurodevelopmentally significant genes and networks.

Keywords: oxidative stress; miRNA; psychiatric disorders; neurodevelopment; immune system;
miR-137; miR-181b; DLK1-DIO3

1. Introduction

Oxidative stress, defined as elevated levels of reactive oxygen species (ROS), is thought
to be one of the most important environmental exposures associated with many diseases,
such as cancer, diabetes, cardiovascular, immunological, and neurological diseases, to
name a few [1]. Physiological levels of ROS are crucial for key cellular processes since
they act as second messengers to regulate signalling pathways. In the nervous system, in
particular, ROS and redox states modulate neural fate by contributing to fundamental stages
of neurodevelopment, such as neurogenesis, as well as the polarisation and maturation of
neurons [1]. The brain is known to be particularly vulnerable to excessive ROS levels, which
can adversely affect memory, learning, and cognition [2] and is suggested to be associated
with psychiatric disorders. This is supported by elevated protein and lipid oxidation in

Life 2024, 14, 562. https://doi.org/10.3390/life14050562 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life14050562
https://doi.org/10.3390/life14050562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-2621-8302
https://orcid.org/0000-0001-6506-0491
https://orcid.org/0000-0003-2490-2538
https://doi.org/10.3390/life14050562
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life14050562?type=check_update&version=2


Life 2024, 14, 562 2 of 20

the postmortem brain, cerebrospinal fluid (CSF), and blood of schizophrenia (SZ) cases
and may be due to changes in antioxidant levels observed in patients with schizophrenia.
These include reduced levels of plasma glutathione (GSH), catalase, and vitamins C and E.
Accordingly, reduced GSH and superoxide dismutase 1 (SOD1) have also been observed
in postmortem brain tissue and CSF from cases with the disorder [3]. Decreased activity
and/or levels of antioxidant enzymes have also been reported in individuals with bipolar
disorder (BD) [4] and autism spectrum disorder (ASD) [5].

Several layers of evidence suggest that oxidative stress might play a causal role in the
development of psychiatric disorders. This includes the involvement of redox-sensitive
proteins in neurogenesis and neuronal differentiation [6]. There are also polymorphisms
in redox genes, such as the GSH system [7] and glutathione-S-transferase (GST) genes [8],
which have been associated with schizophrenia and other psychiatric disorders [9]. Ad-
ditionally, some known schizophrenia risk genes, including DTNBP1, PRODH, NRG1,
G72, and DISC1, are directly involved in redox system function [3]. Given these oxida-
tive stress-associated changes, it is reasonable to imagine that even subtle disturbances
in the redox balance during brain development could negatively affect several important
signalling pathways [6]. This is supported by animal models of psychiatric disorders,
which suggest that GSH deficits and oxidative stress during brain development can lead
to psychosis-like behaviour [3]. For example, a chronic brain deficit in GSH was observed
to cause behavioural and cognitive anomalies in mice associated with schizophrenia and
BD [10]. Even postnatal transient GSH deficiency during the development of the brain
resulted in juvenile and adult rats showing some of the cognitive impairment and olfactory
discrimination reported for schizophrenia [11].

How prenatal exposures to non-cytotoxic levels of oxidative stress affect critical neu-
rodevelopmental processes, such as neural differentiation, and confer the risk of psychiatric
disorders in adulthood is currently unknown. To explore these mechanisms, we recently
investigated gene expression in neuron-like SH-SY5Y cells exposed to oxidative stress, both
before and during differentiation, and observed substantial changes across the transcrip-
tome [12]. These were predicted to induce large-scale perturbations in pathways associated
with neurodevelopment and psychiatric disorders, suggesting that broad-reaching regu-
latory mechanisms such as post-transcriptional gene silencing might be coordinating the
response to this exposure.

miRNAs are a class of small non-coding RNAs that coordinate an extended network
of target genes at both the transcriptional and post-transcriptional levels. In most cases,
these molecules bind to their target sequences at the miRNA recognition element (MRE)
on the 3′-UTR of mature mRNAs through their 5′-end complementary sequence, known
as the seed region. However, there are reports of miRNA binding sites detected in other
regions of mRNA as well, such as the 5′ UTR, promoter, and coding region [13]. Since
partial complementarity/homology suffices for this binding and activation of miRNA
regulatory function, each miRNA is able to simultaneously suppress the expression of
hundreds of genes post-transcriptionally by triggering their mRNA degradation or transla-
tion repression [14]. miRNAs’ expression is tissue- and developmental-specific, showing
complicated temporospatial patterns in mammalian brains that are known to be critically
involved in neurodevelopmental processes [15]. Unsurprisingly, a large number of genetic
associations as well as expression studies suggest their dysregulation in various psychiatric
disorders [14,16,17].

Given the implication of miRNAs in brain response and adaptation to environmental
stress [18], we hypothesise that the rapid and widespread dysregulation of gene expression
observed in oxidative stress-exposed cells before or during neuronal differentiation might
be mediated to some extent by changes in miRNA expressions. Small RNA-sequencing
on the same samples of SH-SY5Y cells exposed to oxidative stress, previously analysed by
total RNA-sequencing [12], revealed the differential expression of more than a hundred
miRNAs and their potential direct targeting of a subset of differentially expressed genes
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that were involved in various neuronal processes and both neurodevelopmental and
immunity-related diseases.

2. Materials and Methods
2.1. Cell Culture and Differentiation

The human neuroblastoma SH-SY5Y cells were grown at a density of 20,000 cells/cm2

into 6-well plates, containing Dulbecco’s Modified Eagle’s Medium (DMEM, Irvine, UK,
Sigma-Aldrich) cell culture medium, which was supplemented with 10% foetal bovine
serum (FBS, Melbourne, VIC, Australia, Bovogen Biologicals), 2mM glutamine (Logan, UT,
USA, HyClone), and 20 mM HEPES (New York, NY, USA, Thermofisher), and maintained
in a 5% CO2 atmosphere at 37 ◦C. After 24 h, all-trans retinoic acid (ATRA, Sigma-Aldrich,
St. Louis, MO, USA) was added to the medium at a final concentration of 10 µM to induce
neuronal differentiation. The differentiation protocol lasted for 7 days, during which the
cells were protected from light and the ATRA-supplemented medium was refreshed on the
3rd day. Successful differentiation was confirmed by observing neurite outgrowth as well
as the expression of neuronal marker genes.

2.2. Application of Oxidative Stress

As described in detail previously [12], hydrogen peroxide (H2O2, Sigma-Aldrich, St.
Louis, MO, USA) at a final concentration of 10 µM was applied through two different
protocols to induce chronic oxidative stress in neuroblasts. In the co-treatment approach,
the cell culture medium was simultaneously supplemented with ATRA and H2O2 for a
7-day period, while in the pre-treatment regimen, cells were first exposed to H2O2 for 72 h
and, upon its removal, treated with ATRA for 7 days. All experiments were performed in
biological triplicates.

2.3. RNA Extraction and Integrity Analysis

RNA was extracted from differentiated cells, as explained before [12]. Briefly, having
lysed cells with 1 mL Trizol reagent (Sigma-Aldrich, St. Louis, MO, USA) and centrifuged
with 200 µL chloroform (Chem-supply, Gillman, SA, Australia), total RNA was trapped in
an aqueous phase and precipitated by adding 80 µg glycogen (Life Technologies, Mulgrave,
VIC, Australia) and 500 µL isopropanol (Chem-supply, Gillman, SA, Australia), followed
by an overnight incubation at −20 ◦C. RNA was finally dissolved in nuclease-free water,
and its integrity and concentration were checked by the Agilent small RNA kit and the
2100 Bioanalyzer according to the manufacturer’s instructions (Agilent Technologies, Santa
Clara, CA, USA). All samples had RNA integrity number (RIN) values above 8.5.

2.4. Small RNA-Sequencing

QIAseq miRNA Library Kit and Illumina NextSeq 500 platform were used for small
RNA library preparation and sequencing, respectively, by the Ramaciotti Centre for Ge-
nomics (UNSW, Sydney, NSW, Australia).

2.5. Processing of Sequencing Data and Differential Expression Analysis

FastQC (v0.11.8) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) (ac-
cessed on 5 February 2021) was implemented to check the quality of the sequencing
FASTQ files. The low-quality nucleotides (Phred quality score < 28) as well as sequencing
adapters were then removed by Cutadapt (v2.10) (https://cutadapt.readthedocs.io/en/v2
.10/installation.html) (accessed on 5 February 2021). Having mapped to the human genome
build hg19 using Bowtie2 (v2.4.1) [19], the aligned reads were annotated to miRNAs and
quantified with htseq-count (v0.7.2) [20].

Read counts were normalised to sequencing depth (counts per million, CPM) using
edgeR (v3.6.1) [21]. A CPM threshold was then employed to remove miRNAs consistently
expressed to a very low degree across samples (5 raw counts in the smallest library). A final
analysis based on the pairwise exact test of treated versus control samples returned a list
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of differentially expressed miRNAs, with Benjamini–Hochberg false discovery rate (FDR)
below 0.05 and absolute log2 fold change (|log2FC|) above 0.6 considered significant.

2.6. Identification of Psychiatry-Related Dysregulated miRNAs

We next checked if any of the miRNAs with altered expression in our experiments
were previously reported to be differentially expressed in psychiatric patients compared
to healthy controls. To do that, we referred to a recently published systematic review
by Smigielski et al. [17], which summarised the findings of 42 studies on postmortem
brains and biofluids obtained from psychiatric individuals, mostly schizophrenia patients,
and non-psychiatric controls. In order to eliminate the inconsistency between miRNA
IDs reported by previous studies, we used the online tool miRNAmeConverter (https://
bioconductor.org/packages/release/bioc/html/miRNAmeConverter.html) [22] (accessed
on 12 March 2021) to convert our differentially expressed miRNA IDs to version 17 of
miRBase [23]. A one-sided Fisher’s exact test was applied to examine the enrichment of
miRNAs responsive to oxidative stress in psychiatric diseases.

2.7. miRNA-mRNA Correlation Analysis and Network Visualisation

In order to identify experimentally supported interactions between miRNAs and
their TargetScan-predicted mRNA targets [24], we integrated current results with those
from total RNA-sequencing [12] through a customised script that calculated the Pearson’s
correlation coefficient between miRNA-mRNA pairs that were differentially expressed in
our experiments. The pairs that were negatively (correlation coefficient < 0) and signifi-
cantly (FDR < 0.05) correlated were then visualised using the Cytoscape software platform
v.3.7.1 [25].

2.8. Gene Set Enrichment Analysis (GSEA)

The functional implications of differentially expressed miRNAs were determined by
investigating the enrichment of their negatively correlated dysregulated mRNA targets in
various gene ontology terms using the ToppGene functional enrichment suite [26].

3. Results
3.1. Confirmation of Differentiation

In this study, we used two distinct treatment regimens. In the pre-treatment approach,
SH-SY5Y cells were exposed to oxidative stress for 3 days prior to differentiation. Alter-
natively, in the co-treatment approach, the cells were exposed to oxidative stress during
the 7 days of differentiation. As explained in detail previously [12], both experiments led
to the generation of differentiated neuron-like cells with typical neurite outgrowth and
expression of neuronal marker genes, namely MAPT, ENO2, TUBB3, and SV2A.

3.2. miRNA Expression in Response to Oxidative Stress

A differential expression analysis revealed substantial changes in the expression of
miRNAs in both experiments compared to cells differentiated in the absence of oxidative
stress, with a maximum threshold of 0.05 for false discovery rate (FDR) and a minimum
threshold of 0.6 for |log2FC|. As to the co-treatment condition, 205 miRNAs were differen-
tially expressed, including 122 down-regulated and 83 up-regulated miRNAs (Figure 1A
and Supplementary Table S1), whereas in the pre-treatment condition, 77 and 52 miRNAs
showed decreased and increased expression, respectively, for a total of 129 dysregulated
miRNAs (Figure 1B and Supplementary Table S2). As revealed by unsupervised hierarchi-
cal clustering, the control and treated samples were clearly segregated by the pattern of
differentially expressed genes (Figure 2).

https://bioconductor.org/packages/release/bioc/html/miRNAmeConverter.html
https://bioconductor.org/packages/release/bioc/html/miRNAmeConverter.html
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degree in the expression patterns of their differentially expressed miRNAs, with each column and 
row representing a unique sample and a unique miRNA, respectively. Control and treatment sam-
ples were clearly distinguishable in both experiments. 

Figure 1. Volcano plot of peroxide treatment-associated miRNA expression. (A) Seven days of
treating SH-SY5Y neuroblastoma cells with H2O2 and ATRA simultaneously resulted in the increased
and decreased expression of 83 and 122 miRNAs, respectively, whereas (B) a three-day pre-treatment
of cells with H2O2 before adding ATRA caused expression alteration of 129 miRNAs, 52 up- and
77 down-regulated, in comparison to the cells differentiated in the absence of peroxide (FDR < 0.05
(horizontal blue line) and |log2FC| > 0.6 (vertical blue lines)). The red and green dots represent
down- and up-regulated miRNAs, respectively.
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A closer examination of the molecules differentially expressed in each treatment
revealed that most were distinct to each condition. While 33 were common to both the
pre- and co-differentiation regimens, all except for 5 showed the opposite direction of
effect, including hsa-miR-34b-3p, hsa-miR-34c-5p, hsa-miR-432-5p, hsa-miR-488-5p, and
hsa-miR-664a-3p (Supplementary Table S3).
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3.3. Oxidative Stress-Associated miRNAs Related to Psychiatric Disorders

To screen for prior association with psychiatric disorders, we cross-referenced our
observations with a list of 280 psychiatry-associated miRNAs collated by Smigielski et al.
in their systematic review [17]. This analysis revealed that 23% (n = 48) and 34% (n = 44)
of miRNAs for co- and pre-treatment, respectively, had previously been observed to be
dysregulated in psychiatric disorders (Supplementary Tables S1 and S2). Combining the
two treatments, the results showed that, of the 301 differentially expressed miRNAs, 80 were
associated with psychiatric diseases (Figure 3A), and we observed significant enrichment
of oxidative stress-responsive miRNAs in psychiatric disorders using Fisher’s exact test
(p-value = 5.563 × 10−5) (Figure 3B).
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Figure 3. (A) A total of 80 miRNAs responsive to oxidative stress were previously reported to be
differentially expressed in psychiatric disorders. (B) Fisher’s exact test revealed that the oxidative
stress-responsive miRNAs were significantly enriched in psychiatric diseases.

This included 12 psychiatry-related miRNAs that were affected by both experiments,
namely hsa-miR-101-3p, hsa-miR-130a-3p, hsa-miR-15a-5p, hsa-miR-21-5p, hsa-miR-26b-
5p, hsa-miR-301a-3p, hsa-miR-34c-5p, hsa-miR-340-5p, hsa-miR-432-5p, hsa-miR-483-3p,
hsa-miR-664a-3p, and hsa-miR-99b-5p. While most of these molecules have also been
reported in multiple studies (Table 1), it should be noted that several reports of psychiatry-
related miRNAs did not meet the inclusion criteria for systematic review by Smigielski
et al. [17].
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Table 1. Oxidative stress-associated miRNAs also reported to be dysregulated in psychiatric dis-
orders by more than two independent studies. SZ: schizophrenia; SZAD: schizophrenia and/or
schizoaffective disorder; STG: superior temporal gyrus; DLPFC: dorsolateral prefrontal cortex; PFC:
prefrontal cortex; PBMCs: peripheral blood mononuclear cells.

Condition

miRNA ID
Direction of

Change

Previous Reports

New Old Diagnosis Tissue Direction of
Change

Reference (in
Smigielski
et al. [17])

Co-
treatment

hsa-miR-17-
5p hsa-miR-17 Down SZ, SZAD STG, DLPFC,

PFC, serum

Up (brain)
and down

(serum)

103, 184, 185,
186, 195

hsa-miR-432-
5p hsa-miR-432 Up SZ PBMCs,

leukocyte Down 191, 192, 204

hsa-miR-
106b-5p

hsa-miR-
106b Down SZ PFC Up and

down 179, 180, 185

hsa-miR-30b-
5p hsa-miR-30b Down SZ, SZAD PFC, STG Up and

down 178, 180, 181

hsa-miR-29c-
3p hsa-miR-29c Down SZ, SZAD PFC exosomes,

DLPFC, PFC
Up and
down 103, 170, 180

hsa-miR-328-
3p hsa-miR-328 Up SZ, SZAD STG, DLPFC Up 103, 181, 184

hsa-miR-652-
3p hsa-miR-652 Down SZ, SZAD

DLPFC,
leukocyte,

plasma
Up 184, 192, 199

hsa-miR-33a-
5p hsa-miR-33 Down SZ PFC exosomes,

PFC, DLPFC
Up and
down 103, 170, 179

Pre-
treatment

hsa-miR-195-
5p hsa-miR-195 Up SZ, SZAD

STG, PFC,
plasma, whole
blood, serum,

PBMCs

Up and
down

103, 180, 182,
188, 194, 195,

198

hsa-miR-
181b-5p

hsa-miR-
181b Up SZ

STG, DLPFC,
whole blood,

serum, plasma
Up 102, 103, 194,

195, 196, 197

hsa-miR-107 hsa-miR-107 Up SZ, SZAD
STG, PFC,

DLPFC,
PBMCs

Up and
down

103, 123, 184,
191

hsa-miR-432-
5p hsa-miR-432 Up SZ PBMCs,

leukocyte Down 191, 192, 204

hsa-miR-
193b-3p

hsa-miR-
193b Down SZ PFC, plasma,

whole blood
Up and
down 179, 199, 205

hsa-miR-134-
5p hsa-miR-134 Down SZ, SZAD DLPFC,

PBMCs
Up and
down 184, 191, 204

hsa-miR-409-
3p

hsa-miR-409-
3p Down SZ

STG, DLPFC,
PBMCs, whole

blood

Up and
down 103, 191, 205

hsa-miR-346 hsa-miR-346 Down SZ DLPFC, serum,
plasma

Up and
down 187, 195, 197

Bold miRNAs are affected by both treatments. The reference numbers listed here are the original numbers reported
by Smigielski et al. in their recent systematic review [17].
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3.4. miRNA-mRNA Expression Correlation and Network Construction

To explore the relationship between oxidative stress-associated miRNA and the pre-
dicted target genes, we examined the correlation between the current miRNA data and the
previously published mRNA expression from the same samples [12]. This revealed that for
the co-treatment condition, 121 TargetScan-predicted miRNA-mRNA pairs were negatively
correlated with each other, with correlation coefficients between −0.99 and −0.92 and
FDR < 0.05 (Supplementary Table S4), suggesting that 65 unique miRNAs were directly
regulating the expression of 70 unique mRNAs. The structure of the putative interaction
network was graphed using Cytoscape (Figure 4).
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Figure 4. miRNA-mRNA interaction network for co-treatment condition. Comparing the list of
differentially expressed miRNAs (n = 205) and mRNAs (n = 295) with the miRNA-mRNA interac-
tions predicted by TargetScan returned 121 negatively correlated pairs, depicted by graph edges
(FDR < 0.05), constituting a network of 65 miRNAs and 70 mRNAs. V shapes and rectangles represent
miRNAs and mRNAs, respectively, and blue and red depict down- and up-regulation, respectively.
The nodes’ colour intensity is proportional to log2FC, while the nodes’ size is proportional to their
number of interactions.
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By comparison, in the pre-treatment condition, 59 unique miRNAs and 233 unique
mRNAs were significantly and negatively correlated through 312 direct interactions (−0.99
< correlation coefficient < −0.97 and FDR < 0.05) (Supplementary Table S5 and Figure 5).
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An interesting observation in the pre-treatment condition was that seven miRNAs, all
up-regulated, comprised 56% (177/312) of the network interactions, such that more than
half of mRNAs, 134 out of 233, were directly regulated by these seven miRNAs, and all
showed decreased expression. These miRNAs (and their number of direct targets) include
hsa-miR-138-5p (n = 66), hsa-miR-96-5p (n = 24), hsa-miR-34c-5p (n = 21), hsa-miR-1287-5p
(n = 20), hsa-miR-497-5p (n = 16), hsa-miR-195-5p (n = 16), and hsa-miR-16-5p (n = 14).
Interestingly, all these miRNAs except hsa-miR-1287-5p were reported in previous studies
to be dysregulated in tissues from people with psychiatric disorders compared to those
from healthy controls (Supplementary Table S2).
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3.5. Functional Enrichment Analysis

In order to understand the functional implications of differentially expressed miRNAs,
the enrichment of their negatively correlated mRNA pairs in various biological processes,
cellular components, and diseases was investigated using ToppFun. As to the co-treatment
condition, the 69 dysregulated genes were involved mostly in neurobiology-related pro-
cesses, such as neurogenesis (20 genes), neuron differentiation (17 genes), and neuron
development (12 genes) (Figure 6A), although they were not significantly localised in any
cellular spaces. A variety of malignancies, cardiovascular diseases, and inflammatory
or immune disorders were among the enriched diseases (Figure 6B). The detailed list of
enriched categories and their corresponding gene sets can be found in Supplementary
Table S6.
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The 233 mRNAs negatively correlated with the pre-treatment-affected miRNAs were
enriched in similar neurobiology-related processes as well as synapse organisation (17 genes)
and synaptic signalling (24 genes) (Figure 7A). These were mostly localised in the synapse
(33 genes) and cell junction (32 genes) (Figure 7B), and, interestingly, they were involved in
two neurodevelopmental disorders: intellectual disability (ID) (35 genes) and global devel-
opmental delay (GDD) (19 genes). Supplementary Table S7 lists the statistically significant
enriched categories and their corresponding gene sets. Interestingly, when we focused on
the top 7 most connected miRNAs, with at least 10 connections, and their 134 negatively
correlated mRNAs (down-regulated), they also returned very similar ontologies, including
neuron differentiation (23 genes), synapse organisation (13 genes), synaptic signalling
(17 genes), and intellectual disability (22 genes) (Supplementary Table S8). By contrast,
the remaining 99 mRNAs were not enriched in any relevant categories. This suggests
that the functional impact of the miRNA-mRNA interaction network in the pre-treatment
experiment is coordinated by the seven miRNA nodes or hubs with the highest number
of interactions.
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4. Discussion

In this study, we tested the hypothesis that the observed widespread changes in gene
expression that were induced by oxidative stress in differentiating human neuroblasts [12]
are associated with dysregulation of miRNA. In accordance with expectations, these trans-
acting stress-responsive signalling molecules [18] were differentially expressed under both
the co-treatment (205 miRNAs) and pre-treatment (129 miRNAs) conditions. Interestingly,
a substantial proportion of miRNAs impacted by oxidative stress exposure were previously
reported to be dysregulated in psychiatric disorders, mostly schizophrenia, as reviewed by
Smigielski et al. [17] and referenced here in Table 1 and Supplementary Tables S1 and S2.
In the following paragraphs, we discuss selected miRNAs that were affected by oxidative
stress exposure and implicated in neurodevelopment and psychiatric disorders.

As to the co-treatment condition, an interesting observation in the miRNA-mRNA
network was the direct interaction of ALDH1A2 with three schizophrenia-related miRNAs:
hsa-miR-137, hsa-miR-542-3p, and hsa-miR-338-3p (Figure 4). As discussed in detail be-
fore [12], genetic studies indicate an association between ALDH1A2 and some other retinoic
acid signalling genes and psychiatric disorders. Also, expression dysregulation of hsa-miR-
338-3p [27,28] and hsa-miR-542-3p [29] has been reported in some brain regions of patients
with schizophrenia. hsa-miR-137, on the other hand, is a brain-enriched miRNA involved
in the regulation of various neurodevelopmental processes, such as neurogenesis, neuronal
maturation, and the development of dendrites [30]. A single nucleotide polymorphism
(SNP) in proximity to the MIR137 gene was identified as the second most significantly asso-
ciated variant with schizophrenia risk in the largest schizophrenia genome-wide association
study (GWAS) [31]. In addition, we reported an SNP [32] and a variable-number tandem
repeat (VNTR) [33] in this miRNA gene to be associated with cognitive impairment in pa-
tients with schizophrenia. Although increased expression of miR-137 in peripheral tissues
from patients with schizophrenia has been reported by several studies [34–36], there exists
no report of its dysregulation in postmortem brains. However, Arakawa et al. recently
observed schizophrenia-associated behavioural deficits, including social and cognitive
deficits, in transgenic mice with overexpression of miR-137 in the whole brain [37].

Another well-studied miRNA with implications for brain development and psychiatry
that was affected in the co-treatment experiment was hsa-miR-17-5p. It is a member of
the miR-17 family, which has significantly higher expression levels during the early stages
of corticogenesis. hsa-miR-17-5p, for example, is expressed 20 times more in embryonic
day E12.5 compared to postnatal day P60 in the mouse cortex and has a critical role in
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regulating the proliferation and differentiation of neural precursor cells to neurons and glial
cells [38]. Consistently, we observed down-regulation of the entire miR-17 family, including
miR-17-5p, following retinoic acid-induced differentiation of SH-SY5Y neuroblasts [39].
Expression dysregulation of this miRNA has been reported by several studies in different
brain regions as well as peripheral tissues of patients with schizophrenia and/or schizoaf-
fective disorder (SZAD) compared to non-psychiatric controls (Table 1). In accordance with
our observations, miR-17-5p was reported as an oxidative stress-responsive miRNA by
Chen et al. In a rat model of neonatal hypoxia–ischemia (HI), which causes brain injury
and long-term behavioural and cognitive deficits, they observed that endoplasmic reticu-
lum (ER) stress, induced by oxidative stress, triggered degeneration of miR-17-5p, which
ultimately resulted in inflammatory activation and brain injury [40].

In the pre-treatment condition, the most affected miRNA was hsa-miR-223-3p, with a
26-fold expression decrease. It is a microglia-enriched [41], exosome-secreted miRNA [42]
suggested to be involved in neurodevelopment and psychiatric disorders, with most of
its predicted targets expressed in the brain [43]. Up-regulation of this miRNA, among
many others, was observed following in vitro induction of differentiation in human neural
stem/progenitor cells (NS/PCs). Through further functional experiments, the authors
suggested miR-223-3p as a regulator of several neuronal features, such as cell body size,
dendrite total length, and neuronal activity [43].

Our group was the first to report increased expression of this miRNA in the dorso-
lateral prefrontal cortex (DLPFC) of schizophrenia cases [27]. Zhao et al. later observed a
similar trend in plasma samples from patients with first-episode schizophrenia (FES) [44].
They could experimentally validate the direct interaction of this miRNA with four of its
predicted targets, which are implicated in neuronal development and migration, as well
as schizophrenia pathophysiology, namely SYNE1, SKIL, RHOB, and INPP5B [44]. More
recently, elevated expression of miR-223-3p was also reported in the orbitofrontal cortex
(OFC) of patients with schizophrenia and BD [42]. Interestingly, and consistent with our
current observation of this miRNA’s strong responsiveness to oxidative stress, Harraz et al.
showed its neuroprotective function in response to neuronal injury, for example in stroke,
transient global ischemia, and neurodegenerative disorders, by regulating the expression
of two glutamate receptor genes, NR2B (GRIN2B) and GLUR2 (GRIA2) [45].

Another striking miRNA, hsa-miR-138-5p, had the highest number of negative cor-
relations in the miRNA-mRNA interaction network for the pre-treatment condition, with
66 direct targets constituting around 20% of network interactions (Figure 5). It is a brain-
enriched miRNA localised in dendrites, or, more precisely, the synaptodendritic com-
partment, that negatively regulates the growth and morphogenesis of dendritic spines in
excitatory synapses. It is also thought to be involved in the regulation of synaptic plastic-
ity [46]. Notably, dendritic spine abnormalities are among the most commonly observed
neuropathological changes in postmortem brain tissues in patients with schizophrenia [47].
Interestingly, we observed increased expression of hsa-miR-138 in the superior temporal
gyrus (STG) of schizophrenia cases [27], while Moreau et al. reported its down-regulation
in the prefrontal cortex (PFC) of people with schizophrenia [28]. This miRNA was observed
to be down-regulated in the hippocampus of memory-impaired aged mice, with higher
levels being correlated with better memory performance in the novel object recognition
task [48]. Consistent with this observation, a GWAS on 13 memory traits revealed an
association between an SNP in a putative regulatory region of hsa-miR-138-5p (rs9882688)
and memory performance in individuals aged 60 years and older [49].

Two molecules altered during pre-treatment oxidative stress, hsa-miR-195-5p and
hsa-miR-181b-5p, are the most recurrently reported miRNAs dysregulated in psychiatric
disorders (Table 1). miR-195-5p, which is implicated in many pathologies, including
cancer [50], has a developmental-specific expression pattern in the human PFC [51], and its
expression is regulated by the redox-sensitive transcription factor NF-kB [52–54]. miR-195-
5p was observed to be associated with the enhancement of proliferation and the repression
of neuronal and astrocyte differentiation of adult neural stem cells (aNSCs) derived from



Life 2024, 14, 562 13 of 20

the dentate gyrus (DG) of the adult hippocampus, one of the few brain regions where
neurogenesis persists after completion of embryonic development [55]. Intriguingly, some
studies suggest a link between this miRNA and cognitive function. For example, Ai
et al. demonstrated that the memory impairment and dementia induced by chronic brain
hypoperfusion (CBH) could be prevented in rats through miR-195-5p overexpression and
the resultant suppression of two of its putative targets, APP and BACE1, both of which
are up-regulated during CBH and are associated with amyloid-β (Aβ) aggregation and
cognitive impairment [54]. Similarly, Cao et al. recently showed that cognitive deficits
associated with the apolipoprotein E4 (ApoE4) allele, a risk factor for Alzheimer’s disease
(AD), could be rescued in mice by overexpression of miR-195 [56].

miR-181b-5p, on the other hand, belongs to the miR-181 family, which is a group
of known regulators of key biological processes such as proliferation, apoptosis, embry-
onic development, and mitochondrial function involved in various neurodegenerative
disorders and malignancies, as reviewed by Indrieri et al. [57]. In particular, miR-181b-5p
is implicated in the pathology of the brain cancers astrocytoma and glioblastoma [57].
Up-regulation of this miRNA is one of the most consistent observations in patients with
schizophrenia [17]. It was first reported by our group in the STG [58] and DLPFC [27] of
postmortem brains and later replicated in peripheral tissues, including plasma, serum,
and whole blood (Table 1). Notably and consistent with our current results, Casey et al.
observed rapidly increased expression of miR-181b in the arterial blood of a piglet model
of neonatal hypoxic–ischemic encephalopathy (HIE) at one hour post-HI, which persisted
for 72 h [59].

In accordance with the previously reported changes in mRNA expression [12], there
was little overlap between the two treatment regimens, such that only 33 miRNAs were
common to both conditions. Most of these (n = 28) were inconsistent in terms of direction
change. hsa-miR-432-5p was one of the five miRNAs affected and showed the same di-
rection of expression change, i.e., up-regulation, in both treatments. It was also the most
connected miRNA in the miRNA-mRNA interaction network of the co-treatment condition,
directly targeting six mRNAs (Figure 4). Lai et al. were the first to report decreased ex-
pression of hsa-miR-432-5p in mononuclear leukocytes in patients with schizophrenia [60].
Later, we [61], and more recently, Yu et al. [62] also observed a reduction in its expression
in peripheral blood mononuclear cells (PBMCs) of cases with schizophrenia. This miRNA,
along with 11 other oxidative stress-induced differentially expressed miRNAs, originates
from the same genomic location within the DLK1-DIO3 region on the long arm of chro-
mosome 14 (14q32). The locus encodes 54 miRNAs residing in two large neighbouring
clusters at 14q32.2 and 14q32.31, harbouring 10 and 44 miRNA genes, respectively [63].
Our group first reported substantial down-regulation of 17 miRNAs from this region in
the PBMCs of 112 patients with schizophrenia compared to 76 non-psychiatric controls
in a microarray analysis. By including molecules that were not significantly dysregulated
after multiple testing correction, a further 10 miRNAs from the same region showed a
similar trend of expression reduction in patients. A copy number variation analysis in a
subset of samples revealed that the expression decrease was not due to structural variations
in the locus. Remarkably, a pathway analysis of genes predicted by both the miRanda
and TargetScan algorithms to be targeted by the 17 dysregulated miRNAs demonstrated
their involvement in neural connectivity and synaptic plasticity [61]. We later observed
changes in the expression of DLK1-DIO3 miRNAs in the left hemisphere of the entorhi-
nal cortex (EC), an important brain region for high-level cognitive function implicated in
schizophrenia, in a mouse model of maternal immune activation and adolescent cannabi-
noid exposure, two important risk factors for schizophrenia. This included differential
expression of 25 miRNAs, although 5 were not statistically significant after correction for
multiple testing following treatment with the viral mimic poly I:C alone, the synthetic
cannabinoid HU210 alone, or a combination of them [64]. More strikingly, a recent study
by Baulina et al. [63] reported up-regulation of 26 miRNAs from this region in the PBMCs
of eight treatment-naive male patients with relapsing–remitting multiple sclerosis (RRMS)
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compared to four healthy controls, but not in a female cohort of the same size [65], which is
an interesting observation considering the shared genetic risk between schizophrenia and
MS [66] and also the higher rate of psychiatric disorders among MS patients in comparison
to the general population [67–69].

Comparing our results with the above-discussed three studies [61,63,64] shows a
noticeable overlap, so that 9 out of 12 DLK1-DIO3 miRNAs affected following exposure to
oxidative stress were also demonstrated to be dysregulated in at least one of those studies
(Table 2).

Table 2. List of differentially expressed miRNAs from DLK1-DIO3 locus following exposure of
SH-SY5Y cells to oxidative stress and their association with schizophrenia (SZ) [61], MS [63], and
maternal immune activation [64]. The check marks indicate the miRNAs that were reported by
each study.

miRNA Log2FC

Gardiner et al. [61] Hollins et al. [63] Baulina
et al. [64]

Significantly
Down-

Regulated in
SZ after
Multiple
Testing

Correction

Average
Expression

Reduction in
SZ, but

Insignificant
after Multiple

Testing
Correction

Significant DE
in the Left

Hemisphere
after Multiple

Testing
Correction

DE in the Left
Hemisphere,

But
Insignificant

after Multiple
Testing

Correction

Significantly
Up-Regulated

in Male
Patients with

MS after
Multiple
Testing

Correction

Co-treatment

miR-432-5p 1.3 ✓ ✓

miR-370-3p 1.2 ✓ ✓ ✓

miR-485-3p 1 ✓ ✓ ✓

miR-495-3p −1.6 ✓ ✓ ✓

miR-376b-3p −1.4 ✓ ✓ ✓

miR-889-3p −0.88 ✓ ✓

miR-758-3p −1.7 ✓ ✓

miR-655-3p −2

miR-496 −2

miR-369-3p −0.8

Pre-Treatment

miR-432-5p 1.3 ✓ ✓

miR-323a-3p −1.5 ✓ ✓

miR-134-5p −1.8 ✓ ✓ ✓

miR-485-5p −1.9 ✓ ✓ ✓

Of particular interest are hsa-miR-134-5p and hsa-miR-370-3p, which were significantly
differentially expressed across all three investigations. hsa-miR-134-5p is a brain-enriched
miRNA implicated in synaptic development and plasticity through negative regulation of
dendritic spine volume, as shown by its gradual increase in the synaptodendritic compart-
ment of rat hippocampal neurons during brain development, reaching its maximum level at
postnatal day P13, when synaptic maturation occurs [70]. Schizophrenia-associated changes
in this miRNA expression have been repeatedly reported (Table 1). We first observed its in-
creased expression in the dorsolateral prefrontal cortex (DLPFC) Brodmann Area 46 (BA46)
samples from 37 matched pairs of schizophrenia/schizoaffective disorder (SZAD) cases and
non-psychiatric controls [29] and later showed that it was down-regulated in the PBMCs
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of patients with schizophrenia [61]. Decreased expression of miR-134-5p in the PBMCs of
subjects with schizophrenia was more recently confirmed and suggested as a diagnostic
biomarker in another independent study by Yu et al. [62]. A similar trend of this miRNA
reduced expression has been observed in the plasma of patients with BD [71] and MDD [72],
as well as in the plasma, hippocampus, and PFC in a rat model of depression [72]. hsa-
miR-370-3p, which is suggested to contribute to mouse embryonic development, especially
brain morphogenesis [73], is also differentially expressed in psychiatric diseases. While we
observed down-regulation of this miRNA in the PBMCs of patients with schizophrenia [61],
Lee et al. reported its increased expression in serum samples from subjects with bipolar
disorder compared with controls [74]. Also, it was significantly down-regulated in the
hippocampus in a rat model of depression [75].

Disease-associated changes in the expression level of some of the above-discussed
miRNAs show the same trend, up- or down-regulation, in the brain and peripheral tissues.
However, it should be noted that miRNA levels in peripheral tissues might not directly
reflect their expression levels in brain tissue, unless there is experimental data supporting
such an association.

Combining miRNA and mRNA datasets showed that a subset of differentially ex-
pressed genes with implications for neurodevelopmental processes and disorders were
directly regulated by differentially expressed miRNAs in both experiments, especially the
pre-treatment condition (Figures 6 and 7). In addition, some miRNA-targeted genes in
the co-treatment experiment were enriched in cardiovascular diseases and coronary heart
disease (Figure 6), which suggests that, apart from the nervous system, prenatal exposure
to oxidative stress might adversely affect the cardiovascular system as well [76] and might
explain part of the higher risk for cardiovascular diseases among patients with psychiatric
disorders [77]. Interestingly, some of the DLK1-DIO3 region miRNAs are known to be dif-
ferentially expressed in cardiovascular development and/or diseases, as comprehensively
reviewed by Dill and Naya [78], and are also affected by our oxidative stress treatments. For
instance, miR-432, miR-370, and miR-495 have been associated with atrial fibrillation [79],
coronary artery disease [80], and cardiac fibrosis [81], respectively. miR-134, on the other
hand, was demonstrated as a modulator for the proliferation of human cardiomyocyte
progenitor cells, which play critical roles in the early development of the heart [82], and a
significant increase in its plasma levels was suggested as a diagnostic biomarker for acute
pulmonary embolism [83].

The enrichment of immunity-related disorders was another remarkable observation
in the co-treatment condition (Figure 6), given the well-established link between immune
system dysfunction and psychiatric disorders, which was comprehensively discussed in
our previous paper [12]. Our results from these two transcriptome studies support the in-
flammatory mediator hypothesis, suggesting that the inflammatory immune system might
mediate, at least in part, the association between stress and psychiatric disorders [84,85]
and, even more strikingly, act as a linker among stress, psychiatric disorders, and cardiovas-
cular diseases, which might explain part of the high comorbidity between these illnesses
and their association with early-life stress [86–88].

Our study has some limitations that need to be considered when interpreting the
results. The cell model we used, the SH-SY5Y cell line, is the most cited in vitro model for
neuropsychiatric research because of its remarkable advantages, such as feasibility and
low cost to culture, large-scale expandability prior to differentiation, literature availability,
reproducibility, and the absence of ethical concerns [89]. However, it also has limitations.
The SH-SY5Y cell line is a subline of the SK-N-SH cell line, derived from a female patient
with neuroblastoma. Many studies have shown that the sex of cells affects their proliferation,
differentiation, and stress response [90], and therefore, our adopted model cannot address
sex differences. In addition, the parental SK-N-SH cell line comprises not only neuroblast-
like cells but also epithelial-like cells. And although the SH-SY5Y cell line was developed
as a homogenous neuroblastic clone, epithelial cells still exist in the cell culture. Since the
postmitotic effects of retinoic acid do not affect epithelial-like cells, they keep proliferating
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and constitute an important percentage of cells in the resultant neuronal culture [91]. Also,
due to its tumour origin, the SH-SY5Y cell line has genetic peculiarities that affect its growth
performance, viability, differentiation fate, and response to stress [92]. Designing similar
studies using primary cell models, such as embryonic stem cells and induced pluripotent
stem cells (iPSCs), can address most of these limitations and provide further support for
the findings of the current study.

On the other hand, our transcriptome analysis approach addresses one aspect of
miRNA-mediated gene expression repression, i.e., degrading mRNA transcripts. However,
miRNAs are known to suppress gene expression through translational attenuation as well.
Future proteomics studies can capture this mechanism of miRNA action and provide a
broader picture of the neuronal cell response to oxidative stress.

It should also be noted that many miRNAs are developmental-specific, and their
expression changes during differentiation of SH-SY5Y cells [93]. The current study has only
focused on miRNA expression in mature, differentiated neurons to exclusively investigate
the impact of oxidative stress on miRNA expression. Still, some inferences can be made
about the effect of the neuronal differentiation process.

5. Conclusions

Collectively, we show that chronic exposure to oxidative stress before or during the
differentiation process, even at very low, non-cytotoxic levels, causes widespread changes
in the expression of miRNAs, a well-known class of gene expression regulatory molecules.
Many of the dysregulated miRNAs are associated with psychiatric disorders, and their
predicted target genes are enriched in synapses and critical neurodevelopmental processes.
This suggests that despite outwardly appearing as fully developed neurons, the underlying
molecular frameworks may be compromised, affecting nervous system development and
connectivity. As a result, this level of exposure to oxidative stress may potentially increase
the probability of developing psychiatric disorders later in life. Understanding these
molecular intricacies is crucial for elucidating the pathophysiology of psychiatric disorders
and developing targeted interventions to reduce the risk.
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