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Abstract: The LPS-induced inflammation model is widely used for studying inflammatory processes
due to its cost-effectiveness, reproducibility, and faithful representation of key hallmarks. While
researchers often validate this model using clinical cytokine markers, a comprehensive understanding
of gene regulatory mechanisms requires extending investigation beyond these hallmarks. Our study
leveraged multiple whole-blood bulk RNA-seq datasets to rigorously compare the transcriptional pro-
files of the well-established LPS-induced inflammation model with those of several human diseases
characterized by systemic inflammation. Beyond conventional inflammation-associated systems,
we explored additional systems indirectly associated with inflammatory responses (i.e., ISR, RAAS,
and UPR) using a customized core inflammatory gene list. Our cross-condition-validation approach
spanned four distinct conditions: systemic lupus erythematosus (SLE) patients, dengue infection,
candidemia infection, and staphylococcus aureus exposure. This analysis approach, utilizing the
core gene list aimed to assess the model’s suitability for understanding the gene regulatory mech-
anisms underlying inflammatory processes triggered by diverse factors. Our analysis resulted in
elevated expressions of innate immune-associated genes, coinciding with suppressed expressions
of adaptive immune-associated genes. Also, upregulation of genes associated with cellular stresses
and mitochondrial innate immune responses underscored oxidative stress as a central driver of the
corresponding inflammatory processes in both the LPS-induced and other inflammatory contexts.

Keywords: LPS-induced inflammation model; whole-blood bulk RNA-seq; core gene list

1. Introduction

Inflammation, a multifaceted biological process, involves a diverse array of cells,
mediators (such as cytokines and chemokines), and intricate pathways. Irrespective of
the underlying cause, inflammation manifests with common symptomatic hallmarks (i.e.,
redness, fever, and pain) as well as clinical hallmarks, including elevated proinflammatory
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cytokine levels in serum. However, beyond these well-known features, an abundance of un-
known pathways and genes contribute to the orchestration of inflammatory responses [1–3].
Among them, some specific pathways and gene networks associated with inflammation
may vary depending on the underlying trigger, despite the shared symptomatic and
clinical hallmarks.

The lipopolysaccharide (LPS)-induced inflammation model stands as one of the most
widely employed systemic models for studying inflammatory-associated processes. Its
popularity stems from multiple advantageous features, including cost-effectiveness, re-
producibility, and the faithful recapitulation of key inflammatory hallmarks. Researchers
have extensively validated the suitability of the LPS model by assessing various proinflam-
matory markers. Typically, these validations involve monitoring serum levels of critical
cytokines such as IL-6, TNF-α, CXCL12, and members of the IL-1 family [4]. In order to
comprehensively understand the underlying gene regulatory mechanisms associated with
pathogenesis, however, it is imperative to extend validation beyond the clinical hallmarks.

In the intricate landscape of inflammation, peripheral blood turned out to be a central
battleground. Immune cells en route to inflamed tissues traverse this crucial conduit, leav-
ing their molecular footprints within the whole-blood transcriptome. Leveraging this rich
resource, whole-blood transcriptome analysis provides a cost-efficient avenue to unravel the
cues underlying inflammatory-associated mechanisms. Besides, beyond exploring systems,
pathways, and gene regulatory networks directly implicated in inflammation-associated
functional mechanisms, recent research has reported on alterations of additional factors
indirectly involved in inflammatory responses [5]. These factors encompass Integrated
Stress Responses (ISR), Renin-Angiotensin-Aldosterone System (RAAS), and Unfolded
Protein Responses (UPR).

We harnessed whole-blood bulk RNA-seq data, a cost-effective and clinically rele-
vant resource, and rigorously compared the transcriptional profile patterns of our well-
established LPS-induced inflammation model with those of several human diseases charac-
terized by systemic inflammation. Moreover, our study extended beyond the conventional
immune-associated systems or pathways through additional exploration of those such as
ISR, RAAS, and UPR indirectly associated with inflammatory responses. In this study, we
propose that cross-condition validation at the transcriptomic level is essential since only
a limited number of studies have investigated whether the LPS-induced inflammation
model faithfully recapitulates gene expression profiles at the RNA level. Our primary
objective was to assess the model’s suitability for elucidating the molecular mechanisms
underlying inflammation triggered by diverse conditions (i.e., SLE patients, dengue infec-
tion, candidemia infection, and S. aureus exposure). For this cross-condition validation of
the LPS-induced, not only basic analysis approaches such as GO analysis or GSEA, but
comparative analysis through alteration patterns of either gene expression or activity level
of the gene group using the customized core gene list were applied [5]. This comprehensive
approach has the potential to offer a holistic view of LPS-induced inflammation and its
diverse applications, thereby illuminating its multifaceted nature.

2. Materials and Methods
2.1. Animal (Mouse) Preparation

Adult male SD rats (8 weeks old, weighing 200–250 g, from Raonbio, Youngin, Korea)
were individually housed with access to water and food ad libitum. The room maintained a
12-h light/dark cycle and remained at a constant temperature of 21–24 ◦C. The experimental
animals underwent a one-week adaptation period before testing. All experiments were
conducted following the Guide for the Care and Use of Laboratory Animals [6], and
all procedures were approved by the Animal Care and Use Committee of Kyung Hee
University Hospital at Gangdong (approval number: KHNMC AP 2022–012).
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2.2. Lipopolysaccharide (LPS)-Induced Inflammation Model

Lipopolysaccharide (LPS) was procured from Sigma (St. Louis, MO, USA). To establish
an acute inflammation model, we intraperitoneally injected 5 mg/kg LPS, following a
previously described method with minor adjustments [7]. The study involved two groups,
each comprising five animals: (i) Control group: received intraperitoneal injections of
phosphate-buffered saline (PBS) at the same dose as the experimental group; (ii) LPS-
injected group: received intraperitoneal injections of LPS. Remarkably, no significant
systemic side effects resulting from LPS infection, such as changes in body weight or
increased mortality, were observed during our experiments. At 6 h post-LPS injection, the
rats were anesthetized, and 2.5–3 mL of blood was obtained via cardiac blood sampling for
use in the experiment. Blood samples (2.5 mL) were collected using PAXgene Blood RNA
Tubes (BRTs) from PreAnalytiX/BD. After 5–10 inversions, the BRTs were refrigerated at
4 ◦C for up to 5 days to stabilize the RNA.

2.3. Library Preparation

The Quant-IT RiboGreen assay was employed to determine the total RNA concen-
tration, with the DV200 value (representing the percentage of RNA fragments > 200 bp)
serving as an indicator of RNA sample quality. For library construction, we initially frag-
mented 100 ng of total RNA into smaller pieces, followed by reverse transcription into
first-strand cDNA. Subsequently, second-strand cDNA synthesis occurred, and the result-
ing products underwent purification and enrichment via PCR to create the cDNA library.
To specifically capture human exonic regions, we adhered to the Agilent SureSelect Target
Enrichment protocol with the SureSelect XT HS2 RNA Reagent Kit. A total of 250 ng of
the cDNA library, combined with hybridization buffers, blocking mixes, RNase block, and
5 µL of the SureSelect all exon capture library, underwent thorough washing and a second
round of PCR amplification. The purified product was quantified using KAPA Library
Quantification kits designed for Illumina sequencing platforms. Library quality assessment
was performed using the TapeStation D1000 ScreenTape, and the indexed libraries were
subsequently submitted for paired-end (2 × 100 bp) sequencing on an Illumina NovaSeq
(Illumina, Inc., San Diego, CA, USA).

2.4. Public Data Preparation

To compare the core gene regulatory patterns of the LPS-induced and inflammation-
associated conditions, we downloaded four publicly available RNA-seq datasets from
Gene Expression Omnibus (GEO): (i) GSE112087: systemic lupus erythematosus (SLE)
patient blood samples (31 SLE samples vs. 29 healthy samples); (ii) GSE140809: acute
dengue infection patient blood samples (68 dengue samples vs. 68 convalescent samples);
(iii) GSE176260: fungal (candidemia) infection patient blood samples (58 candidemia
samples vs. 15 healthy samples); (iv) bacterial (Staphylococcus aureus) infection patient
blood samples (4 S. aureus samples vs. 4 healthy samples).

2.5. RNA-seq Preprocessing

We obtained gene expression profiles from ten independent libraries; six of them
were LPS-induced samples, along with four corresponding control samples. For those ten
samples, the paired-end sequencing reads were generated using the Illumina NovaSeq
platform. Quality control involved Trimmomatic v0.38, which removed adapter sequences
and trimmed low-quality bases. For alignment, we used STAR (v2.7.3a) [8] and HTSeq-
count (v0.12.4) [9] to map RNA-seq reads from the ten libraries to the GRCm39 reference
genome and its annotation. Gene expression levels were quantified as counts, and nor-
malization using the DESeq2 package [10] with VST (Variance Stabilizing Transformation)
was executed.
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2.6. Analysis of Inflammatory Regulation

Following the initial preprocessing steps, we performed standard differential analysis
and gene ontology (GO) analysis by employing R packages, specifically EnhancedVol-
cano [11] and clusterProfiler [12]. Also, we explored associations between functional
pathways using Gene Set Enrichment Analysis (GSEA) [13]. The results were visualized us-
ing Cytoscape [14] in conjunction with Enrichment-Map [15]. In these analysis approaches
(i.e., Volcano, GO, and GSEA), we deliberately employed a gene list intricately linked
to inflammation. This gene list was meticulously curated by extracting genes associated
with the biological process (BP) category of ontology gene sets through the keyword in-
flammation from the Molecular Signatures Database (MSigDB) [16]. Next, we conducted
additional analyses, including the construction of gene expression profile heatmaps and
the exploration of inflammatory-specific pathway enrichment. For these latter aspects, we
relied on a custom-designed core inflammatory gene list, along with its corresponding
inflammatory pathways and modules, as previously described in [5]. Additionally, we
implemented Fast Gene Set Enrichment Analysis (fGSEA) [17] with its Nominal Enrich-
ment Score (NES) to enhance our understanding of the inflammatory landscape. These
methodological choices were made to ensure robustness and accuracy in our study of
inflammation-related mechanisms.

3. Results
3.1. Inflammation-Associated Genes of the LPS-Induced Model Were Upregulated

To explore gene regulatory characteristics associated with inflammatory responses in
the LPS-induced model, differentiated from the control, we initially performed standard
differential analyses, including GO analysis, utilizing specifically selected inflammation-
associated genes acquired from MSigDB. The volcano plot in Figure 1A comparing the
LPS-induced and normal (i.e., control) still showed a large amount of differentially ex-
pressed genes (DEGs), although the inflammation-associated genes were applied. Also,
some turned out to be known genes for typical inflammatory responses: (i) Serpinb1a,
acknowledged as a negative regulator of the immune system and documented to be down-
regulated in tropical pulmonary eosinophilia, was overexpressed in the LPS-induced [18];
(ii) the expression level of Il1r2, widely known for encoding a decoy receptor for interleukin-
1, was high in the LPS-induced; (iii) Acod1, supposed to play a role in iron homeostasis and
immune modulation of LPS-stimulated macrophage, showed a high expression level in
the LPS-induced [19]. While having sufficient DEGs on both up- and down-regulated LPS-
induced pathways, most of the differentially enriched functional pathways were displayed
on the upregulation side, as depicted in Figure 1B. This indicated that downregulated DEGs
from the LPS-induced were probably not functionally associated with each other. Along
with some functional pathways associated with immune systems, many different types
of stimulus-associated pathways (i.e., response_to_external_stimulus) were strongly and
positively enriched.

To further explore the LPS-induced-specific characteristics associated with inflam-
matory responses, we implemented GSEA using the same inflammatory-associated
gene list from MSigDB. As depicted in Figure 1C, in this analysis, one huge clus-
ter with all nodes in upregulation of the LPS-induced regulation containing regu-
lation_of_inflammatory_response as the central node was detected. Within the clus-
ter, roughly thirteen nodes displayed relatively more considerable connections to each
other, where the thirteen nodes were composed of approximately three different types of
inflammatory-associated functions: (i) stimulus-associated terms, including responses_to_
antigenic_stimulus; (ii) hypersensitivity-associated terms, such as type_I or type_II_ hyper-
sensitivity; (iii) terms implicated in acute_inflammatory_responses.
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fold-change > 2). (B) Inflammation-associated pathways in the LPS-induced inflammation model 
compared with the control (p-value < 0.1 and q-value < 0.25). (C) Network visualization of enriched 
pathways from the LPS-induced inflammation model compared with the control. Enriched path-
ways in the LPS-induced inflammation model are indicated in blue, while pathways enriched in the 
control are shown in red. Each size of node corresponds to the size of the gene set belonging to the 
corresponding pathway. Since edges represent the similarity coefficient between connected nodes, 
thicker lines indicate a higher degree of association. 
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While lipopolysaccharide (LPS) is widely recognized as a potent inducer of inflam-
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the gene-by-gene level. Also, although more than 1300 genes are already known to be di-
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genes play key roles in inflammatory processes for selective diseases differently. 

To better understand the LPS-induced-associated transcriptional profiles implicated 
in inflammatory responses through specific gene-alteration patterns, we explored differ-
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as depicted in Figure 2. Overall, many inflammatory modules revealed elevated expres-
sions, while only a few modules (i.e., surface marker/receptor signaling in adaptive im-
munity or NADPH oxidase in RAAS) were suppressed. The most upregulated inflamma-
tory system was innate immunity, unveiling that 69% of the gene list had Wald-test statis-
tics exceeding 2.0. Some inflammatory modules also revealed remarkable elevations (i.e., 
Wald-test statistics > 2.0); (i) non-canonical in innate immunity as 81%; (ii) cytokines in 
adaptive immunity as 75%; (iii) death factors in ISR as 75%; and (iv) survival factors in ISR 
as 71%. adaptive immunity, however, exhibited the most significant downregulation, with 

Figure 1. Differentially expressed genes and enriched pathways. (A) Differentially expressed genes
in the LPS-induced inflammation model compared to the control group (p-value < 0.05 and log2
fold-change > 2). (B) Inflammation-associated pathways in the LPS-induced inflammation model
compared with the control (p-value < 0.1 and q-value < 0.25). (C) Network visualization of enriched
pathways from the LPS-induced inflammation model compared with the control. Enriched pathways
in the LPS-induced inflammation model are indicated in blue, while pathways enriched in the
control are shown in red. Each size of node corresponds to the size of the gene set belonging to the
corresponding pathway. Since edges represent the similarity coefficient between connected nodes,
thicker lines indicate a higher degree of association.

3.2. The LPS-Induced Model Disclosed Considerable Upregulations in Innate Immunity

While lipopolysaccharide (LPS) is widely recognized as a potent inducer of inflamma-
tion, there has been a lack of specific investigations into its underlying mechanisms at the
gene-by-gene level. Also, although more than 1300 genes are already known to be directly
or indirectly associated with inflammatory responses, selective genes among those genes
play key roles in inflammatory processes for selective diseases differently.

To better understand the LPS-induced-associated transcriptional profiles implicated in
inflammatory responses through specific gene-alteration patterns, we explored differential
expression levels of the custom-made core-inflammatory gene list adopted from [5] as
depicted in Figure 2. Overall, many inflammatory modules revealed elevated expressions,
while only a few modules (i.e., surface marker/receptor signaling in adaptive immunity
or NADPH oxidase in RAAS) were suppressed. The most upregulated inflammatory
system was innate immunity, unveiling that 69% of the gene list had Wald-test statistics
exceeding 2.0. Some inflammatory modules also revealed remarkable elevations (i.e., Wald-
test statistics > 2.0); (i) non-canonical in innate immunity as 81%; (ii) cytokines in adaptive
immunity as 75%; (iii) death factors in ISR as 75%; and (iv) survival factors in ISR as 71%.
adaptive immunity, however, exhibited the most significant downregulation, with 47% of
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the gene list showing considerable suppression. Specifically, within its module, surface
marker/receptor signaling, 62% of the gene list had Wald-test statistics lower than −2.0.
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Figure 2. Heatmap of the core inflammatory gene list with Wald-test statistics comparing the
LPS-induced versus the control. Transcriptional profile alterations (as Waldtest statistics) of the
inflammatory genes selectively organized by Topper and Guarnieri et al. (2023) [5] were visualized.
Red indicates upregulation, and blue indicates downregulation in the LPS-induced model.

3.3. The LPS-Induced Model Exhibited Extraordinary Common Expression Patterns with SLE

Based on the core transcriptional profiles of the LPS-induced acute inflammation
model, we compared the gene expression patterns of the core gene list between the LPS-
induced and multiple conditions. The first case chosen to be compared was systemic
lupus erythematosus (SLE), which is a representative autoimmune disease characterized
by systemic inflammation (Figure 3). The RNA-seq data downloaded for this comparison
contained whole-blood transcription samples of both 31 SLE patients and 29 healthy
donors (GSE112087). On the whole, this comparison with SLE patients revealed that gene
alteration patterns were sufficiently indistinguishable across the two different datasets.
From the comparison, several genes with relatively substantial elevations in common for
both groups (i.e., Wald-test statistics > 6.0) were shown: (i) innate immunity: Ifih1, Ifit2,
Oas3, Parp9, Stat1, Stat2, Herc6, Parp14, Parp9, Znfx1, Casp1, and Tap1; (ii) adaptive
immunity: Tap1 and Ccr1; (iii) mitochondrial innate immunity: Casp1, Myd88, Ifih1, and
Znfx1; (iv) RAAS: Mlkl; (v) ISR: Nfe2l2 and Glrx. Among the gene list, some were reported
in previous studies as follows: (i) Ifih1 was related to viral resistance in children [20];
(ii) Ifit2 was involved in resistance to viral infection such as influenza virus [21]; (iii) Znfx1
was associated with susceptibility to viral infections [22]; (iv) transcription of Tap1 could be
rapidly upregulated in response to pro-inflammatory cytokines such as type-I IFN, IFN-γ,
and TNF-α [23]; (v) Ccr1 could contribute to viral infection by activating inflammation in
infection situations [24]; (vi) Myd88 was associated with IL-1 signaling [25].

The most similar inflammatory system turned out to be innate immunity. 67% of
the core gene list in innate immunity were upregulated (i.e., Wald-test statistics > 2.0) in
both the LPS-induced and the SLE patient samples, where canonical and non-canonical
presented 71% and 75% common upregulations, respectively. Other inflammatory mod-
ules also displayed relatively more significant upregulations in common for both groups:
(i) survival factors in ISR as 57%; (ii) mtDNA in mitochondrial innate immunity as 55%.
Also, other inflammatory modules divulged relatively more common patterns, whether
commonly upregulated or downregulated (i.e., either Wald-test statistics > 2.0 or Wald-test
statistics < 2.0), in both groups: (i) surface marker/receptor signaling in adaptive immunity
as 54%; (ii) antigen presentation in adaptive immunity as 80%; (iii) MT target gene in UPR
as 56%. However, we observed unmatched patterns of expression alterations across the
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gene list. Among the inflammatory modules having these incomparable patterns, inter-
leukins in adaptive immunity and hyaluronan accumulation in RAAS demonstrated 56%
and 75% differences in alteration (i.e., Wald-test statistics > 0 and Wald-test statistics < 0).
These two cases were the only modules with higher percentages of unmatched alterations
exceeding 50%.
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3.4. The LPS-Induced Model Revealed Exceptional Common Expression Patterns with Dengue
Virus Infection

In line with the comparison to the SLE patient samples, we selected dengue virus
infection blood samples to examine transcriptional profile patterns intimately associated
with inflammatory responses (Figure 4). The dengue infection samples downloaded from
GSE140809 consisted of whole blood samples composed of 68 pediatric patients and
68 convalescent (i.e., 14–22 days post-infection) controls. In the comparison, multiple
genes with relatively considerable elevations in common for both groups (i.e., Wald-test
statistics > 6.0), where many of these were overlapping with those from the comparison
with the SLE, were demonstrated: (i) innate immunity: Ifih1, Ifit2, Ifitm3, Oas3, Parp9,
Stat1, Stat2, Herc6, Parp14, Parp9, Znfx1, Casp1, and Tap1; (ii) adaptive immunity: Tap1
and Socs1; and (iii) mitochondrial innate immunity: Casp1, Ifih1, and Znfx1, (iv) RAAS:
Mlkl, (v) ISR: Glrx and Txn1.

While exhibiting overlapping up- or down-regulation patterns in general, innate
immunity was uncovered to be the second most identical inflammatory system, where 62%
of the core gene list were considerably upregulated (i.e., Wald-test statistics > 2.0) in both the
LPS-induced and the dengue infection samples. Two inflammatory modules, non-canonical
in innate immunity and cytokines in adaptive immunity, disclosed exceptional resemblance
by sharing 75% of common upregulations between both the LPS-induced and the dengue
infection. Additionally, two other inflammatory modules revealed significant common
patterns, including upregulation and downregulation (i.e., either Wald-test statistics > 2.0 or
Wald-test statistics < 2.0), within non-canonical in innate immunity and antigen presentation
in adaptive immunity by 81% and 60%, respectively. However, this comparison also
presented unparalleled alteration patterns over the gene list in some inflammatory modules,
as follows: (i) ER sensor/initiator in UPR by 50%; (ii) MT target gene in UPR by 67%; and
(iii) AGT regulator axis in RAAS by 50%.
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(2023) [5] were visualized. Red indicates upregulation, and blue indicates downregulation in either
the LPS-induced model or dengue virus infection.

3.5. The LPS-Induced Model Disclosed Significant Common Expression Patterns with
Candidemia Infection

Along with the SLE patient samples and the dengue infection samples, we also in-
cluded fungal (candidemia) infection samples to scan their differential expression patterns
with the LPS-induced (Figure 5). The candidemia infection samples were downloaded from
GSE176260, which is RNA-seq data on peripheral blood from 58 hospitalized patients with
candidemia infection and 15 controls. According to this comparison, a few genes (Ifitm3 in
innate immunity, Relb in mitochondrial innate immunity, and GPX4 in ISR) with relatively
considerable upregulations in common for both groups (i.e., Wald-test statistics > 5.0) as
stated in previous studies are as follows; (i) Ifitm3 in innate immunity was intimately
associated with antiviral protection [26]; (ii) GPX4 in ISR may suggest cellular protection in
response to oxidative stress [27].

This comparison between the LPS-induced and the candidemia infection samples also
unveiled indistinguishable alteration patterns across all the gene lists of six inflammatory
systems, as the SLE patient samples and the dengue infection reported. While some
inflammatory modules indicated relatively significant comparable patterns between the
two different groups (i.e., anti-oxidant in ISR with statistics, either Wald-test statistics > 2.0
or Wald-test statistics < 2.0), this comparison generally revealed modest likeness across the
gene list between the two groups. Despite the insignificant comparability with variations
between the two groups, commonalities in alteration patterns between the groups were still
maintained with cut-offs of either Wald-test statistics > 0 or Wald-test statistics < 0. Based
on this cut-off, the similarity percentage of commonly upregulated or downregulated genes
over all the gene lists between the LPS-induced and the candidemia infection samples
turned out to be 59%, while the other comparisons with either SLE samples or dengue virus
samples were 62% or 63%, respectively.



Life 2024, 14, 558 9 of 17
Life 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Heatmap of the core inflammatory gene list with Wald-test statistics comparing the LPS-
induced inflammation model and Candidemia. Transcriptional profile alterations (as Wald-test sta-
tistics) of the inflammatory genes selectively arranged by Topper and Guarnieri et al. (2023) [5] were 
visualized. Red indicates upregulation, and blue indicates downregulation in either the LPS-in-
duced model or Candidemia. 

3.6. The LPS-Induced Model Divulged Considerable Common Expression Patterns with 
Exposure to Heat Killed S. aureus 

In addition to the SLE, the dengue infection, and the candidemia infection cases, we 
additionally took into account bacterial (Staphylococcus aureus) exposure samples to exam-
ine gene expression alteration patterns for comparison with those of the LPS-induced (Fig-
ure 6). A publicly available RNA-seq dataset (GSE237960), four samples of human whole 
blood exposure to heat-killed S. aureus (HKSA), along with four controls, was downloaded 
to be analyzed. In this comparison between the LPS-induced and the S. aureus exposure, 
some genes were significantly and commonly upregulated for both groups (i.e., Wald-test 
statistics > 6.0); (i) innate immunity: Herc6 and Casp1; (ii) adaptive immunity: Il1b and 
Socs1; (iii) mitochondrial innate immunity: Casp1 and Il1b; (iv) ISR: Nqo1 and Txn1. From 
this list, Socs1, the suppressor of cytokine signaling 1, was described as being negatively 
correlated with the magnitude of inflammation. A recent study conducted blood tran-
scriptome profiling from the peripheral blood of atopic dermatitis patients and classified 
them into two endotypes—eosinophil high/low. Of these two endotypes, Socs1 was up-
regulated in the former endotypes [28]. 

Similar alteration patterns across all the inflammatory systems were also disclosed, 
consistent with the aforementioned fungal infection case. Some inflammatory modules, 
such as non-canonical in innate immunity, antigen presentation in adaptive immunity, 
and ER sensor/initiator in UPR, revealed significant comparable patterns between the two 
groups (Wald-test statistics > 2.0 or Wald-test statistics < 2.0). While this comparison 
demonstrated moderate resemblance across the two groups alike in the dengue infection, 
the similarity percentage of commonly upregulated or downregulated genes over all the 
gene lists between the LPS-induced and the S. aureus exposure was computed at 64% 
(Wald-test statistics > 0 or Wald-test statistics < 0). 

Figure 5. Heatmap of the core inflammatory gene list with Wald-test statistics comparing the LPS-
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induced model or Candidemia.

3.6. The LPS-Induced Model Divulged Considerable Common Expression Patterns with Exposure
to Heat Killed S. aureus

In addition to the SLE, the dengue infection, and the candidemia infection cases,
we additionally took into account bacterial (Staphylococcus aureus) exposure samples to
examine gene expression alteration patterns for comparison with those of the LPS-induced
(Figure 6). A publicly available RNA-seq dataset (GSE237960), four samples of human
whole blood exposure to heat-killed S. aureus (HKSA), along with four controls, was
downloaded to be analyzed. In this comparison between the LPS-induced and the S. aureus
exposure, some genes were significantly and commonly upregulated for both groups (i.e.,
Wald-test statistics > 6.0); (i) innate immunity: Herc6 and Casp1; (ii) adaptive immunity:
Il1b and Socs1; (iii) mitochondrial innate immunity: Casp1 and Il1b; (iv) ISR: Nqo1 and
Txn1. From this list, Socs1, the suppressor of cytokine signaling 1, was described as being
negatively correlated with the magnitude of inflammation. A recent study conducted
blood transcriptome profiling from the peripheral blood of atopic dermatitis patients and
classified them into two endotypes—eosinophil high/low. Of these two endotypes, Socs1
was upregulated in the former endotypes [28].

Similar alteration patterns across all the inflammatory systems were also disclosed,
consistent with the aforementioned fungal infection case. Some inflammatory modules,
such as non-canonical in innate immunity, antigen presentation in adaptive immunity,
and ER sensor/initiator in UPR, revealed significant comparable patterns between the
two groups (Wald-test statistics > 2.0 or Wald-test statistics < 2.0). While this comparison
demonstrated moderate resemblance across the two groups alike in the dengue infection,
the similarity percentage of commonly upregulated or downregulated genes over all the
gene lists between the LPS-induced and the S. aureus exposure was computed at 64%
(Wald-test statistics > 0 or Wald-test statistics < 0).
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induced model and exposure to the heat-killed S. aureus. Transcriptional profile alterations (as
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(2023) [5] were visualized. Red indicates upregulation, and blue indicates downregulation in either
the LPS-induced model or exposure to HKSA.

3.7. Innate Immunity and Mitochondrial Innate Immunity Demonstrated the Most Similar
Activation Patterns across Four Distinct Inflammatory Conditions

In attempts to compare alteration patterns of inflammatory activation levels between
the LPS-induced and the other four different RNA-seq datasets (the SLE patient, the dengue
infection, the candidemia infection, and the S. aureus exposure), we estimated the activation
levels of all the inflammatory modules by evaluating their corresponding normalized
enrichment scores (NES) using fGSEA. Based on the NES values as estimated collective
dynamics of specific inflammatory-associated gene-groups, we compared all five different
conditions across all thirty inflammatory modules by examining the values of the modules
to determine whether they were comparable or different over the different conditions.

According to the patterns shown in Figure 7, innate immunity-associated systems,
including innate immunity and mitochondrial innate immunity revealed the most re-
markable resemblance across all the five different conditions. Specifically, inflammatory
modules such as canonical and non-canonical in innate immunity demonstrated commonly
upregulated activation levels over the five groups. Modules such as mtdsRNA and mtd-
sRNA/dsRNA in mitochondrial innate immunity also indicated common upregulated
patterns across the five distinct conditions. While displaying less comparability across the
five groups than innate immunity-associated systems, adaptive immunity still exhibited
marked likeness, particularly on its module, cytokines. Surface marker/receptor signal-
ing in adaptive immunity also revealed similarities across four of the groups, except for
dengue infection.

However, the other inflammatory systems (i.e., RAAS, ISR, and UPR) did not introduce
agreement across the five different conditions in general, although considerable alikeness
of some inflammatory modules was detected: (i) RAAS: complement activation/fibrin
deposition and (ii) ISR: sensor/initiator, death factors, cytokines/chemokines, and anti-
oxidant. Among all six inflammatory systems, UPR turned out to be the most disparate
system across all five conditions.
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4. Discussion

We have investigated the inflammatory-associated gene regulatory patterns of the LPS-
induced acute inflammation mouse model to study its underlying inflammatory-associated
functional processes and determine whether this inflammation model can be used to study
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the inflammatory processes of various biomedical conditions, including diseases, infections,
or exposures. To compare specific gene expression alterations of the LPS-induced with
those of several other conditions, we downloaded representative RNA-seq datasets of
four different conditions, such as the SLE patient, the dengue infection, the candidemia
infection, and the S. aureus exposure. In this comparison analysis, we primarily applied the
custom-made core inflammation gene list to track their expression alteration patterns and
also the gene set enrichment analysis with the gene list across all the different conditions.

Our initial analyses (i.e., differential analysis, GO analysis, and GSEA) were conducted
on the LPS-induced inflammatory mouse model and revealed many different alterations
mainly associated with innate immunity and adaptive immunity. While these analyses still
showed diverse links between known or typical functional pathways and gene regulatory
alterations, they neither provided connections to previously undiscovered pathways nor
introduced specific gene lists for a better interpretation of the underlying mechanisms
associated with inflammatory processes (Figure 1). Therefore, based on the findings from
Figure 2, our primary analysis approach focused on exploring gene expression alteration
patterns as well as activation level alterations of inflammatory modules using the adopted
custom-made core gene list. We initially applied this approach to the LPS-induced and
subsequently extended it to contain four other distinct inflammatory conditions: systemic
lupus erythematosus (SLE), dengue virus infection, candidemia (fungal infection), and
heat-killed S. aureus (bacterial infection).

The most noteworthy findings from our investigation are gene lists that displayed
relatively significant common up- or down-regulation alterations among known genes
associated with each inflammation-associated condition (i.e., Wald-test statistics > 2.0 for
both cases). The LPS-induced model expressed known innate immune marker genes
in systemic auto-immune disease, systemic lupus erythematosus. Cxcl11, Ifih1, Isg20,
Oas3, Parp9, Stat1, Stat2, Herc6, and Casp1 are associated with type 1 interferon signaling
pathways and mononuclear cell infiltration [29–36]. Expressions of Tap1, Tap2, and Socs1
implicated in cytokines and interleukin were commonly increased [23,28] and another
common elevation of Adar was found to be involved in RNA editing in SLE [37]. However,
some known adaptive immune marker genes associated with leukocyte migration in SLE,
such as Cd74 and Cxcr6, were downregulated in common [38,39]. Others, such as Ccr7,
Cd4, Cxcr6, Fyn, Lck, and Zap70, were also known to decrease in SLE, as observed [39–44].

The LPS-induced model also shared similar marker genes with the systemic viral
infection, dengue infection. Gene expressions associated with antiviral activity, including
Znfx1, Adar, Ifi44, Ifih1, Ifit2, Ifitm3, and Isg20 [20–22,26,45–48] were increased in common.
Additionally, expressions of Myd88, which is involved in interleukin expression [25,49],
and Irf7, implicated in IFN expression [50], were both increased.

In addition, the LPS-induced model exhibited shared marker genes with systemic
fungal infection and Candidemia infection. Genes with commonly elevated expressions
encompass Ripk3, Parp, and Stat, which are known to be associated with the IFN, MAPK,
and NF-kappa-b pathways [51–53]. Other genes involved in stress response and cytokine
expression were Atf4, Atf6, and Eif2ak2 in common upregulation [54–57].

Lastly, the LPS-induced model displayed overlapped marker genes with heat-treated
S. aureus samples. Their innate immune markers, such as Oas3, Parp9, and Samd9l, are
known to be increased in TB infection [58–60]. While Eif2ak2 and Herc6 are implicated in
bacterial sepsis [61], Rnf213 is associated with ubiquitylation of LPS [62], and Casp1 is a
key factor in the inflammatory response [63] in bacterial infection as detected in common
upregulation. However, Cd74, an adaptive immune marker, is known to be decreased in
Pseudomonas infection [64].

Increased gene expression associated with cellular stresses, such as RAAS, ISR, and
UPR, along with increased mitochondrial innate immunity, suggests that those stresses play
a key role in necessitating the inflammatory response in the LPS-induced model. Previous
studies have shown that LPS can induce hypoxia, which in turn affects macrophages and
the autophagy of dendritic cells [65,66]. The increased gene expression of Foxo3, Sod2,
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Gpx1, and Gpx4 in the LPS-induced model can be associated with the response to oxidative
stress [27,67,68]. This pattern of inflammatory gene expression has also been observed
in several systemic inflammatory diseases, including SLE, dengue infection, Candidemia
infection, and exposure to S. aureus.

The considerable upregulation of both canonical and non-canonical innate immunity
across all the modules may indicate its association with initial phases of immune responses
that counter invading pathogens, particularly those mediated by reactive oxygen species
(ROS) [69]. The upregulation of inflammatory modules such as mtDNA, mtdsRNA, and
mtDNA/dsRNA in mitochondrial innate immunity may insinuate the involvement of
innate immune responses in cellular damage and stress [70]. The promoted levels of
some modules (i.e., PANoptosis, complement activation/fibrin deposition, syndecans,
and hyaluronan accumulation) in Renin-Angiotensin-Aldosterone System (RAAS) may
be implicated in inflammatory processes associated with cell death [71]. The elevated
levels of modules such as ER sensor/initiator and ER target gene in Unfolded Protein
Response (UPR) may imply a possible impact on innate immune signaling, immune cell
functions, and dealing with oxidative stress in the endoplasmic reticulum [72]. For instance,
FOXO3, a member of the FOXO (Forkhead Box O) protein family, promotes expressions of
intracellular antioxidant genes, reduces concentrations of various oxidative substances, and
induces autophagy to remove damaged cellular components and oxidative agents, thereby
possibly enhancing its activity in immediate response to transient oxidative stress [67].
The uplifted levels of some modules (i.e., anti-oxidant, death factors, survival factors, and
cytokine/chemokine) in Integrated Stress Response (ISR) may be associated with a wide
range of cellular stresses, including oxidative stress. For example, GPX enzymes (i.e., GPX1
or GPX4) [27] utilize glutathione as a cofactor to reduce peroxides within the cell while
converting peroxides into less harmful substances. This process implies a cellular protective
response to oxidative stress.

One significant limitation of this study may stem from the data utilized for all analyses.
As all five datasets analyzed in this study were based on RNA sequencing, our observa-
tions were limited to alterations only at the transcriptional level. The interpretations of
inflammatory-associated changes across different cases may be less sensitive.

5. Conclusions

In conclusion, the inflammatory pathway observed in the LPS-induced inflammatory
model aligns with the inflammatory-process patterns traced in other systemic inflammatory
diseases. The LPS-induced model exhibits similar inflammatory-process profiles to those
observed in patients with SLE, dengue infection, Candidemia infection, and exposure to
S. aureus. Specifically, the LPS-induced model expresses known marker genes consistent
with the inflammatory-process patterns detected in the comparison disease set, supporting
the notion of similarity. Among the samples, an increase in innate immune-related genes,
particularly in chemokine expression, was disclosed. Adaptive immune genes implicated
in surface presentation, however, demonstrated decreased expression. Furthermore, the
upregulation of genes involved in oxidative stress and mitochondrial innate immunity
underscored oxidative stress as a primary inducer of inflammation in both LPS-induced
conditions and other diseases.
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