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Abstract: Cardiovascular disease is the leading cause of mortality worldwide. Despite the availability
of effective low-density lipoprotein cholesterol (LDL-C) lowering agents, an increased cardiovascular
risk is still observed in individuals with therapeutic LDL-C levels. One of these cardiovascular risk
factors is elevated plasma lipoprotein(a) (Lp(a)) concentration, which maintains chronic inflammation
through the increased presence of oxidized phospholipids on its surface. In addition, due to its
90 percent homology with the fibrinolytic proenzyme plasminogen, Lp(a) exhibits atherothrombotic
effects. These may also contribute to the increased cardiovascular risk in individuals with high
Lp(a) levels that previous epidemiological studies have shown to exist independently of LDL-C
and other lipid parameters. In this review, the authors overview the novel therapeutic options to
achieve effective Lp(a) lowering treatment, which may help to define tailored personalized medicine
and reduce the residual cardiovascular risk in high-risk patients. Agents that increase LDL receptor
expression, including statins, proprotein convertase subtilisin kexin type 9 inhibitors, and LDL pro-
duction inhibitors, are also discussed. Other treatment options, e.g., cholesterolester transfer protein
inhibitors, nicotinic acid derivatives, thyroid hormone mimetics, lipoprotein apheresis, as well as
apolipoprotein(a) reducing antisense oligonucleotides and small interfering RNAs, are also evaluated.

Keywords: lipoprotein(a); lipid-lowering therapy; lipoprotein apheresis; proprotein convertase
subtilisin kexin type 9 inhibitor; antisense oligonucleotide; small interfering RNA

1. Introduction

Lipoprotein(a) (Lp(a)) was discovered in 1963, and later studies confirmed that it
increases cardiovascular risk [1]. Observational studies on large populations, as well as
subgroup analyses of lipid-lowering treatments, found an exponential relationship be-
tween Lp(a) levels and the risk of myocardial infarction, stroke, and peripheral arterial
disease [1–5]. Attention was also drawn to the fact that increased Lp(a) value increased the
incidence of aortic valve stenosis, which was explained by the deposition of oxidized phos-
pholipids in Lp(a), maintaining chronic inflammation in the valve. Lipoprotein-associated
phospholipase A2 converts phospholipids into lysophosphatidylcholine, which increases
the mineralization of the valves. Carried by the Lp(a) molecule, autotaxin helps to con-
vert lysophosphatidylcholine into lysophosphatidic acid, which favors the production of
osteoblast-directed transcription factor and bone morphogenetic protein-2 in the valvular
interstitial cells [6]. As a result of these changes, osteoblast-like cells promote subsequent
valvular calcification, as well [7]. The increased cardiovascular risk may partly be be-
cause apolipoprotein(a) (apo(a)) binds to low-density lipoprotein (LDL) and slows down
its metabolism. As a result, increased cholesterol levels and high phospholipid content
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of the apo(a) protein can also be detected for a longer period of time, contributing to
chronic inflammation.

The Lp(a) structure is similar to that of LDL regarding the size and lipid composition
of the particles and the presence of apolipoprotein B100 (apoB100). The major structural
difference between them is that, in addition to apoB100, Lp(a) has a second protein, apo(a),
bound to apoB100 via noncovalent interactions and one single disulfide bridge (Figure 1) [8].
Examining the composition of the apo(a) protein, it was found that it is 90% homologous to
the structure of plasminogen and inhibits the conversion of plasminogen to plasmin, as
well as increases the production of plasminogen activator inhibitor-1 [9]. In addition, there
are two other domains constituted by highly glycosylated, tridimensional heavy-chain
structures known as kringles (K). Of the kringle domains of apo(a), one is similar to the
kringle V (KV) of plasminogen. The other, kringle-IV (KIV), which is present only once
in the plasminogen structure, has ten different types in apo(a) (KIV-1 to 10). Only KIV-2
occurs repeatedly in the apo(a) sequence (10 to 40 times) [8].
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level increases, while in the case of high molecular weight, a lower serum level should be 
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tivity, and sensibility are needed to determine Lp(a) quantification in serum. Manufactur-
ers are offering several commercial laboratory test systems for Lp(a) measurement, in-
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Figure 1. Structure of lipoprotein(a) (Lp(a)). Lp(a) consists of an LDL-like, lipid-rich particle with
apolipoprotein(a) (apo(a)) on its surface. Apo(a) binds to apolipoprotein B100 (ApoB100) via a
covalent disulfide bridge. Apo(a) contains repeated kringle (K) structures (KIV and KV) comparable
with those in plasminogen. Numerous genetically determined apo(a) size isoforms have been
described, which means different varying numbers of identical copies of kringle-IV type 2, resulting
in the 300 kDa lowest molecular weights of the apo(a) phenotypes to 800 kDa [8].

In the circulation, the Lp(a) serum level shows a close relationship with the weight of
the molecule. In the case of the accumulation of low molecular weight apo(a), the serum
level increases, while in the case of high molecular weight, a lower serum level should be
expected. Therefore, precise analytical methods with high accuracy, reproductivity, selectiv-
ity, and sensibility are needed to determine Lp(a) quantification in serum. Manufacturers
are offering several commercial laboratory test systems for Lp(a) measurement, including
immunoturbidimetric or nephelometric systems applying polyclonal antibodies against
apo(a). In addition, some manufacturers expressed a mass assay in mg/dL and a molar
assay in nmol/L for Lp(a) [10,11]. One of the problems in the quantification of Lp(a) arises
from the size polymorphism of apo(a) [12]. One may hypothesize that depending on the
assay type and antibody specificity, which are largely unknown in the commercial assays,
the size polymorphism of apo(a) may impact the results. For instance, the molar level of
Lp(a) may be underestimated in individuals with small isoforms and high levels, while it
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may be overestimated in individuals with large isoforms and low levels when one uses a
single reference standard [12]. Because of these methodological difficulties, there is no gold-
standard method to determine Lp(a) concentration in the serum, and further consistent
standardization procedures are needed. Also, clinicians should take these considerations
into account for the patient therapy.

Thus, early and effective Lp(a)-lowering treatment is of major importance in reducing
cardiovascular risk in individuals with high Lp(a) levels. Also, previous epidemiological
studies have shown that high Lp(a) levels can be observed in about 20% of the European
population [13]. It was also suggested that high levels of Lp(a) were more common in
individuals with familial hypercholesterolemia, further increasing the cardiovascular risk
in these patients [14]. On the other hand, the extremely large burden of vascular disease in
FH patients is mainly explained by the high prevalence of clustered traditional risk factors,
including the high prevalence of smoking, obesity, and hypertension [15].

In the last few decades, numerous novel pharmaceutical agents have been developed
to control and modify the composition of blood lipids to ultimately prevent fatal cardio-
vascular events in patients with dyslipidemia (Figure 2). In this work, we summarize the
possibilities that can contribute to diminishing cardiovascular risk by reducing the Lp(a)
level. It must be noted that some agents have more than one mechanism of action.
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Figure 2. Mechanisms of action of the currently available lipid-lowering therapies. Bempedoic
acid and statins prevent cholesterol synthesis by inhibiting adenosine triphosphate citrate lyase
(ACL) and 3-hydroxy-3-methylglutaryl coenzyme reductase (HMGCR), respectively. Ezetimibe
competitively inhibits the transport of sterols into enterocytes via Niemann-Pick C1-like 1 protein
(NPC1L1). Fibrates prevent the synthesis of triglycerides and very low-density lipoprotein (VLDL)
production. Angiopoetin-like 3 protein inhibitors (ANGPTL3i), fibrates, and ApoC3 inhibitors
(apoC3i) improve lipoprotein lipase (LPL) activity. Monoclonal antibodies (mAb) against proprotein
convertase subtilisin kexin type 9 (PCSK9) inhibit PCSK9 binding to low-density lipoprotein receptor
(LDLR). Lomitapide inhibits microsomal triglyceride transfer protein (MTP), which prevents the
formation of apolipoprotein B (apoB) and, thus, the formation of VLDL and chylomicrons (CM).
Mipomersen targets the RNA encoding apolipoprotein B100 (apoB100) and reduces the production
of the apoB100 protein. Inclisiran prevents the translation of PCSK9 mRNA. Pelacarsen inhibits
the synthesis of apolipoprotein(a) (apo(a)). Olpasiran is a small interfering RNA molecule that
markedly reduces lipoprotein(a) (Lp(a)) production in the hepatocytes by degrading apo(a) mRNA.
CoA, coenzyme A; IDL, intermediate-density lipoprotein.
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2. Agents That Increase LDL Receptor Expression
2.1. Statins

Since apo(a) is covalently bound to the LDL particle, and this determines the Lp(a)
level, it is tempting to speculate that drugs inducing increased LDL clearance affect Lp(a)
levels. The most widely used such drugs are statins, which augment cholesterol uptake
from the extracellular space by increasing the number of LDL receptors on the surface
of cells. In the CARDS study, a 13% decrease in Lp(a) was observed with atorvastatin
treatment [16], while the Scandinavian Simvastatin Survival Study (4S) found a 15% in-
crease in Lp(a) with simvastatin treatment [17]. A meta-analysis of six randomized studies,
including 5256 patients, indicated that statins moderately increased circulating Lp(a) con-
centrations [18]. This raised the possibility that the metabolism of Lp(a) takes place not
only through the LDL receptor (LDLR) [19] but also through the LDL receptor-related
protein 1, which can be modified by apoE isoforms or by CD36, via SR-B1 and plasmino-
gen receptor [20]. Another question is how statins affect the formation of apo(a) protein
and the expression of its mRNA. To clarify this, HepG2 cell cultures were incubated with
various concentrations of statins, and mRNA levels of LDLR, PCSK9, and apo(a) were
investigated [18]. Although statins uniformly increased LDLR expression on the surface of
cells, they also augmented the formation of the apo(a) protein, which might contribute to
the less efficacy of statins on Lp(a) levels. Drugs with Lp(a) lowering effect, according to
their main mechanism of action are demonstrated in Figure 3.
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Figure 3. Agents with Lp(a) lowering effect according to their main mechanism of action. Abbrevia-
tions: Apo(a), apolipoprotein (a); ApoB, apolipoprotein B; CETP, cholesteryl ester transfer protein;
LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; Lp(a), lipoprotein(a); MTP,
microsomal transfer protein; PCSK9, proprotein convertase subtilisin/kexin type 9.

2.2. Ezetimibe

If the LDL target value is not reached with the maximally tolerated dose of statins,
ezetimibe represents a rational option as an add-on treatment to improve LDL reduction.
Ezetimibe selectively prevents cholesterol absorption from the small intestine by inhibiting
the Niemann-Pick C1-like protein and may lead to a 20% reduction of LDL-C levels. A meta-
analysis of seven randomized, controlled trials found that Lp(a) levels decreased by 7.06%
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in patients with primary hypercholesterolemia upon the administration of ezetimibe [21].
On the other hand, a different meta-analysis concluded that ezetimibe did not significantly
affect Lp(a) levels [22]. It is also important to mention that, even with the combined use
of statin + ezetimibe, the target LDL-C levels are not attained in a remarkable number of
patients with familial hypercholesterolemia (FH) [23].

2.3. PCSK9 Inhibitors

In light of the above-mentioned, one of the most important drug developments of the
last decade was the procreation of PCSK9 inhibitors, which interfere with the destruction
of the LDLR in the hepatocytes. The role of the PCSK9 protein is to bind to the LDLR and
promote its breakdown within the cell. Physiologically, LDLR recirculates 100–150 times
between the cell plasma and the cell surface [24,25]; the recirculation process is shortened
by the PCSK9 protein, resulting in a decreased number of LDLRs on the surface of the
hepatocytes [26]. Gain-of-function mutations showed increased PCSK9 activity, resulting in
significantly higher cholesterol levels in the bloodstream and enhanced atherosclerosis [24].
On the contrary, cholesterol levels and atherosclerosis risk decreased in the case of loss-of-
function mutations [27]. Given the structural homology between LDL and Lp(a), the LDLR
has received the most attention as a candidate receptor for Lp(a), and the development of
PCSK9 inhibitors began. After the statins and ezetimibe, PCSK9 inhibitors represent the
next step in lipid-lowering therapy.

This class of drugs includes two large groups of medication, including the monoclonal
antibodies evolocumab and alirocumab and the small interfering RNA (siRNA) inclisiran.
An animal study on a murine model demonstrated that LDLR is not a route of Lp(a) plasma
clearance since modulation of LDLR expression with alirocumab did not alter the cellular
or the hepatic uptake of Lp(a) [28]. In the FOURIER study, at Lp(a) levels greater than the
average 37 nmol/L, the incidence of cardiovascular death, acute myocardial infarction,
urgent revascularization, and coronary disease increased. Administration of evolocumab
resulted in a 23% decrease of Lp(a) in those with higher Lp(a) values, while there was
a 7% decrease in the case of average Lp(a) levels [29]. In the ODYSSEY Outcome study,
the effect of Lp(a) on clinical endpoints was investigated. Lp(a), independently from
non-high-density lipoprotein (non-HDL) and LDL-cholesterol (LDL-C) levels, influenced
cardiovascular complications [30]. The mean baseline Lp(a) value was 21.2 mg/dL. In
the group with an average Lp(a) value, a 23.6% decrease in Lp(a) was observed, which
contributed to a 14% reduction in major cardiovascular events. Shapiro et al. found that a
50–60% reduction in LDL with PCSK9 inhibitors was associated with a 25–30% reduction
in Lp(a) [31]. In other cases, Lp(a) reductions greater than 30% were not associated with
the previous 2:1 LDL/Lp(a) reduction [31,32].

Lp(a) is mainly metabolized through the LDLR, but the affinity of Lp(a) for the LDLR
is much lower than that of LDL [33]. The catabolic rate of Lp(a) was the same in FH and
non-FH patients [34]. Stein et al. found that drugs increasing the cell surface number of
LDLRs are ineffective on Lp(a) levels. PCSK9 inhibitors reduced Lp(a) more than LDL
in homozygous familial hypercholesterolemia (HoFH) in the absence of the LDLR [35].
Identical Lp(a) levels have been found in individuals with loss-of-function and non-loss-
of-function mutations of PCSK9 [36–38]. Epidemiological studies have not consistently
confirmed the relationship between plasma PCSK9 and Lp(a) [39]. siRNA therapy inhibits
the production of the apo(a) protein intracellularly at the level of translation. Its effect
has a longer duration as an injection used twice a year can reduce LDL-C concentration
by about 50%. Indeed, LDL-C levels decreased by 47.9%, and Lp(a) values fell by 17.2%
in patients with heterozygous familial hypercholesterolemia (HeFH), according to the
ORION-9 trial [40]. According to the subsequent ORION-10 study, inclisiran therapy
resulted in a 25.6% decrease in Lp(a) levels in patients with cardiovascular disease [41].
The ORION-11 study indicated an 18.6% reduction of Lp(a) concentrations in individuals
with cardiovascular disease or with coronary artery disease risk-equivalents [41]. These
results indicate that PCSK9 inhibitor treatment, either with monoclonal antibodies or
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siRNA, effectively reduces Lp(a) levels and may serve as a potential adjunct to other Lp(a)
lowering therapies.

3. LDL Production Inhibitors

Since the apo(a) protein binds to LDL particles and forms the Lp(a) lipid fraction, the
question of how drugs that inhibit the production of LDL affect the Lp(a) level is invol-
untarily raised. Mipomersen, an antisense oligonucleotide (ASO), inhibits the synthesis
of apolipoprotein B100 (apoB100), thus reducing very low-density lipoprotein (VLDL)
production and leading to decreased LDL formation. Indeed, mipomersen significantly
decreases LDL-C, apoB100, non-HDL cholesterol, and Lp(a) values [42]. Based on the
data of four randomized double-blind phase 3 studies, mipomersen reduced circulating
concentrations of Lp(a) by 26.4% in patients with various disorders of lipid metabolism and
cardiovascular risk [43]. Although the exact mechanism by which mipomersen modulates
Lp(a) level is still unknown, it is hypothesized that the newly synthesized apoB lipoprotein
particles, to which apo(a) binds, play an important role in determining the Lp(a) levels [44].

The microsomal transfer protein (MTP) inhibitor lomitapide prevents triglyceride
binding to apoB48 or apoB100, blocking intestinal chylomicron formation and hepatic
VLDL synthesis. According to a study by Samaha et al., lomitapide monotherapy resulted
in a 30% reduction in LDL and a 17% reduction in Lp(a) [45]. When administered to HoFH
patients, lomitapide reduced Lp(a) levels by 15% [46].

4. Other Treatment Options to Reduce Lp(a) Concentration
4.1. Cholesteryl Ester Transfer Protein (CETP) Inhibitors

Upon binding to HDL, CETP promotes the transfer of cholesterol ester from HDL
to the triglyceride-rich lipid particles and transfers triglyceride from the triglyceride-rich
particles back to HDL, resulting in altered reverse cholesterol transport and affecting the
breakdown of LDL, VLDL, and chylomicrons. In a randomized, double-blind, placebo-
controlled trial, Cannon et al. found a sustained 38.8% reduction in Lp(a) levels in patients
with cardiovascular disease when using anacetrapib [47]. LDL-C and Lp(a) concentrations
also decreased significantly during CETP inhibitor monotherapy or in combination with
a statin [48]. Later, another CETP inhibitor, namely obicetrapib (formerly TA-8995), was
developed to reduce the serum levels of apoB-containing lipoproteins. Crystallography
experiments showed that the potency of obicetrapib comes from its specific structure
located at the narrow N-terminal neck of the hydrophobic tunnel of CETP, restricting the
lipid flow [49,50]. Although these interactions between the CETP inhibitor and the opening
of the tunnel are hydrophobic, three polar residues are found in the center of the inhibitor-
binding site. Thus, compared to other CETP inhibitors, obicetrapib is more hydrophilic and
inhibits the activity of CETP by up to 97%, raising the HDL-C level [51]. CETP inhibitors
can uniformly reduce the levels of apoB-containing lipoproteins, i.e., LDL and Lp(a), in the
circulation, mitigating the risk of major adverse cardiovascular events [49]. According to
the data of the ROSE study, obicetrapib therapy was also found to decrease Lp(a) levels in
a dose-dependent manner [52].

4.2. Nicotinic Acid

Nicotinic acid (niacin) is one of the oldest lipid-lowering drugs on the market with a
proven Lp(a) reducing effect. Its mechanisms of action include inhibiting apo(a) transcrip-
tion and curbing triglyceride synthesis and subsequent apoB secretion [53,54]. Extended-
release niacin treatment resulted in a 50% decrease in the newly synthesized apo(a); how-
ever, due to the reduced catabolism, serum Lp(a) levels were only reduced by 20% [55]. In
a meta-analysis of 14 randomized placebo-controlled trials, niacin was found to eventuate
a 20–30% decrease in the Lp(a) concentrations [56]. In contrast, Lp(a) levels were only
reduced by 21% after three years of niacin + simvastatin + ezetimibe combination therapy
during the AIM-HIGH trial [57]. This relatively moderate effect may be explained by
the potential apo(a) increasing effect of the statins, thus blunting Lp(a) level reduction by
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niacin. Based on the study by Cenarro et al., niacin induced a greater decrease in Lp(a)
levels in subjects with high baseline Lp(a) levels [58], confirming the similar results of the
AIM-HIGH trial [59]. The European Atherosclerosis Society recommended nicotinic acid to
achieve a desirable Lp(a) level of less than 50 mg/dL in patients with moderate to high
cardiovascular risk, based on the data of a meta-analysis [60].

4.3. Aspirin

Showing a 90% homology to plasminogen, Lp(a) binds to the plasminogen receptor
and inhibits the transformation of plasminogen to plasmin and increases the production
of plasminogen activator inhibitor-1, ultimately leading to increased coagulability and
thrombogenicity. In the investigation of patients with atherosclerotic coronary artery
disease or cerebral infarction, aspirin administration resulted in an 80% decrease in Lp(a)
levels in individuals with higher initial concentrations of Lp(a) exceeding 300 mg/dL,
while it did not change significantly in patients with Lp(a) levels initially lower than
300 mg/dL [61]. These findings may partly be due to the various maturation and secretion
rates of the different apo(a) isoforms, as the high molecular weight isoform resides longer
in the endoplasmic reticulum and has a lower secretion rate compared to the smaller
isoform [62]. Aspirin is also known to inhibit apo(a) mRNA expression and transcriptional
activity of human liver cell cultures and HepG2 hepatoma cells [63,64]. Aspirin and sodium
salicylate inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and
activator protein-1 (AP1) activation, therefore apo(a) gene transcription, as well [64].

Besides its proven benefits and uniform use in secondary cardiovascular prevention,
aspirin is not generally recommended for primary prevention in subjects with high Lp(a)
levels [65]. In the Women’s Health Study, daily administration of 100 mg aspirin reduced
cardiovascular events more than 2-fold among LPA SNP rs3789220 carriers (HR, 0.44; 95%
CI, 0.20–0.94), whereas the risk reduction was only modest in non-carriers (HR, 0.91; 95%
CI, 0.77–1.08) [66]. It is important to mention that this study did not define the risk/benefit
ratio, while the ASPREE trial found that aspirin therapy resulted in no significant net benefit
due to the equally reduced prevalence of major adverse cardiovascular events and increased
chance of clinically significant bleeding. However, in the rs3798220-C carrier group and the
highest quintile of a Lp(a) genomic risk score distribution, aspirin reduced major adverse
cardiovascular events by 11.4 and 3.3 events, respectively, without significantly increased
bleeding risk, indicating a shift toward the net benefit of aspirin [67]. These data indicate
that personalized medicine and assessment of the risk/benefit ratio in an educated patient
is likely the best approach until further evidence is obtained for an overall net benefit in
the reduction of cardiovascular events with minimal bleeding risk [65].

4.4. Thyroid Hormone Mimetics

Modulating lipid metabolism and thyroid hormones promotes lipolysis, enhances
the production of LDL receptors, and enhances reverse cholesterol transport, increasing
HDL-C levels. Vice versa, an increase in Lp(a) levels can be observed in subclinical hypothy-
roidism [68]. The thyroid hormone receptor agonist eprotirome reduced the Lp(a) level by
40% [69]; however, it was withdrawn due to its toxicity during long-term administration. A
newer formulation, named sobetirome, produced significant LDL-C lowering and 20–40%
Lp(a) lowering effects in monkeys [70].

4.5. Lipoprotein Apheresis

If the treatment with the above-mentioned drugs fails to achieve the target lipid
values, especially in extreme hyperlipidemia, lipoprotein apheresis may be of help. Initially,
Thompson et al. reported a reduction in LDL-C levels of HoFH patients after plasma
exchange [71]. Currently, many national guidelines recommend lipoprotein apheresis
in patients with elevated LDL-C and/or Lp(a) levels. Indeed, Lp(a) concentrations may
be decreased by 60 to 90% after such intervention, leading to a 94% reduction in major
cardiovascular events over 48 months, even independently from LDL-C reduction [72]. A
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Mendelian randomization analysis indicated that a 65.7 (95% CV: 46.3–88.3) mg/dL Lp(a)
lowering would be required by a specific therapy targeting Lp(a) to reach the same potential
effect on clinical outcomes as a 1 mmol/l therapeutic reduction of LDL-C levels [73]. This
estimate is similar to the calculations from a substudy of HPS2-THRIVE [74]; however,
other studies indicated a 99.8 (95% CV: 69.8–132.4) mg/dL reduction of Lp(a) to reach
the same efficacy [67]. Data from the recently finished MultiSELECt study may provide
additional information regarding the effect of lipoprotein apheresis on Lp(a) reduction and
subsequent cardiovascular outcomes [75]. Also, repetitive apheresis treatments may reduce
the average Lp(a) values by 50% between each treatment session, suggesting the efficacy
of this therapeutic option in terms of Lp(a) reduction [76]. It also must be mentioned that
lipoprotein apheresis is a costly intervention requiring special personnel and equipment and
increased patient compliance, thus increasing the need for other effective treatment options.

4.6. Apo(a)-Reducing ASO and SiRNA Formulations

The recently developed hepatocyte-directed antisense oligonucleotides target Lp(a)
mRNA and result in decreased apo(a) protein formation. Pelacarsen is a member of this
group of drugs, which may lead to an 80% reduction of Lp(a) levels in patients with
cardiovascular disease in a dose-dependent manner. Besides its beneficial effects on the
levels of oxidized phospholipids, no serious side effects were observed [77]. The currently
ongoing phase 3 Lp(a) HORIZON (Assessing the Impact of Lipoprotein(a) Lowering with
TQJ230 on Major Cardiovascular Events in Patients With CVD) trial examines ASCVD
risk in patients on standard LDL-lowering therapy with former cardiovascular event and
70 mg/dL or higher serum Lp(a) levels [78].

SLN360 is a GalNAc-conjugated siRNA that targets the LPA gene. During a single
ascending dose study with SLN360, a dose-dependent reduction of Lp(a) levels was found,
ranging from 40 to 98% [79]. Olpasiran is another siRNA molecule, which also proved
its efficacy in reducing Lp(a) concentrations according to the data of the randomized,
multicenter, double-blind, placebo-controlled trial named OCEAN[a]-DOSE (Olpasiran
Trials of Cardiovascular Events and Lipoprotein[a] Reduction–Dose Finding Study). Lp(a)
levels decreased in a dose-dependent manner, resulting in placebo-adjusted mean percent
changes in −70.5% with the 10 mg dose, −97.4% with the 75 mg dose, −101.1% with the
225 mg dose administered every 12 weeks, and −100.5% with the 225 mg dose administered
every 24 weeks. These data suggest that effective Lp(a) reduction can be achieved even
if siRNA therapy is used less frequently [80]. Ongoing and future studies are required to
provide evidence of whether decreased Lp(a) levels would result in reduced cardiovascular
risk in patients treated with ASO or siRNA therapy [81].

Including patients over 40 years of age with Lp(a) levels above 175 nmol/L (70 mg/dL),
an investigation is underway with the siRNA LY 3819469 to test changes in Lp(a) levels
and side effects. The results of this study are expected by 2024 [82]. The recently available
therapeutic approaches that reduce the circulating levels of Lp(a) are summarized in Table 1.

Table 1. Effect of lipid-lowering drugs on the concentration of circulating lipoprotein(a).

Drugs Effect on the Concentration of Lipoprotein(a)

Statins
−13% decrease (95% CI 10–15%) in the CARDS study [16];
−15% decrease (95% CI 13–17%) in the 4S study [17];
No significant effect [83]

Ezetimibe No effect [22]

Niacin −22.9% dose-independent decrease (95% CI 18.5–22.9%) [56]

PCSK9 inhibitors
−26.9% decrease in FOURIER study (evolocumab) [5]
−25.6% decrease in all phase 3 studies (alirocumab) [84]
These data are also confirmed in meta-analyses [85]
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Table 1. Cont.

Drugs Effect on the Concentration of Lipoprotein(a)

Inclisiran −18.6% decrease in ORION-11 study [86]

Mipomersen −26.4% in phase 3 studies [43]

CETP inhibitors

Up to −40% decrease in a phase 2 study (evacetrapib) [87];
−34.1% decrease in a phase 2 study (anacetrapib) [88];
−33.8% decrease (5 mg/day obicetrapib) and −56.5% decrease (10 mg/day
obicetrapib) [52]

Lp(a) lowering ASO and siRNA formulations

−80% decrease (pelacarsen 20 mg/week) and −72% decrease (pelacarsen
60mg/month) [89];
Placebo-adjusted −70.5% decrease (olpasiran 10 mg/12 weeks); −97.4% decrease
(olpasiran 225mg/12 weeks); −100.5% decrease (olpasiran 225 mg/24 weeks [80];
Up to 86–95% decrease (SLA340 middle dose) and −98% decrease (SLA340 high
dose) [79]

Abbreviations: ASO, antisense oligonucleotide; CETP, cholesteryl ester transfer protein; Lp(a), lipoprotein(a);
PCSK9, proprotein convertase subtilisin/kexin type 9; siRNA, small interfering ribonucleic acid.

5. Future Perspectives

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 is a promis-
ing genetic approach recently emerging as a potentially effective treatment against hyper-
lipidemia. Compared to the other editing approaches, due to its higher specificity and
efficacy, CRISPR/Cas9 has been thoroughly investigated to reduce Lp(a) levels and target
the PCSK9 and LPA genes [90]. A single infusion was found to knock down PCSK9 in
almost every hepatocyte of cynomolgus monkeys and lowered LDL-C by up to 60% for
a period of 8 months. Results were verified in a different in vivo study with nonhuman
primates, as well [91]. Designed to block PCSK9 in patients with HeFH, atherosclerotic
cardiovascular disease, and uncontrolled hypercholesterolemia, this treatment option is
currently being tested in a phase 1 clinical trial evaluating the safety of VERVE-101, a
CRISPR base editing drug assembled by a messenger RNA for an adenine base editor and
a guide RNA [92].

A novel small interfering RNA, lepodisiran (LY3819469), is also currently being
tested in a phase 2 clinical trial (NCT05565742); however, human data have not yet
been published [93]. Moreover, very recent results from the first-in-human phase 1 trial
(NCT05565742) with muvalaplin (previously LY3473329) reported a promising 65% reduc-
tion of circulating Lp(a) levels. Muvalaplin is a selective small molecule inhibitor that binds
to the kringle domains 7 and 8 of apo(a), thus preventing the covalent binding of apo(a)
with apoB100 [94].

6. Conclusions

Several treatment options with various effects exist for Lp(a) lowering in patients
with high cardiovascular risk. Inhibiting apo(a) protein synthesis at the transcriptional
level, the recently developed ASOs and siRNAs are the most effective in decreasing Lp(a).
Indeed, pelacarsen and olpasiran may lead to a reduction of Lp(a) levels exceeding 80%.
These therapeutic options may ensure that a significant number of patients can achieve
the desired Lp(a) values in the future. However, the high costs of the novel strategies and
the restricted access to reimbursement in many countries might limit the efficacy of lipid-
lowering treatment. Potentially replacing lipoprotein apheresis or, at least, using the novel
approaches in combination with the extracorporeal Lp(a) removal, physicians may ensure
attainment of the appropriate Lp(a) levels to prevent the progression of cardiovascular
diseases and aortic stenosis.
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