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Abstract: Adiponectin, a hormone secreted by adipose tissue, plays a complex role in regulating
metabolic homeostasis and has also garnered attention for its potential involvement in the patho-
genesis of late-onset Alzheimer’s disease (LOAD). The objective of this study was to investigate the
association of ADIPOQ variants with plasma adiponectin levels and LOAD risk in subjects from
the Slovak Caucasian population. For this purpose, 385 LOAD patients and 533 controls without
cognitive impairment were recruited and genotyped for a total of eighteen ADIPOQ single nucleotide
polymorphisms (SNPs). Both single-locus and haplotype-based logistic regression analyses were
employed to assess the association of SNPs with LOAD risk, while linear regression analysis was
used to explore their influence on adiponectin levels in LOAD patients. ADIPOQ variants rs822395
and rs2036373 in intron 1 were found to significantly elevate total adiponectin levels after account-
ing for several potential confounders. Additional SNPs in the 5′ region and intron 1 exhibited a
non-significant trend of association with adiponectin. However, none of the ADIPOQ SNPs showed
an association with LOAD risk, neither in the whole-group analysis nor in subgroup analyses after
stratification for sex or the APOE ε4 allele, a well-established LOAD risk factor. In summary, while
adiponectin has emerged as a potential contributor to the development of LOAD, this study did not
unveil any significant involvement of its gene variants in susceptibility to the disease.

Keywords: adiponectin; Alzheimer’s disease; association; ADIPOQ; single nucleotide polymor-
phism; susceptibility

1. Introduction

Late-onset Alzheimer’s disease (LOAD) is a multifaceted neurodegenerative disorder
and the leading cause of dementia in people over 65, accounting for an estimated 60–80% of
cases [1]. The disease is characterized by excessive accumulation of abnormal amyloid beta
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(Aβ) and hyperphosphorylated tau (p-tau) proteins in the brain, leading to the formation
of extracellular senile plaques and intracellular neurofibrillary tangles, respectively. The
presence of these protein aggregates, combined with additional pathological hallmarks like
oxidative stress, mitochondrial dysfunction, cerebral glucose metabolism deterioration, and
neuroinflammation, ultimately results in neurodegeneration and cognitive decline [1–3].
The pathogenesis of LOAD is complex and involves an intricate interplay of genetic, envi-
ronmental, demographic, and modifiable lifestyle risk factors [4]. LOAD has a substantial
heritability of approximately 70% and features a genetic architecture defined by multiple
interacting genes [5]. Recent meta-analyses of genome-wide association studies (GWAS)
have significantly expanded the number of known disease susceptibility loci, totaling up to
90 [6–8].

Midlife adiposity and late-life weight loss are frequently linked to a higher risk of
cognitive decline and AD in observational studies [9,10]. However, the exact nature of
this relationship remains a source of controversy and may even involve reverse causa-
tion between a decline in body mass index (BMI) in later life and AD [11–17]. Beyond
serving as a depot for energy storage, white adipose tissue also functions as an endocrine
organ, secreting a variety of biologically active substances. These molecules are collec-
tively known as adipokines and play a pivotal role in regulating whole-body metabolism
and inflammatory responses [18]. Adiponectin, a 244-amino-acid-long protein hormone,
stands out as the most abundant adipokine found in plasma. It regulates glucose and
fatty acid metabolism and exerts anti-diabetic, anti-atherogenic, and anti-inflammatory
effects [3,19,20]. Despite being produced mostly by adipocytes, circulating adiponectin is in-
versely correlated with BMI, and its levels are decreased in conditions defined as metabolic
risk factors for AD, such as insulin resistance, type 2 diabetes mellitus (T2DM), obesity,
hypertension, and cardiovascular diseases [21,22]. Adiponectin signaling has shown vari-
ous neuroprotective effects in experimental settings, including improved cerebral insulin
sensitivity and glucose uptake, promotion of neurogenesis, reduction in oxidative stress
and inflammation, prevention of blood–brain barrier (BBB) disruption, inhibition of Aβ

accumulation and hyperphosphorylation of tau, and regulation of synaptic plasticity and
cognitive function [3,18,21–25]. On the other hand, studies on circulating adiponectin in
human subjects have not yielded unanimous results, with the majority of them, including a
recent meta-analysis, reporting significantly higher blood adiponectin levels in AD patients
compared to participants without cognitive impairment [26,27]. Moreover, recent evidence
has indicated that elevated adiponectin might be associated with the severity of Aβ accu-
mulation [28,29], highlighting the potentially detrimental involvement of adiponectin in
Aβ amyloidogenesis and neurodegeneration in aging [22,30,31].

Circulating adiponectin has been shown to exhibit substantial heritability ranging from
30% to 70% [32–37]. Genome and exome-wide association scans have provided evidence
for more than 30 loci robustly associated with plasma adiponectin levels [35,36,38–51].
The top prioritized gene in Caucasians is the adiponectin-encoding gene ADIPOQ, lo-
cated on chromosome 3q27.3 and spanning 15.8 kb. ADIPOQ is composed of three exons
and harbors numerous single nucleotide polymorphisms (SNPs) that have been exten-
sively studied in different populations [52,53], with several of these variants showing
associations with alterations in adiponectin levels and metabolic syndrome-related pheno-
types [33,35–49,51,54–64]. The intricate effects of adiponectin in the nervous system have
raised the hypothesis that functional variants in ADIPOQ could be involved in susceptibil-
ity to LOAD. Two studies exploring this assumption have indeed reported an association
of ADIPOQ polymorphisms, namely, −11,377 C>G (rs266729) in the gene promoter and
+276 G>T (rs1501299) in intron 2, with LOAD risk in the Chinese population [65,66]. How-
ever, there is currently no evidence supporting the involvement of ADIPOQ variants in the
predisposition to LOAD in Caucasian populations.

This study aimed to further elaborate on the role of ADIPOQ in genetic susceptibility
to LOAD by assessing the association of eighteen common SNPs across the ADIPOQ gene
with LOAD risk in the Slovak Caucasian population. Additionally, our aim was to explore
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the potential impact of sex and the major LOAD risk factor, the apolipoprotein E gene
(APOE) ε4 allele, on this association. Finally, among individuals with the disease, we
analyzed the influence of ADIPOQ variants on the age of AD onset and adiponectin levels.

2. Materials and Methods
2.1. Study Participants

A total of 918 Slovak Caucasian individuals from the western regions of the coun-
try were recruited for the purposes of a study investigating risk factors for LOAD. The
patient group comprised 385 unrelated subjects (243 females and 142 males) diagnosed
with the late-onset form of the disease at the neurology and psychiatry departments of the
University Hospital Bratislava. The diagnosis of LOAD followed the National Institute of
Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) criteria [67]. The ethnically and geo-
graphically matched control group consisted of 533 unrelated volunteers aged ≥ 65 years
(320 females and 213 males) without cognitive impairment and with no family history of
AD or other types of dementia among their first-degree relatives. Trained investigators
assessed multiple cognitive domains in study participants using the Montreal Cognitive
Assessment (MoCA) screening test [68], where scores ranged from 0 to 30, with 26 or above
considered within the typical range. In addition, information on selected demographic
and clinical characteristics was collected, including body mass index (BMI), type 2 diabetes
mellitus (T2DM), and hypertension (Table 1).

Table 1. Demographic and clinical characteristics of LOAD patients and control subjects.

Parameter LOAD (n = 385) Controls (n = 533) p-Value

Age at examination (years) 77.73 ± 6.36 76.35 ± 7.68 0.0031
Age of onset (years) 75.06 ± 6.39 - -
Sex (female/male) 243 (63.12%)/142 (36.88%) 320 (60.04%)/213 (39.96%) 0.34
MoCA score 16.15 ± 5.82 27.53 ± 1.40 <0.0001
BMI (kg/m2) 26.57 ± 4.53 27.77 ± 3.99 <0.0001
Hypertension (yes/no) 277 (71.95%)/108 (28.05%) 355 (66.60%)/178 (33.40%) 0.085
T2DM (yes/no) 93 (24.16%)/292 (75.84%) 72 (13.51%)/461 (86.49%) <0.0001
APOE ε4 positivity (yes/no) 195 (50.65%)/190 (49.35%) 101 (18.95%)/432 (81.05%) <0.0001

Data are presented as the mean ± standard deviation or as absolute values with % in parentheses. APOE:
apolipoprotein E gene; BMI: body mass index; LOAD: late-onset Alzheimer’s disease; MoCA: Montreal Cognitive
Assessment; T2DM: type 2 diabetes mellitus.

Written informed consent for study participation and personal data management was
obtained from all participants or their legal representatives. This study adhered to the
International Ethical Guidelines and the World Medical Association Declaration of Helsinki.
Approval for the study protocol was granted by the Independent Ethical Committee of
the Old Town Hospital at the University Hospital Bratislava and the Faculty of Medicine,
Comenius University in Bratislava, as well as the Independent Ethical Committee of the
Bratislava Municipality.

2.2. Sample Collection and Processing

Peripheral venous blood samples from patients and control subjects were collected into
tubes with ethylenediaminetetraacetic acid (EDTA) as an anticoagulant and subsequently
processed by centrifugation (2000× g for 10 min) to obtain the buffy coat. Genomic DNA
was isolated from the buffy coat samples using a modified phenol–chloroform extraction
procedure [69]. After quantification with a NanoDrop1000 Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA), all DNA samples were stored at −20 ◦C until
genotyping analysis. Plasma samples were obtained from a subset of 156 patients, allocated
into several microcentrifuge tubes, and immediately stored at −80 ◦C until further analysis.
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2.3. SNP Selection and Genotyping

Eighteen common SNPs in the ADIPOQ gene were selected from the dbSNP database
(https://www.ncbi.nlm.nih.gov/snp/, accessed on 9 January 2022) [70] after a thorough
literature review. Their inclusion in the study was based on prior evidence of an association
with circulating adiponectin levels in various population groups [33,35–40,48,51,55,56,58–
60,64,71–76]. All SNPs had a minor allele frequency (MAF) of ≥5% in the European Cau-
casian population, according to the Allele Frequency Aggregator (ALFA) project database
(https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/, accessed on 10 January 2022) [77].
Two of the SNPs included in the study are located in the 5′ flanking region (rs822387,
rs860291), two in the gene promoter (rs17300539, rs266729), twelve in introns (rs182052,
rs822393, rs822395, rs822396, rs7627128, rs2036373, rs17366568, rs17846866, rs1501299,
rs2241767, rs3821799, rs3774261), and two in exons (rs2241766, rs1063539), as shown in
Table 2.

Table 2. List of investigated ADIPOQ polymorphisms.

dbSNP Alleles a Position b RefSeqGene Gene Region Aliases

rs822387 T>C chr3:186838248 NG_021140.1:g.575T>C 5′-flanking region −14,811 T/C
rs860291 C>T chr3:186840168 NG_021140.1:g.2495T>C 5′-flanking region −12,823 C/T; −12,891 C/T

rs17300539 G>A chr3:186841671 NG_021140.1:g.3998G>A Promoter −11,388G/A; −11,391 G/A
rs266729 C>G chr3:186841685 NG_021140.1:g.4012C>G Promoter −11,377 C/G; −11,365 C/G
rs182052 G>A chr3:186842993 NG_021140.1:g.5320G>A Intron 1 −10,066 G/A; −10,068 G/A
rs822393 C>T chr3:186848537 NG_021140.1:g.10864C>T Intron 1 −4522 C/T
rs822395 A>C chr3:186849018 NG_021140.1:g.11345C>A Intron 1 −4034 A/C; −4041 A/C
rs822396 A>G chr3:186849088 NG_021140.1:g.11415G>A Intron 1 −3964 A/G; −3971 A/G
rs7627128 C>A chr3:186851010 NG_021140.1:g.13337C>A Intron 1 −2049 C/A
rs2036373 T>G chr3:186852402 NG_021140.1:g.14729T>G Intron 1 −657 T/G

rs17366568 G>A chr3:186852664 NG_021140.1:g.14991G>A Intron 1 −395 G/A
rs17846866 T>G chr3:186852957 NG_021140.1:g.15284T>G Intron 1 −102 T/G
rs2241766 T>G chr3:186853103 NG_021140.1:g.15430T>G Exon 2 +45 T/G; Gly15Gly; T94G
rs1501299 G>T chr3:186853334 NG_021140.1:g.15661G>T Intron 2 +276 G/T
rs2241767 A>G chr3:186853407 NG_021140.1:g.15734A>G Intron 2 +349 A/G
rs3821799 C>T chr3:186853697 NG_021140.1:g.16024T>C Intron 2 +639 C/T
rs3774261 G>A chr3:186853770 NG_021140.1:g.16097A>G Intron 2 +712 G/A
rs1063539 G>C chr3:186857603 NG_021140.1:g.19930G>C Exon 3/3′ UTR +4545 G/C

a Alleles are listed as major allele>minor allele. b SNP position according to Genome Reference Consortium Human
Build 38 patch release 14 (GRCh38.p14). ADIPOQ: adiponectin gene; SNP: single nucleotide polymorphism; UTR:
untranslated region.

ADIPOQ genotyping was performed using a polymerase chain reaction-restriction
fragment length polymorphism method according to the modified protocols described
elsewhere [71,75,78–84]. Detailed information on primer sequences, restriction enzymes,
and specific product and fragment sizes is listed in Supplementary Table S1. For quality
control, 10% of samples were randomly selected and genotyped in duplicate. Additionally,
several cases of each genotype were confirmed by direct DNA sequencing using the
BigDye® Terminator v3.1 Cycle Sequencing Kit and the Applied Biosystems 3130xl Genetic
Analyzer (Thermo Fisher Scientific, Waltham, MA, USA).

The carriage of the APOE ε4 allele, the single strongest genetic risk factor for AD, was
determined by direct sequencing of exon 4 containing the rs429358:T>C and rs7412:C>T
SNPs, as previously described [85]. The ε4 allele is defined by the presence of cytosine at
both rs429358 and rs7412.

2.4. Measurement of Plasma Adiponectin Levels

To analyze the effects of individual ADIPOQ polymorphisms on adiponectin levels, we
quantified total adiponectin in plasma samples from 156 LOAD patients (Supplementary
Table S2) using a sandwich enzyme-linked immunosorbent assay and a commercially
available HMW and Total Adiponectin ELISA kit (ALPCO, Salem, NH, USA).

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
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2.5. Statistical Analyses

The comparison of categorical variables between study groups was performed by
the χ2 test, while differences in continuous variables were assessed using the unpaired
t-test with Welch correction (InStat version 3.10, GraphPad Software, San Diego, CA, USA).
The relationship between two continuous variables was measured by Spearman’s rank
correlation. The χ2 goodness-of-fit test with 1 degree of freedom was used to test for the
possible departure of SNP genotypes from Hardy–Weinberg equilibrium (HWE), with a
threshold of p ≤ 0.05 indicating deviation from HWE. Lewontin’s D’ and r2 values of linkage
disequilibrium (LD) between SNP pairs were determined, and an LD plot was generated
using the Haploview version 4.2 software [86]. Single-SNP and haplotype-based analyses
of the association between ADIPOQ and LOAD risk were performed using the SNPStats
version 0.96 web software [87], available at https://www.snpstats.net/ (accessed on 15 June
2023). Both the crude χ2 test and logistic regression analysis were employed, with the latter
adjusted for potential confounding variables (age, sex, APOE ε4 carrier status, hypertension,
T2DM, and BMI). Odds ratios (OR) with 95% confidence intervals (CI) and p-values were
calculated under various inheritance models (allele, codominant, dominant, recessive,
over-dominant, and log-additive). Correction for multiple comparisons was performed
by the Bonferroni method, setting the corrected significance level at p ≤ 0.0028, obtained
by dividing the standard significance p-value (0.05) by the number of tested SNPs (n = 18).
Linear regression analysis was employed to examine the association between ADIPOQ
SNPs and both the age of disease onset and plasma adiponectin levels. An uncorrected
significance threshold of p ≤ 0.05 was applied to the latter parameter, considering the
selection of SNPs was based on a priori information from published studies indicating their
impact on adiponectin levels.

3. Results
3.1. Characteristics of Study Subjects

A total of 385 subjects with LOAD were enrolled in the case group, while 533 cogni-
tively normal individuals comprised the control group. Table 1 presents the basic demo-
graphic and clinical characteristics of the study population, along with statistical compar-
isons between cases and controls. Significant differences were observed in mean age at
examination, BMI, and MoCA score (p < 0.0001). On the other hand, sex distribution was
not significantly different between the study groups (p = 0.34), with females constituting
the majority in both patients (63.1%) and controls (60.0%). T2DM was significantly more
prevalent in patients with LOAD than in control subjects (p < 0.0001), while the difference
was not quite significant for hypertension (p = 0.085). The AD risk allele APOE ε4 was
present in at least one copy in over 50% of patients but only in 19% of controls (p < 0.0001),
as outlined in Table 1.

3.2. Association of ADIPOQ Polymorphisms with LOAD Risk

To assess the extent of LD across the ADIPOQ gene, we calculated pairwise D’ and r2

coefficients for the entire study population using Haploview 4.2 software. As illustrated
in Figure 1 and detailed in Supplementary Table S3, the analysis of pairwise LD patterns
for the 18 SNPs identified four distinct haplotype blocks encompassing the majority of
the studied ADIPOQ variants. SNPs within individual haploblocks exhibited strong LD
with one another, as indicated by pairwise D’ coefficients ranging from 0.88 to 1. However,
they were weakly predictive of one another due to differing allele frequencies, as reflected
in low to moderate pairwise r2 values ranging from 0.01 to 0.64. The only exception was
observed in four SNP pairs within haploblock 4, which exhibited a high pairwise LD
pattern as follows: rs2241766–rs2241767, rs2241766–rs1063539, rs2241767–rs1063539 (all
with r2 > 0.88), and rs3821799–rs3774261 (r2 = 0.79).

https://www.snpstats.net/
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Figure 1. Gene map of ADIPOQ with the linkage disequilibrium (LD) plot for all SNPs genotyped
in Slovak subjects. The upper part of the figure illustrates the structure of the ADIPOQ gene with
the location of SNPs on a physical scale. LD plots and haplotype blocks were constructed with the
Haploview version 4.2 software. The different colors and shadings in the LD plot represent the
magnitude and significance of pairwise LD. Diamonds in the darkest shade indicate the highest LD
(D’ = 1 and the logarithm of odds [LOD] ≥ 2) between two SNPs, with the color intensity decreasing
with decreasing D’ value. White color indicates D’ value < 1 with LOD score < 2, while grey-blue
color corresponds to D’ = 1 and LOD < 2. The number within each diamond indicates the exact r2

pairwise correlation value multiplied by 100.

The comparison of observed and expected genotype frequencies in the study cohorts
demonstrated conformity to HWE for all investigated polymorphisms (Supplementary
Table S4). Consequently, all 18 SNPs were included in subsequent analyses of association
with LOAD risk. We employed both the crude χ2 test and multivariate logistic regression
analysis, which adjusted for several potentially confounding factors, to examine the role of
ADIPOQ SNPs in genetic susceptibility to LOAD. None of the inheritance models revealed
a significant association between ADIPOQ variants and LOAD risk in the single-marker
analyses (Table 3 and Supplementary Table S5). Similarly, no evidence of an association
between ADIPOQ and disease risk was found in the haplotype-based analyses, as shown
in Table 4.

To further evaluate the possible modifying effects of the APOE ε4 allele and sex on the
association between ADIPOQ and LOAD risk, we also conducted statistical tests in cohorts
stratified by these two covariates. These sub-analyses also did not yield any significant
results, suggesting that APOE ε4 carrier status and sex do not influence the relationship
between ADIPOQ variants and disease risk (Supplementary Tables S6–S9).

Linear regression analysis was used to assess the impact of ADIPOQ polymorphisms
on the age of disease onset. Although some SNPs appeared to slightly accelerate (rs822387)
or delay (rs860291) the onset of AD, none of the effects were statistically significant (Sup-
plementary Table S10).
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Table 3. Association between ADIPOQ polymorphisms and LOAD risk in the whole study population.

ADIPOQ SNPs

LOAD
(n = 385)

Controls
(n = 533)

Logistic Regression Analysis
(Log-Additive Model)

Genotypes a MAF Genotypes a MAF p-Value OR (95% CI)

rs822387 T>C 336/46/3 0.0675 463/65/5 0.0704 0.64 0.91 (0.62–1.34)
rs860291 C>T 301/80/4 0.1143 425/105/3 0.1041 0.54 1.11 (0.80–1.53)

rs17300539 G>A 335/49/1 0.0662 457/70/6 0.0769 0.32 0.82 (0.56–1.21)
rs266729 C>G 206/147/32 0.2740 279/211/43 0.2786 0.66 0.95 (0.76–1.18)
rs182052 G>A 151/175/59 0.3805 212/252/69 0.3659 0.72 1.04 (0.85–1.27)
rs822393 C>T 213/139/33 0.2662 296/205/32 0.2523 0.36 1.11 (0.89–1.39)
rs822395 A>C 170/167/48 0.3416 240/229/64 0.3349 0.86 0.98 (0.80–1.21)
rs822396 A>G 256/115/14 0.1857 358/159/16 0.1792 0.80 0.97 (0.75–1.25)
rs7627128 C>A 269/106/10 0.1636 363/153/17 0.1754 0.59 0.93 (0.71–1.21)
rs2036373 T>G 343/42/0 0.0545 475/57/1 0.0553 0.62 1.12 (0.72–1.75)

rs17366568 G>A 302/79/4 0.1130 401/127/5 0.1285 0.47 0.89 (0.65–1.22)
rs17846866 T>G 329/56/0 0.0727 464/67/2 0.0666 0.48 1.15 (0.77–1.72)
rs2241766 T>G 304/77/4 0.1104 427/100/6 0.1051 0.66 1.08 (0.78–1.48)
rs1501299 G>T 184/167/34 0.3052 270/215/48 0.2917 0.24 1.14 (0.92–1.41)
rs2241767 A>G 306/77/2 0.1052 430/97/6 0.1022 0.79 1.05 (0.75–1.46)
rs3821799 C>T 112/191/82 0.4610 168/251/114 0.4493 0.28 1.12 (0.92–1.36)
rs3774261 G>A 134/186/65 0.4104 202/242/89 0.3940 0.21 1.14 (0.93–1.39)
rs1063539 G>C 302/80/3 0.1117 423/104/6 0.1088 0.84 1.03 (0.75–1.43)

a Genotype numbers are presented as follows: major allele homozygotes/heterozygotes/minor allele homozy-
gotes. Logistic regression analysis was adjusted for age, sex, APOE ε4 carrier status, hypertension, type 2 diabetes
mellitus, and body mass index. P, OR, and 95% CI values are shown for the log-additive model. Values obtained
by crude analysis and under other genetic models are presented in Supplementary Table S5. ADIPOQ: adiponectin
gene; CI: confidence interval; LOAD: late-onset Alzheimer’s disease; MAF: minor allele frequency; OR: odds ratio;
SNP: single nucleotide polymorphism.

Table 4. Association between ADIPOQ haplotypes and LOAD risk in the whole study population.

ADIPOQ
Haplotypes

LOAD
(n = 385)

Controls
(n = 533) Logistic Regression Analysis

EHF EHF p-Value OR (95% CI)

Block 1 (rs860291–rs17300539–rs266729–rs182052)

CGCG 0.4390 0.4531 Reference
CGGA 0.2740 0.2786 0.87 0.98 (0.77–1.24)
TGCG 0.1143 0.1041 0.55 1.11 (0.79–1.56)
CGCA 0.1065 0.0872 0.25 1.23 (0.87–1.74)
CACG 0.0662 0.0769 0.43 0.85 (0.57–1.27)

Block 2 (rs822393–rs822395–rs822396–rs7627128)

CAAC 0.3926 0.4116 Reference
CCGC 0.1857 0.1781 0.87 1.02 (0.77–1.36)
TAAA 0.1622 0.1713 0.95 0.99 (0.74–1.32)
CCAC 0.1540 0.1549 0.82 1.04 (0.77–1.40)
TAAC 0.1022 0.0781 0.062 1.42 (0.98–2.05)

Block 3 (rs17366568–rs17846866)

GT 0.8857 0.8705 Reference
AG 0.0714 0.0656 0.57 1.12 (0.75–1.68)
AT 0.0416 0.0629 0.083 0.66 (0.42–1.05)

Block 4 (rs2241766–rs1501299–rs2241767–rs3821799–rs3774261–rs1063539)

TGACGG 0.5237 0.5413 Reference
TTATAG 0.2997 0.2917 0.24 1.15 (0.91–1.44)
GGGTAC 0.0993 0.1004 0.69 1.07 (0.76–1.51)
TGATGG 0.0537 0.0553 0.75 1.08 (0.68–1.69)

Haplotype frequencies were estimated using the expectation–maximization algorithm implemented in the
SNPStats version 0.96 software. Only haplotypes with a frequency > 5% are shown. Logistic regression analysis
was adjusted for age, sex, APOE ε4 carrier status, hypertension, type 2 diabetes mellitus, and body mass index.
ADIPOQ: adiponectin gene; CI: confidence interval; EHF: estimated haplotype frequency; LOAD: late-onset
Alzheimer’s disease; OR: odds ratio.
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3.3. Association of ADIPOQ Polymorphisms with Plasma Adiponectin Levels

Total adiponectin concentrations were determined in plasma samples from 156 LOAD
subjects (Supplementary Table S2) and compared between subgroups of patients stratified by
sex, APOE ε4 carrier status, hypertension, T2DM, and treatment with acetylcholinesterase
inhibitors (AChEI). As presented in Supplementary Table S11, mean adiponectin levels were
significantly higher in females with LOAD compared to males (11.46 ± 5.81 µg/mL vs.
8.27 ± 3.71 µg/mL; p < 0.0001), while no differences could be found between subgroups
of patients with or without hypertension (p = 0.34), T2DM (p = 0.80), or AChEI treatment
(p = 0.67). Although patients with the APOE ε4 allele exhibited lower adiponectin lev-
els than those without ε4, the difference did not reach statistical significance (p = 0.18).
Spearman correlation results indicated a small but significant positive relationship of
adiponectin levels with age (r = 0.19, p = 0.018) and a negative relationship with BMI
(r = −0.17, p = 0.036).

Linear regression analysis controlled for potential confounders (age, sex, APOE ε4
carrier status, and BMI) revealed a significant association of two ADIPOQ SNPs (rs822395
and rs2036373) with alterations in total adiponectin levels in the plasma of LOAD patients.
The −4041 A>C (rs822395) variant was associated with increased adiponectin under the
dominant model (AC + CC vs. AA; p = 0.048), while the −657 T>G (rs2036373) SNP
showed a similar effect in a TG vs. TT comparison (p = 0.043). Adiponectin concentrations
also varied across different genotypes of several additional SNPs (rs822387, rs17300539,
rs266729, rs182052, and rs822393); however, the p-values did not reach the threshold for
statistical significance (Table 5).

Table 5. Association between ADIPOQ polymorphisms and plasma adiponectin levels in
156 LOAD patients.

ADIPOQ SNPs
Adiponectin Levels (µg/mL) a

Genetic
Model

padj-
Value b ∆ (95% CI) b

1/1 1/2 2/2

rs822387 T>C 10.14 ± 5.36 (136) 11.95 ± 5.86 (18) 13.39 ± 0.46 (2) A 0.14 1.61 (−0.50–3.72)
rs860291 C>T 10.18 ± 5.11 (126) 11.23 ± 6.68 (29) 12.41 ± 0.00 (1) A 0.50 0.67 (−1.29–2.64)

rs17300539 G>A 10.19 ± 5.39 (138) 11.89 ± 5.65 (17) 13.07 ± 0.00 (1) A 0.20 1.55 (−0.80–3.89)
rs266729 C>G 11.05 ± 5.72 (80) 10.04 ± 5.16 (62) 8.18 ± 4.08 (14) R 0.12 −2.26 (−5.09–0.56)
rs182052 G>A 11.66 ± 5.76 (55) 9.79 ± 5.48 (73) 9.46 ± 4.05 (28) D 0.075 −1.56 (−3.26–0.14)
rs822393 C>T 11.09 ± 5.64 (81) 9.72 ± 5.44 (57) 9.33 ± 3.86 (18) D 0.10 −1.36 (−2.97–0.26)
rs822395 A>C 9.68 ± 4.95 (75) 10.89 ± 5.68 (64) 11.65 ± 6.16 (17) D 0.048 1.64 (0.03–3.25)
rs822396 A>G 10.30 ± 5.13 (104) 10.55 ± 6.15 (47) 10.90 ± 4.71 (5) D 0.83 0.19 (−1.54–1.91)
rs7627128 C>A 10.77 ± 5.56 (107) 9.66 ± 5.25 (44) 8.72 ± 2.12 (5) A 0.33 −0.76 (−2.27–0.75)
rs2036373 T>G 10.07 ± 5.17 (140) 13.18 ± 6.76 (16) - - 0.043 2.80 (0.12–5.49)

rs17366568 G>A 10.27 ± 5.19 (125) 10.97 ± 6.45 (28) 10.06 ± 5.51 (3) D 0.20 1.36 (−0.70–3.43)
rs17846866 T>G 10.28 ± 5.20 (135) 11.08 ± 6.70 (21) - - 0.18 1.65 (−0.76–4.07)
rs2241766 T>G 10.56 ± 5.25 (127) 9.24 ± 5.79 (28) 21.38 ± 0.00 (1) O 0.18 −1.45 (−3.58–0.67)
rs1501299 G>T 10.41 ± 5.06 (73) 10.30 ± 5.82 (69) 10.72 ± 5.43 (14) D 0.99 −0.01 (−1.66–1.65)
rs2241767 A>G 10.54 ± 5.29 (125) 9.80 ± 5.94 (31) - - 0.35 −0.98 (−3.03–1.07)
rs3821799 C>T 10.42 ± 4.63 (47) 10.50 ± 5.86 (76) 10.10 ± 5.52 (33) R 0.60 −0.54 (−2.54–1.46)
rs3774261 G>A 10.26 ± 4.47 (54) 10.78 ± 6.11 (76) 9.52 ± 5.08 (26) R 0.22 −1.38 (−3.56–0.80)
rs1063539 G>C 10.54 ± 5.29 (125) 9.41 ± 5.63 (30) 21.38 ± 0.00 (1) O 0.20 −1.36 (−3.43–0.71)

a Adiponectin levels are presented as the mean ± standard deviation, with the absolute genotype numbers shown
in parentheses. b Linear regression analysis was adjusted for age, sex, APOE ε4 carrier status, and body mass
index. Differences (∆) in adiponectin levels, 95% CI, and p-values are shown for the best genetic model with
the lowest Akaike information (AIC). 1/1: major allele homozygotes; 1/2: heterozygotes; 2/2: minor allele
homozygotes; A: log-additive; ADIPOQ: adiponectin gene; D: dominant; LOAD: late-onset Alzheimer’s disease;
O: over-dominant; R: recessive; SNP: single nucleotide polymorphism.

4. Discussion

In this study, we conducted a case–control analysis to assess the association between
eighteen ADIPOQ polymorphisms and LOAD risk in a cohort of 918 Slovak Caucasian in-
dividuals. Although we demonstrated the effect of several SNPs on circulating adiponectin,
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none of the variants studied were found to be associated with LOAD risk or to significantly
affect the age of onset. Furthermore, neither sex nor the APOE ε4 allele had any effect on
the association between ADIPOQ and AD.

Adiponectin is a 30 kDa adipocyte-derived protein that circulates in healthy subjects
at relatively high concentrations (up to 30 µg/mL) [88]. Belonging to the soluble collagen
superfamily, it shares structural similarities with complement factor C1q and tumor necrosis
factor [19]. Newly synthesized adiponectin undergoes post-translational modifications and
naturally self-associates to form trimers, hexamers, and high-molecular-weight (HMW)
multimers. The HMW isoform constitutes the majority of circulating adiponectin and is
considered the most biologically active form of adiponectin. The hormone exerts its actions
by binding to specific receptors, namely AdipoR1, AdipoR2, and T-cadherin (CDH13),
expressed in various tissues, including the liver, muscle, vascular endothelium, central
nervous system, and others [3,19,88]. Despite its observed neuroprotective effects in cell-
based and animal experiments [3,18,21–25], the role of adiponectin in the pathogenesis
of AD in humans remains controversial, with some studies even suggesting its possible
deleterious effects in amyloidogenesis [22,28–31].

ADIPOQ variants have been extensively studied for their association with circulating
adiponectin, and numerous of them were identified as determinants of adiponectin levels
in diverse population groups and metabolic syndrome-related phenotypes. In this study,
we were able to extend the validity of this relationship to LOAD patients. Two of the
SNPs, rs822395 (−4041 A>C) and rs2036373 (−657 T>G), showed a marginally significant
association of their minor alleles with increased total plasma adiponectin after controlling
for the confounding effects of age, sex, APOE ε4 allele, and BMI. Both SNPs are located
in intron 1 at a distance of 3384 bp from each other, showing a low degree of correlation
(LD r2 = 0.022), and belong to the less-studied ADIPOQ variants in relation to various
phenotypes. Our results on rs822395 are in agreement with a meta-analysis of two gen-
eral population cohorts consisting of 2355 subjects and one cohort of 967 subjects with
T2DM [60] and a Coronary Artery Development in Young Adults (CARDIA) study in white
men and women [73], both reporting significantly higher adiponectin in C allele carriers.
Interestingly, the latter study also showed some indication of association for rs2036373,
but the direction of the effect was opposite to that in our study. In contrast, other stud-
ies found no association between the two variants and adiponectin [33,55,71,74,76,89–92].
Additional SNPs in our study, located in the upstream region, promoter, or intron 1,
showed a clear trend of adiponectin levels increasing (rs822387, rs17300539) or decreasing
(rs266729, rs182052, rs822393) with each copy of the minor allele. Despite not quite reaching
the significance threshold, these effects are consistent in magnitude and direction with
those reported for the five variants (or their proxies) in several candidate genes and GWA
studies on circulating adiponectin [33,36–38,40–42,44,46–51,54–57,59–62,64,71–75,91–102].
On the other hand, we failed to replicate previous, albeit often inconsistent, findings in
the literature for several variants in haploblocks 3 and 4, particularly rs17366568 in in-
tron 1 [35,36,45,47,51,57,59,60,76], rs2241766 in exon 2 [33,40,55,60,64,89,98,99,103], rs1501299,
rs3821799, rs3774261 in intron 2 [33,35–37,40,51,54,55,57,59,60,64,71,75,76,89–91,99,100,103–105],
and rs1063539 in the 3′-untranslated region (UTR) [36,55]. Several factors could account
for the conflicting results across studies, including variations in sample sizes, dispari-
ties regarding the study group phenotype and analysis methodology, modifying effects
of confounders and approaches to their control, gene–gene and gene–environment in-
teractions, variations in the LD structure at the ADIPOQ locus between populations of
different ethnic backgrounds, and others. Bioinformatics tools and in vitro functional
analyses have suggested that ADIPOQ polymorphisms associated with alterations of
adiponectin levels act through molecularly distinct mechanisms involved in controlling
certain aspects of gene expression, such as the alteration of mRNA transcription, splicing,
or stability [48,72,97,106,107]. Still, despite being the major gene for plasma adiponectin,
robustly confirmed across various populations and ethnicities, ADIPOQ SNPs seem to
explain only a relatively small proportion of the variance in circulating adiponectin lev-
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els, typically not exceeding 10% [36,55,58–60,62]. In contrast, non-genetic factors, such as
age, sex, BMI, and clinical traits, appear to be more potent determinants of adiponectin
concentrations [59,60,62]. In agreement with previous studies [33,37,76,100], we found
that adiponectin levels were higher in females and correlated positively with age and
negatively with BMI. Accordingly, these potential confounders were taken into account
when analyzing the association of ADIPOQ SNPs with adiponectin levels and LOAD risk.

Although adiponectin has received attention in the context of AD, the role of its
gene variants in genetic susceptibility to LOAD is still unclear. It could be hypothe-
sized that polymorphisms capable of affecting circulating adiponectin levels would also
contribute to LOAD risk. Two independent studies previously investigated the role of
common ADIPOQ variants, namely, −11377 C>G (rs266729) and +276 G>T (rs1501299),
in the predisposition to LOAD in the Chinese population, both reporting an association
of the minor rs266729 G and 1501299 T alleles with increased LOAD risk [65,66]. The
first of the two variants, rs266729, is located in the gene promoter region, where it was
predicted to alter the sequence of one of four transcriptional stimulatory protein (SP1)
binding sites [106]. The presence of the minor G allele resulted in a loss of SP1 binding
to the promoter [106] and lower transcriptional activity [97]. Moreover, when analyzed
together with two other promoter variants, rs16861194 and rs17300539, minor alleles of
all three ADIPOQ SNPs led to a complete loss of promoter activity [72]. In humans, the
rs266729 G allele has been relatively consistently shown to reduce adiponectin levels in
several studies [33,36,40,41,64,72,75,92–94,96–101], including ours. In contrast, rs1501299
in intron 2 seems to have an opposite effect on adiponectin compared to rs266729, with
the minor T allele increasing adiponectin levels, as shown by previous meta-analyses of
candidate gene studies [54,64] and GWAS [41]. However, rs1501299 is likely not a true
functional variant [97] but may act as a proxy SNP in LD with a different variant shown
to influence adiponectin levels, e.g., rs6444175 [38,56,60,74] and rs7639352 [51,74] in the
3′ downstream region, or rs6773957 [35,56–58] and rs56354395 [33,103] in the 3′ UTR. The
observed association of both adiponectin-decreasing rs266729 G and adiponectin-increasing
rs1501299 T alleles with a higher risk of LOAD in the Chinese studies seems contradictory,
but it may reflect the complex nature of ADIPOQ gene architecture and the effects of its
variants. Adding more ambiguity, our study did not reveal any significant differences
in allele and genotype distribution of rs266729 and rs1501299 between the patient and
control groups, thus failing to replicate the association of the two variants with LOAD
risk in the Slovak Caucasian population. The lack of association was also evident after
controlling for potential confounders, including known or presumed AD risk factors such
as age, sex, the APOE ε4 allele, BMI, hypertension, and T2DM. To increase gene coverage,
we also analyzed an additional 16 variants across the ADIPOQ gene and its upstream
region but again found no evidence of association with disease risk in either single-SNP or
haplotype-based analyses. In addition to adjusting for APOE ε4 and sex, we also performed
subgroup analyses in cohorts stratified according to these two parameters. The lack of any
significant results from them led us to conclude that the APOE ε4 allele and sex have no
significant impact on the association between ADIPOQ SNPs and LOAD risk.

Overall, our results were not consistent with the previous reports on the role of
ADIPOQ in the predisposition to LOAD in the Chinese population [65,66], suggesting
possible inter-ethnic differences in the genetic background of the disease. Based on our find-
ings, we posit that despite the obvious effects of ADIPOQ SNPs on circulating adiponectin,
this impact does not translate into a significantly increased risk of developing LOAD.
This conclusion aligns with the results of a recent MR study that explored the causality
between circulating adiponectin and AD risk, finding no association between genetically
predicted adiponectin levels and AD [108]. The 14 SNPs used as instrumental variables
in the MR analysis were selected from a 2012 GWAS meta-analysis from the ADIPOGen
consortium [41] and included four variants within or in proximity to ADIPOQ. Considering
these findings, it seems plausible that elevated adiponectin observed in AD patients [27]
is a biomarker or a bystander rather than a causal risk factor. Alternatively, it may rep-
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resent a compensatory effort against neurodegeneration, aiming to aid the clearance of
Aβ aggregates, e.g., by controlling the expression of ABCA1, an important promoter of
efferocytosis [109].

Some limitations of the current study need to be acknowledged. First, while its statisti-
cal power to replicate the findings of two previous studies [65,66] was over 90% (as assessed
by the Genetic Association Study Power Calculator available at https://csg.sph.umich.
edu/abecasis/gas_power_calculator/index.html, accessed on 10 January 2022), this power
inevitably decreased when weaker effect sizes (OR < 1.10) and a corrected significance
level of 0.0028 were considered. Hence, we are aware that false-negative results cannot be
completely ruled out, and additional analyses in independent populations are warranted
to validate our findings. A similar limitation related to sample size also applied to the
linear regression analysis of the association between ADIPOQ and plasma adiponectin in
LOAD patients and could be one of the reasons why we failed to detect a significant effect
of some SNPs on adiponectin levels. Second, although we made an attempt to adjust our
analyses for several important parameters related to AD risk, there are still other possible
confounders that could not be accounted for, such as educational attainment, dyslipidemia,
other diseases, smoking, drinking, and other lifestyle factors. This, along with differences in
inclusion and exclusion criteria and the modifying effects of additional genetic and environ-
mental factors, may be another source of heterogeneity in the results of studies. Third, our
study exclusively focused on SNPs with MAF ≥ 5%. Apart from these common polymor-
phisms with relatively subtle effects, the ADIPOQ gene also harbors several low-frequency
variants (MAF < 5%) previously associated with alterations in circulating adiponectin
levels, such as rs17366653 in intron 1 [48–50,58] and rs17366743 in exon 3 [58,75,76]. Hence,
these variants could be considered potential candidates for future studies on the association
between ADIPOQ and AD risk. Moreover, numerous rare nonsynonymous missense or
nonsense variants have been identified in exons 2 and 3, with several predicted to be
damaging or deleterious by in silico analyses. Such gene mutations altering the amino
acid composition may impact protein structure, multimerization, function, subcellular
localization, or secretion, ultimately affecting various biological processes associated with
adiponectin [110]. Some of these rare variants, such as rs62625753 (Gly90Ser), rs199646033
(Gly84Arg), and rs143606172 (Arg55His), are associated with hypoadiponectinemia due
to changes in the amino acid sequence resulting in the inability to form HMW multimers.
Others, such as rs185847354 (Ile164Thr) and rs121917815 (Arg112Cys), disrupt the assembly
into low-molecular-weight trimers [33,47,48,62,74,110–114]. Interestingly, the rs62625753
(c.268G>A; Gly90Ser) mutation in exon 3 was recently shown to produce abnormal aggrega-
tion of tau proteins and contribute to cognitive degeneration, suggesting a functional impact
for AD [115]. Hence, large-scale studies focusing on low-frequency and rare exon variants
may have the potential to identify causal ADIPOQ mutations with larger pathogenic effects
in a small subset of AD patients, eventually helping to explain a portion of the so-called
missing heritability.

5. Conclusions

While adiponectin has emerged as a potential contributor to the development of LOAD
due to its complex effects on energy metabolism and neurological processes, this study
failed to find any significant involvement of its gene variants in susceptibility to the disease.
Although we confirmed the influence of some of the SNPs on circulating adiponectin, this
impact does not appear to modulate the risk of developing LOAD. Further studies are
required to uncover whether rare ADIPOQ variants or genes coding for other molecules
involved in adiponectin signaling contribute to LOAD risk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life14030346/s1, Table S1: Primer sequences and PCR-RFLP
genotyping conditions for ADIPOQ SNPs; Table S2: Demographic and clinical characteristics of
LOAD patients included in the analysis of the association between ADIPOQ SNPs and plasma
adiponectin levels; Table S3: Linkage disequilibrium data (D’, r2) of the ADIPOQ SNPs observed in
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the overall study population; Table S4: Hardy–Weinberg equilibrium values in patient and control
populations; Table S5: Association between ADIPOQ SNPs and LOAD risk in the whole study
population; Table S6: Association between ADIPOQ polymorphisms and LOAD risk in the APOE
ε4-positive subpopulation; Table S7: Association between ADIPOQ polymorphisms and LOAD risk
in the APOE ε4-negative subpopulation; Table S8: Association between ADIPOQ polymorphisms
and LOAD risk in female subjects; Table S9: Association between ADIPOQ polymorphisms and
LOAD risk in male subjects; Table S10: Association between ADIPOQ polymorphisms and age of
AD onset in LOAD patients; Table S11: Plasma adiponectin levels in different subgroups of patients
with LOAD.
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