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Abstract: Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder that
primarily affects persons aged 65 years and above. It causes dementia with memory loss and de-
terioration in thinking and language skills. AD is characterized by specific pathology resulting
from the accumulation in the brain of extracellular plaques of amyloid-β and intracellular tangles
of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while
previously underrecognized, is now more and more appreciated. Mitochondria are an essential
organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes cru-
cial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and
mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield
mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD
brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review
addresses the multiple ways in which abnormal mitochondrial structure and function contribute
to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic
because brain cells have disproportionately high energy demands. In addition, oxidative stress,
which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis.
Restoring mitochondrial health may be a viable approach to AD treatment.
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1. Introduction

Alzheimer’s disease (AD) manifests as progressive cognitive decline eventually ending
in death. The disease-defining pathological features observed in the brain are the accu-
mulation of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles
(NFTs) of hyperphosphorylated tau protein [1]. The mainstay FDA-approved drugs for AD
treatment offer some symptomatic relief while newer immunotherapies directed against Aβ

may slow the rate of cognitive decline modestly [2,3]. There is no cure and since approaches
targeting Aβ and tau have shown that these misfolded proteins are likely not causative,
attention has shifted to other mechanisms, including those involving mitochondria [4].
Mitochondria are being explored because abnormalities in this organelle are found early in
the course of the disease and can lead to many of the neuron-destroying consequences of
AD [5–7]. The disruption of mitochondrial dynamics leads to mitochondrial fragmentation,
generation of reactive oxygen species (ROS) and poor energy production [8]. Defective
mitophagy further aggravates this problem, which impedes the ability of the cell to dispose
of the damaged mitochondria [9]. This review examines the central role of mitochondria in
the healthy neuron and the pathological mechanisms underlying mitochondrial dysfunc-
tion in AD. It explores multiple innovative therapeutic strategies with the potential to add
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to the pipeline of medications addressing the urgent and growing need to slow or halt the
inexorable outcome of this disease. Although other reviews have explored mitochondrial
function in AD, the rapid rate of change in the field of AD causation and therapeutics
combined with recent data on the subtle effects of new anti-amyloid treatments brings a
need for a fresh overview of the topic as provided here [10,11].

2. Mitochondrial ATP Production and Oxidative Stress in Neurons
2.1. Structural Characteristics

Mitochondria are an essential organelle located in the cytoplasm of eukaryotic cells [12].
They are involved in cellular bioenergetic and signaling pathways and metabolic adapta-
tions to keep the cell and organism alive [13]. They are vital for ATP production through
oxidative phosphorylation and for maintaining calcium homeostasis [14,15]. Mitochondria
are rod-shaped double-membrane structures ranging in length from 0.5 µm to 1 µm [16].
The outer and inner membranes create two compartments: an intermembrane space and
an inner membrane space. The inner membrane has numerous folds called cristae that
serve to increase surface area and embedded within the cristae are the proteins needed
for oxidative phosphorylation and ATP generation. Enclosed in the inner membrane is a
mitochondrial matrix that contains the mitochondrial DNA and holds the enzymes of the
citric acid cycle and fatty acid degradation.

2.2. Energy Production by Mitochondria and Mitochondrial Oxidative Stress

Mitochondria are particularly important in neurons where energy needs are dispropor-
tionately high. Neurons use 70–80% of total energy among brain cells, while glial cells use
the remainder [17]. Mitochondria supply 93% of ATP at synapses with glycolysis providing
only 7% [18,19].

In sequential order, five multiprotein complexes (complex I, complex II, coenzyme
Q, complex III, cytochrome C, and complex IV) form the electron transport chain (ETC),
a chain that creates an electrochemical gradient and releases energy [20]. (Figure 1). The
human mitochondrial genome is circularly organized and consists of 13 proteins, 22 transfer
RNAs and 2 ribosomal RNAs encoded by 37 genes [21]. Key protein subunits of complexes
I–IV of the ETC are encoded by mitochondrial DNA while other subunits are encoded by
nuclear DNA [22].

The ETC is embedded within the inner membrane of the mitochondria. ATP synthesis
through the ETC is driven by the reduced form of nicotinamide adenine dinucleotide
(NADH), which is generated from the citric acid cycle and serves as a donor of electrons
to complex I. Two electrons from NADH are transferred to ubiquinone [23]. This electron
transfer induces the pumping of protons by complex I from the matrix to the intermembrane
space, contributing to the membrane potential and energy storage for ATP production. A
second entry point for electrons into the ETC is through complex II, where succinate from
the citric acid cycle, when oxidized to fumarate, donates 2 electrons to the oxidized form
of flavin adenine dinucleotide (FAD) in complex II to generate the reduced form FADH2.
Complex II is not a proton pump and does not translocate protons and, consequently, an
FADH2 molecule yields less ATP than an NADH molecule. Both complex I and complex
II pass electrons to coenzyme Q at the inner mitochondrial membrane and coenzyme Q
accepts electrons in pairs, transfers them to complex III, and then to cytochrome c. Once
cytochrome c is reduced, it transfers electrons to complex IV (cytochrome c oxidase), where
molecular oxygen (O2) is reduced to H2O. Lastly, complex V is a multi-subunit complex
that functions under a rotational motor mechanism to allow for ATP production [24,25].

A result of the process of electron transfer is the formation of reactive oxygen species
(ROS), which contributes to oxidative stress in pathological states [26–28]. These ROS are
produced in the ETC during the oxidative phosphorylation process, in which oxygen is
reduced to H2O, and during this course, electrons leak and form superoxide which is then
converted to hydrogen peroxide [27]. Hydrogen peroxide can release the very destructive
hydroxyl radical [25]. The mitochondria generate approximately 90% of cellular ROS and
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overproduction of ROS can cause damage to DNA, proteins and lipids [27–29]. ROS further
impairs mitochondria leading to more ROS production as well as increased mitochondrial
membrane permeability, and disruption of calcium homeostasis [30].
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Figure 1. Diagram demonstrating the flow of electrons through the mitochondrial electron transport
chain (ETC). Electrons initially enter the ETC by NADH at complex I, and FADH2 from complex II.
Ubiquinone transports the electrons to complex III, and then through cytochrome (Cyt) C to complex
IV where oxygen is reduced into water. A proton gradient pumped across the inner mitochondrial
membrane caused by the translocation of protons synthesizes ATP.

2.3. ATP and Oxidative Phosphorylation

There is high demand for ATP in the very metabolically active neurons in the brain and
oxidative phosphorylation, occurring in the inner mitochondrial membrane, is the process
in which ATP production and ROS generation are linked [31]. Oxidative phosphorylation
has been shown to play a role in AD progression, likely through oxidative damage [32–34].
Biffi et al. used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to
gather SNP genotype and baseline MRI results from 740 subjects in four clinical categories
(cognitively normal controls, MCI non-converters, MCI converted to AD, AD) [35]. Their
analysis found that 105 genes involved in oxidative phosphorylation contributed to clinical
manifestations of AD, with a major role for complex I above other complexes. Venkatara-
man et al. looked at complex I activity using a specific positron emission tomography (PET)
probe (18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-
pyridazin-3-one) in living persons with AD versus healthy controls and found that complex
I was lower in those with AD, particularly in the hippocampus, caudate, and thalamus [36].

A decline in ATP is noted with oxidative stress in AD neuropathology. Oxidative stress
is an early and prominent feature of AD caused by the overproduction and accumulation
of ROS, which damages cells. Zhang et al. determined ATP levels in the brains of AD
transgenic mice using an ATP bioluminescence assay and found that ATP content in the AD
mouse brain was significantly reduced compared to wild-type C57BL/6 mice, suggesting
mitochondrial dysfunction [37].
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Armand-Ugon et al. quantified the expression of nuclear genes that encode subunits of
the mitochondrial complexes in total homogenates from the entorhinal cortex of AD patients
and, using qRT-PCR, found decreased expression of ATP5L, ATPD, and ATP50 genes in
later stages of AD compared to early stages [38]. Along these lines, Finney et al. performed
an artificial intelligence meta-analysis of dysregulated genes in AD subjects compared
to non-demented healthy controls using publicly available transcriptomic datasets of the
frontal cortex and cerebellum and found that genes involved in mitochondrial energy,
ATP, and oxidative phosphorylation pathways were dysregulated in the AD group [39].
Functional network analysis pinpointed two downregulated genes, ATP5L and ATP5H,
each of which encodes a subunit of ATP synthase (mitochondrial complex V), as potentially
playing a role in AD pathogenesis. Hence, the dysregulation of ATP production in the
mitochondria and the decreased expression of its corresponding ATP production genes,
such as ATP5L and ATP5H, underscore the relevance of ATP in AD pathogenesis.

2.4. Nicotinamide Adenine Dinucleotide (NAD+) and Complex I

NAD+ is a coenzyme for redox reactions that acts as an electron acceptor. It is a cofactor
for glyceraldehyde-3-phosphate dehydrogenase, the enzyme that catalyzes the dehydro-
genation of glyceraldehyde-3-phosphate in the glycolysis process. NAD+ is produced from
NADH, primarily by mitochondrial ETC complex I. It is important in energy metabolism,
for maintaining mitochondrial homeostasis, and in the stress response to oxidative dam-
age [40,41]. When activity of complex I is compromised during mitochondrial damage,
NAD+ production is reduced, and excess NADH accumulates. The ratio of NAD+/NADH
can be used as a barometer of mitochondrial function [42]. NAD+ depletion is associated
with axonal degeneration [43]. NAD+ levels are lower in AD patient brains [44].

Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is the enzyme re-
sponsible for the synthesis of NAD in neurons in the brain and is pivotal in maintaining
axonal integrity [45]. Levels of NMNAT2 mRNA are lower in the brain in AD patients and
mouse AD models, and overexpression of NMNAT2 in cells that produce excess amyloid
precursor protein (APP) suppresses amyloid formation by increasing the NAD+/NADH
ratio [46]. Sterile alpha and TNR motif-containing protein 1 (SARM1) are multifaceted
metabolic sensors that hydrolyze NAD and are sensitive to changes in NAD levels [47].
Upon axonal injury or mitochondrial malfunction, NMNAT2 levels are reduced, and so
is the production of NAD+. NMNAT2 loss promotes SARM1 activation, and this combi-
nation results in energetic failure in axons [48,49]. SARM1 and NMNAT2 are considered
potential AD therapy targets because of their role in the programmed death of axons in
neurodegeneration [50].

Correction of NAD+ depletion by NAD+ precursor supplementation has been shown
to improve cognitive function in animal models of AD [51–53]. Hou et al. used an AD
mouse model that is DNA repair deficient and emulates features of human AD such as Aβ

plaques, tau tangles, synaptic dysfunction, and cognitive impairment [54]. These mice were
reported to have a lower NAD+/NADH ratio, and supplementation with nicotinamide
riboside (NR) lessened phosphorylated tau protein pathology and oxidative stress and
ameliorated neuroinflammation.

3. Mitochondrial Trafficking

Neurons are highly polarized cells that transfer information through a combination of
chemical and electrical signals at the synapse, which is distant from the cell body and main-
tained by axonal transport [55,56]. Mitochondrial trafficking in neurons is a phenomenon
in which mitochondria move bidirectionally, with anterograde transport of mitochondria
from the cell body to synaptic terminals and retrograde transport of mitochondria from
the synaptic terminals to the cell body [57]. Kinesin-1 mediates anterograde transport
and cytoplasmic dynein motors monitor retrograde mitochondrial transport [58]. Studies
show that retrograde mitochondrial transport is important for removing aged organelles,
and disruption of it impacts the function of motor synapses and the homeostatic distri-
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bution of mitochondria throughout the neuron [59]. Both anterograde and retrograde
mitochondrial movement are important for axonal outgrowth, synaptic plasticity, and
neurotransmission [60].

4. Mitophagy, Mitochondrial Dynamics and AD
4.1. Mitophagy

Mitophagy, which is a mode of autophagy specifically for mitochondria, is the pro-
cess of selectively degrading damaged or unneeded mitochondria, which is essential for
mitochondrial quality control [61,62]. During mitophagy, the extraneous or defective
mitochondria are trafficked to the lysosome, where they are degraded by lysosomal en-
zymes [63]. Various animal and human studies have established the role of impaired
mitophagy in AD [64]. Dysfunctional mitochondria lead to the accumulation of excess
ROS and the depletion of ATP [65,66]. Impaired mitochondria at distal sites have to be
transported to the soma for lysosomal degradation, and this retrograde transport may
be impaired in AD [67,68]. Further, poorly functioning lysosomes may be inefficient in
clearing misfolded proteins, such as Aβ [69].

4.2. Aβ and Tau in Mitophagy and Mitochondrial Movement

The most well-studied causes of mitochondrial dysfunction in AD relate to the toxicity
of Aβ and tau. The accumulation of Aβ causes oxidative stress and the production of ROS
by mitochondria. The ROS generated then inflicts damage on mitochondria [70,71]. Mito-
chondrial ROS production promotes tau aggregation [72]. Aβ and tau also interfere with
the trafficking of mitochondria to and from the synapse while also fostering mitochondrial
fission, leading to synaptic dysfunction [73,74].

Aβ is not produced locally in the mitochondria, so mitochondrial Aβ uptake poses an
interesting area of study. Petersen et al. found that in rat mitochondria, Aβ is transported
via the translocase of the outer membrane machinery [75]. Immunoelectron microscopy
after import showed localization of Aβ to mitochondrial cristae. This was similarly found
in human cortical brain biopsies, suggesting that this import machinery can be a unique
mechanism for Aβ entry into mitochondria.

Dou and Tan transfected SHSY-5Y human neuroblastoma cells with plasmids harbor-
ing mitochondrial outer membrane protein translocase (TOMM)22 and TOMM40 to directly
augment mitochondrial Aβ content. They found that increased Aβ content in the mito-
chondria enhanced mitophagy, and this could be reversed by transfection with a plasmid
harboring presequence protease, responsible for Aβ degradation [76]. In a separate study,
presequence protease activity was found by Alikhani and colleagues to be significantly
lower in mitochondria isolated from brain tissue specimens obtained post-mortem from
the temporal region of AD-affected subjects compared to age-matched controls [77].

The tau protein, a microtubule-associated protein important for synaptic plasticity,
acts as a promoter of microtubule assembly, a microtubule stabilizer, and an autophagy
regulator [78,79]. The tau protein is primarily expressed in neurons, where it is involved in
axonal transport [80,81]. Accumulation of misfolded insoluble phosphorylated tau protein
in the neuron leads to aggregation into neurofibrillary tangles that are neurotoxic [82–84].
Hyperphosphorylation of tau protein reduces its binding affinity to microtubules, causing
microtubules to dissemble and interfering with axonal transport of mitochondria and
synaptic vesicles [85,86]. Insufficient mitochondrial presence along the axon starves the
synapse of ATP and energy and impedes the autophagic clearance of mitochondria in
neurons [87,88].

Hu et al. examined the association between intracellular tau accumulation, a hallmark
of sporadic AD, and mitophagy using the mitochondrial marker proteins cytochrome c
oxidase (COX) IV and TOMM20 [89]. Comparing brain homogenates from AD subjects and
age-matched controls, Western blotting showed higher levels of COX IV, TOMM20, total
tau and phosphorylated tau in the AD patients. Interestingly, only AD subjects with high
tau levels had elevations in COX IV and TOMM20, while AD subjects with normal total
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tau levels had COX IV and TOMM20 expression comparable to non-AD controls. Since
high levels of COX IV and TOMM20 may be considered indicators of mitophagy deficits,
these results suggest an association between intracellular tau accumulation and mitophagy
deficits [90].

Cummins et al. studied the effect of tau accumulation on Parkin-dependent mitophagy
in both murine neuroblastoma cells and in the nervous system of C. elegans [91]. When
the mitochondrial membrane potential dissipates, mitophagy is normally initiated via the
serine/threonine kinase PTEN-induced putative kinase 1 (PINK1) and the E3 ubiquitin
ligase Parkin in order to eliminate defective mitochondria. In this PINK1/Parkin pathway,
activation occurs when cytosolic Parkin translocates to the surface of the mitochondria,
dimerizes, and is trans-autophosphorylated. Activated PINK1 then phosphorylates ubiqui-
tin on the outer mitochondrial membrane proteins, leading to the recruitment and partial
activation of Parkin. Following binding to phospho-ubiquitin, Parkin can be fully activated
by PINK1. A feed-forward loop leads to the ubiquitylation and addition of poly-ubiquitin
chains on the surface of damaged mitochondria, targeting them for autophagy and lyso-
somal degradation. The study used the mito-QC mitophagy reporter to show that tau
specifically impaired Parkin recruitment to defective mitochondria by sequestering it in
the cytosol in both the cell and nematode models [91]. This work identified a pathological
process in which AD conditions of excess tau can prevent the elimination of dysfunctional
mitochondria by obstructing the PINK1/Parkin pathway.

Fang et al. studied the impact of Aβ and tau on mitophagy in a C. elegans model of AD
combined with murine models and cell culture experiments and confirmed that Aβ reduces
mitophagy while stimulation of mitophagy decreases Aβ [92]. They also showed that
transgenic nematodes overexpressing human tau exhibit reduced basal and stress-induced
mitophagy.

4.3. Mitochondrial Fission and Fusion

Mitochondrial fission and fusion are both controlled by large guanosine triphos-
phatases (GTPases) in the dynamin family. The balance between fusion and fission is
critical for meeting energy demand, as excess fission leads to mitochondrial fragmentation
while excess fusion leads to elongated mitochondria with high levels of ROS [93]. The spe-
cific proteins that regulate fission include dynamin-1-related protein (DRP)1, fission (Fis)1,
and mitochondrial fission factor (Mff), while mitochondrial fusion is regulated by proteins
such as mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic atrophy protein (OPA1) [94].

While mitochondrial fission is required for both mitophagy and mitochondrial trans-
port, excess fission leads to fragmentation, and patients with AD are determined to have
higher expression of mitochondrial fission genes such as DRP1 [95–98]. Enhanced fission
leads to structural damage to mitochondria in neurons in the AD brain [99,100]. Upregula-
tion of fusion proteins or interference with fission proteins may rescue neurons from the
consequences of overzealous fission [101–103].

Using rat primary hippocampal neurons, Li et al. showed that abnormal mitochondrial
fusion is also destructive [104]. Overexpression of tau protein in the cultured rat neurons
increased fusion proteins, leading to mitochondrial elongation and decreased viability
of neurons.

4.4. Effects of Amyloid and Tau on Fission and Fusion

Drp1 may contribute to the pathogenesis of AD by interacting with Aβ and phospho-
rylated tau, leading to excessive mitochondrial fragmentation with negative consequences
such as synaptic dysfunction and neuronal damage [105].

Glycogen synthase kinase 3 β (GSK3β), primarily present in the brain and activated
by Aβ, is responsible for phosphorylation of tau and is considered a crucial enzyme in the
pathobiology of AD [106,107]. In murine models, overexpression of GSK3β increases tau
phosphorylation and promotes disassembly of microtubules [108]. GSK3β also phosphory-
lates Drp1 at multiple serines, affecting mitochondrial fission and fragmentation [109,110].
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Yan et al. showed that inhibition of GSK3β can impede mitochondrial fragmentation
and confer neuroprotection in both transgenic amyloid precursor protein/presenilin 1
(APP/PS1) AD mice and cultured rat primary hippocampal neurons via prevention of Drp1
phosphorylation [111].

GSK3β also enhances the formation of Aβ by inducing β-site APP-cleaving enzyme
(BACE)1, a critical enzyme in the amyloidogenic pathway that converts amyloid precursor
protein (APP) to Aβ [112]. GSK3β effects on BACE1 are dependent on NF-κB signaling.

PINK1, key in mitophagy initiation, can help to maintain mitochondrial integrity, con-
trol oxidative stress, enhance Aβ clearance, and improve learning and memory in AD ro-
dent models and human neuronal cybrids carrying AD-derived mitochondria [92,113,114].
PINK1 has the ability to phosphorylate Drp1, thereby affecting mitochondrial dynamics by
promoting fission, while Parkin can ubiquitinate Drp1 to promote its proteasomal degra-
dation [115,116]. The ability of PINK1 to affect mitochondrial fragmentation in neurons
via Drp1 leaves open an avenue for possible AD therapy by regulating the expression of
PINK1 as a means of controlling fission and fragmentation.

5. Mitochondrial DNA Methylation

Mitochondrial DNA methylation, a mechanism of epigenetic control, is a suspected
contributing factor in AD pathogenesis [117,118]. Xu and colleagues compared mitochon-
drial DNA methylation in the hippocampi of transgenic APP/PS1 AD mice to age-matched
wild-type C57BL/6J mice and found hypomethylation of the D-loop region (critical for
mitochondrial DNA replication and transcription) and hypermethylation of the 12 S rRNA
gene in the hippocampi of the AD mouse model [119]. The AD mice also showed a decrease
in mitochondrial DNA copy number and lower gene expression compared to the C57BL/6J
mice, indicative of mitochondrial dysfunction and abnormal biogenesis [120,121]. In a later
study, Xu et al. examined methylation in mitochondrial cytochrome b (CYTB) and COX
II in the hippocampi of APP/PS1 AD mice in comparison to C57BL/6J mice and found
hypermethylation and decreased mitochondrial DNA copy numbers in the hippocampus
of these specific genes in the AD transgenic mice [122]. Impaired COX function has been
related to ROS production [123,124].

Ding et al. isolated cell-free DNA from blood samples taken from 31 AD patients
and 26 age- and sex-matched controls and compared mitochondrial DNA methylation
patterns between the groups [125]. They found excess hypomethylation of mitochondrial
DNA in AD patients compared with controls, with hypomethylation primarily located in
non-protein-coding regions of mitochondria.

In human brain specimens from persons of advanced age, Klein et al. observed a
decrease in quantity of mitochondrial DNA in AD versus non-AD controls when sequencing
1361 samples, and more specifically, found a 7–14% decrease in mitochondrial DNA copy
number in AD compared to non-AD controls [126].

6. Glucose Metabolism Reduced in AD

The human brain is one of the most metabolically active organs in the body and
predominantly utilizes glucose as its main energy source. The brain is relatively inflexible
in using alternative substrates aside from glucose for energy production [127,128]. AD is
characterized by reduced glucose metabolism in the brain [129,130]. This hypometabolism
is detectable in PET scans and serves as an early imaging modality for AD detection and
prediction of progression from MCI to AD [131–134]. A longitudinal study of cognitively
normal older persons and persons with mild AD showed a progressive reduction in
glucose utilization prior to dementia onset in those who began the study without cognitive
symptoms [135]. In the early stages of AD, glucose hypometabolism is apparent in the
hippocampal and posterior cingulate of the human brain, areas that also show abnormal
patterns of functional connectivity early in AD [136–138]. As the disease advances, glucose
consumption is reduced at the temporal–parietal cortex and the frontal and occipital
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cortices [139]. Hypometabolism is generally bilateral in AD but may be left lateralized in
early MCI [140].

Hypometabolism may be due partly to reduced glucose transport at the blood–brain
barrier and across astrocytic and neuronal cell membranes. The transport of glucose from
the bloodstream to the parenchymal cells is facilitated by integral membrane proteins
called glucose transporters (GLUTs). These sodium-independent facilitative transporters
play an important role in glucose metabolism [141]. The majority of glucose uptake in the
brain occurs via GLUT1 and GLUT3. While GLUT1 moves glucose across the blood–brain
barrier into astrocytes, Glut3 handles the majority of glucose uptake by neurons [142,143].
Decreased levels of GLUT1 and GLUT3 are particularly seen in the cerebral cortex and
hippocampus of AD patients, with significant loss of GLUT3 [144]. One proposed mech-
anism for decreased levels of GLUT1 and GLUT3 in the AD brain is the downregulation
of hypoxia-inducible factor-1 (HIF-1) [145]. HIF-1 suppression subsequently causes ab-
normal tau phosphorylation and/or neurofibrillary degeneration by downregulating the
hexosamine biosynthesis pathway. [146]. Another putative mechanism contributing to
decreased GLUT3 expression involves the transcription factor cAMP response element
(CRE)-binding protein (CREB), known to be important in supporting cognition, memory
formation, and neuronal survival [147]. The human GLUT3 promoter has three potential
(CRE)-like elements where CREB can bind and induce GLUT3 expression. In AD, CREB
level is low in the hippocampus [148]. Jin et al. found decreased expression of full-length
CREB and increased CREB truncation in the AD brain. CREB truncation is linked to activa-
tion of calpain 1, which proteolyses CREB, thus leading to a deficit in CREB and reduced
GLUT3 expression [149].

Studies have also explored the effects of reduced O-GlcNAcylation, a posttranslational
modification that regulates human nuclear, cytoplasmic, and mitochondrial proteins in
AD [150]. O-GlcNAcylation involves the attachment of a single N-acetylglucosamine sugar
to specific serine or threonine residues on over 9000 proteins of nuclear, cytosolic, and
mitochondrial origin [151]. Evidence from multiple laboratories supports the hypothesis
that dysregulated O-GlcNAcylation contributes to AD, but the mechanisms and specifics
of which proteins are impacted remain unresolved [152,153]. O-GlcNAcylation of brain
proteins, including tau, is significantly decreased due to impaired glucose metabolism
in the AD brain [154]. In both cell culture and murine models, Pinho et al. found that
enhanced O-GlcNAcylation led to improved mitochondrial network and cell viability,
while Park et al. observed that augmenting O-GlcNAcylation in brain tissue in a mouse AD
model lowered ROS levels and improved the morphology of mitochondria [155]. Drugs
are being tested for their ability to increase O-GlcNAcylation of tau protein to prevent
hyperphosphorylation and NFT formation [156,157]. In contrast, prolonged elevations of
O-GlcNAcylation may interfere with mitochondrial ATP production [158]. However, how
diminished or enhanced O-GlcNAcylation directly affects mitochondrial and neuronal
functions in the context of AD still needs to be elucidated [159].

7. Apolipoprotein (Apo)E Gene Impact on Mitochondria and Bioenergetics

ApoE is a 299 amino acid lipid transport protein and the most abundant brain
apolipoprotein. ApoE functions to maintain brain lipid balance and facilitates the ex-
change of lipids between neurons and glial cells. Its expression in the brain is upregulated
in activated microglia and in stressed neurons as an adaptation to inflammatory and cellular
stress conditions [160,161].

There are three predominant ApoE isoforms in humans: ApoE2, ApoE3, and ApoE4,
which are the products of the ε2, ε3, and ε4 alleles, respectively. These confer varying
degrees of AD risk, with the ApoE ε4 allele being the strongest genetic risk factor for spo-
radic AD, while the ApoE ε2 allele is associated with the lowest AD risk [162–164]. ApoE4
is expressed in more than half of AD patients, and its prevalence makes it an important
therapeutic target [165,166]. In addition to its role in binding and clearing amyloid-β,
ApoE also affects mitochondria [167]. The ApoE ε4 allele causes mitochondrial dysfunc-
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tion and alters mitochondrial-associated membranes, key membranes that connect the
endoplasmic reticulum with mitochondria [168,169]. Mitochondrial-associated membrane
disruption is found in the context of AD and can negatively influence calcium and lipid
metabolism [170,171].

In a study by Simonovitch and colleagues, female mice were generated by replacing
endogenous murine ApoE with either human APOE3 or APOE4, and then the mitochon-
dria were characterized [172]. The researchers found that, compared to mice expressing
ApoE3, mice expressing APOE4 had elevated hippocampal levels of mitochondrial fusion-
mediating protein (MFN)1 combined with reduced levels of dynamin-related protein 1
(Drp1), a critical protein that controls mitochondrial fission. Transmission electron mi-
croscopy showed abnormal morphology in the APOE4 mice, with elongated mitochondria
and less dense cristae. Levels of the mitochondrial ETC protein COX1 in hippocampal
neurons were enhanced in the ApoE4 mice, possibly as a compensatory mechanism.

ApoE-ε4 carriers show decreases in mitochondrial respiratory complexes in neurons,
which supports the early role of energy metabolism and the progression of AD [173]. Yin
et al. performed a study on postmortem human brain tissue and measured proteins that are
responsible for mitochondrial biogenesis in 46 cases, including ApoE-ε4 carriers (n = 21) and
non-carriers (n = 25) [174]. These patients had undergone clinical and neuropsychological
assessments prior to death that were then correlated to brain tissue protein data. The
results showed that harboring an ApoE-ε4 allele was associated with decreased levels of
antioxidative stress and synaptic plasticity proteins.

Costa-Laparra et al. studied the impact of the Apoe ε4 allele co-occurring with a pre-
senilin 1 (PSEN1) gene mutation by analyzing skin fibroblasts from AD patients harboring
this combination compared to fibroblasts from persons with 2 ApoE ε 4 alleles and healthy
ApoE3/3 controls [175]. They observed that cells that were ApoE3/4 + PSEN1 had lower
viability, an accumulation of lysosomes, and greater vulnerability to oxidative stress than
either homozygous ApoE4 cells or homozygous control ApoE3 cells. Homozygosity for
the APOE ε4 allele alone led to increased mitochondrial fragmentation, while the PSEN1
mutation alone caused impairment of mitochondrial network integrity. Orr et al. used
N2a mouse neuroblastoma cells stably expressing ApoE3 or ApoE4 to show mitochondrial
dysfunction attributed specifically to the ApoE4 gene, including a lower NAD+/NADH
ratio, higher levels of ROS, and reduced ATP generation capacity [176]. This suggests that
ApoE4 impairs mitochondrial respiration.

Lee et al. looked at Apoe4-induced lysosomal cholesterol accumulation in astrocytes
and the resulting impairment of lysosome-dependent removal of damaged mitochon-
dria [177]. They found that, compared to ApoE3 astrocytes, ApoE4 astrocytes had impaired
autophagy, increased ROS, and enhanced glycolysis. Cholesterol-depleting agents restored
autophagy and mitochondrial respiration but did not normalize glycolysis.

8. Mitochondria in the Treatment of AD

The importance of mitochondrial dysfunction in the pathogenesis of AD has prompted
the exploration of new treatment strategies designed to improve mitochondrial func-
tion [178–180]. A major focus has been on correcting oxidative stress imbalances using
mitochondrial-targeted antioxidant therapies, and many studies have been conducted in
rodent models showing efficacy [181–183].

Mitoquinone mesylate (MitoQ, 10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadienlyl)
decyl triphenylphosphonium methanesulfonate)) is a compound composed of a deriva-
tive of ubiquinone targeted to mitochondria by covalent attachment to a lipophilic triph-
enylphosphonium, which facilitates crossing of the molecule through the layers of the mito-
chondrial membranes. The ubiquinone can then be converted to the antioxidant ubiquinol
by complex II of the ETC. MitoQ behaves as a scavenger for ROS and has been previously
tested in AD nematode and mouse model systems [184–186]. In these models, MitoQ has
been shown to prevent oxidative damage, reduce Aβ accumulation, astrogliosis, synaptic
loss, and improve cognitive function. It is considered a dietary supplement, can be taken
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orally, and crosses the blood–brain barrier. Human studies have shown a benefit in improv-
ing vascular function in older persons [187], and a human trial entitled “The Mito-Frail Trial:
Effects of MitoQ on Vasodilation, Mobility and Cognitive Performance in Frail Older Adults
(Mito-Frail)” is about to begin (https://classic.clinicaltrials.gov/ct2/show/NCT06027554,
accessed on 4 January 2024). Plastoquinonyl decyl triphenylphosphonium (SkQ1), a deriva-
tive of plastoquinone, is similar to MitoQ in that it is a mitochondria-targeted antioxidant
that shows neuroprotection in murine models [188].

Other antioxidant compounds such as mito-apocynin, made from apocynin, a plant-
derived inhibitor of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, and
astaxanthin, a red pigment with potent antioxidant properties, have also shown potential
for improving mitochondrial dysfunction in preclinical models and could be used in
humans in the future [189–193].

Mitochondrial fragmentation is detrimental to cellular bioenergetics. As discussed
earlier, the mitochondrial fission protein Drp1 is abnormally expressed in AD, leading to
excess mitochondrial fragmentation [194]. Drp1 also interacts with Aβ and hyperphos-
phorylated tau and promotes changes in mitochondrial morphology and bioenergetics,
negatively impacting ATP production. Interactions between Drp1 and Aβ induce synaptic
loss [195,196]. The Drp1 inhibitor, mitochondria division inhibitor 1 (Mdivi1), a quina-
zolinone derivative, has been found to effectively target synaptic depression that occurs
due to Aβ in AD [197,198]. Mdivi1 has been found to specifically target mitochondrial
dysfunction by attenuating ROS production and enhancing ATP production [199]. These
findings suggest that Mdivi1 is a potential therapeutic option for treating mitochondrial
dysfunction and synaptic depression associated with Aβ-induced pathology in hippocam-
pal cells in AD [200,201]. However, it has drawbacks, including a lack of specificity and a
propensity to aggregate, that make it likely that better compounds can be developed for
human use [202].

Diethyl (3,4-dihydroxyphenethylamino) (quinoline-4-yl)methyl phosphonate (DDQ)
is a pharmacologically developed compound that can cross the blood–brain barrier and
has shown positive effects on mitochondrial dysfunction and synaptic dysregulation at
both mRNA and protein levels [203,204]. DDQ reduces the fission proteins Drp1 and
Fis1 while increasing the fusion proteins Mfn1 and Mfn2. It reduces the interactions of
DRP1 with Aβ, inhibiting Aβ-DRP1 complex formations of [205]. Aβ-Drp1 complexes are
known to promote mitochondrial fragmentation, mitochondrial DNA mutations, and a
reduction in mitochondrial oxidative phosphorylation, all of which are observed in AD
brains. Drp1 inhibition has emerged as a therapeutic target because it has been shown to
improve learning and memory and protect mitochondria from fragmentation in mouse
models of AD [206,207].

Nicotinamide compounds such as nicotinamide mononucleoside, nicotinamide mononu-
cleotide, and nicotinamide riboside are being evaluated for their effect on mitophagy and
NAD levels [54,208,209]. Although not curative, this type of dietary supplementation may
be part of a multi-faceted approach to AD treatment.

Overall, these treatments are designed to improve mitochondrial robustness in order
to minimize oxidative stress while maintaining ATP production (Table 1). Although new
therapies have long development times, targeting therapeutics aimed at mitochondrial dys-
function has shown promising pre-clinical effectiveness. However, a better understanding
of the various signaling networks formed by mitochondria within neurons can pave the
way for the development of more disease-modifying therapies.

https://classic.clinicaltrials.gov/ct2/show/NCT06027554
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Table 1. Therapies for AD targeting mitochondrial function.

Treatment Effect on mitochondria and neuron References

MitoQ
Prevention of ↑ ROS production, ↓ Aβ

accumulation, ↓ astrogliosis, minimize
synaptic loss

[184–186]

SkQ1
↓ Aβ accumulation and tau

hyperphosphorylation in hippocampus in rat
AD model

[188]

Mito-apocynin NADPH oxidase inhibitor that acts as an
anti-inflammatory and antioxidant. [189,190]

Astaxanthin
Carotenoid and dietary supplement with
neuroprotective and antioxidant effects.

Maintains mitochondrial membrane potential.
[191–193]

Mdivi1

↓ in the fission proteins Drp1 and Fis1, ↑ in the
fusion proteins Mfn1 and Mfn2, ↓ excessive
fragmentation of mitochondria, inhibition of

Aβ-DRP1 complex formation

[197–201]

Nicotinamide compounds:
nicotinamide mononucleoside,
nicotinamide mononucleotide,

nicotinamide riboside

↓ DNA damage, ↓ neuroinflammation, and
↓apoptosis of hippocampal neurons [209]

Abbreviations: Aβ—amyloid β; DRP1—dynamin-1-related protein 1; Mdivi1—mitochondria division inhibitor 1;
Mfn—mitofusin; MitoQ—mitoquinone mesylate; NADPH—nicotinamide adenine dinucleotide phosphate;
ROS—reactive oxygen species; SkQ1—plastoquinonyl decyl triphenylphosphonium; ↑—increased; ↓—decreased.

9. Limitations of the Hypothesis That AD Is Driven by Mitochondrial Dysfunction

There are many arguments to support the involvement of mitochondria in clinical
human AD. However, because of the protean manifestations of AD, the question arises as
to what proportion of the association between mitochondrial failure and AD is secondary
to other processes that produce alterations in both mitochondria and cognitive function.
In order to have a well-rounded picture, it is also important to understand some of the
potential problems associated with the hypothesis that mitochondrial pathology may be
the cause of AD. This provides the nidus for ideas to spur future research.

Traditional mitochondrial disorders caused by mutations in mitochondrial DNA,
such as mitochondrial encephalopathy, myopathy, lactic acidosis, and stroke-like episodes
(MELAS) and myclonus epilepsy with ragged-red fibers (MERRF), among others, may
be associated with cognitive problems but may also confer symptoms such as myopathy,
epilepsy, myoclonus, and lactic acidosis [210]. Leber’s hereditary optic neuropathy (LHON)
is generally restricted to the eye with progressive bilateral loss of vision [211]. Although
epilepsy, myoclonus, and retinal problems may be seen in AD, they are far less frequent
or dramatic than with diseases such as MERFF or MELAS [212–214]. Cranial neuropathy,
myopathy, and lactic acidosis are not common in AD.

Traditional mitochondrial disorders may be associated with white matter abnormali-
ties and cerebellar atrophy on MRI [215]. Although cerebellar atrophy and white matter
abnormalities may be observed in AD as well, they are not as prominent as cortical atro-
phy [216,217].

Some have claimed that both Aβ accumulation and mitochondrial failure are critical
to the development of AD and may act synergistically [218,219]. The problem with this
theory is that most of the Aβ deposition is extracellular, although some argue for the role of
intraneuronal Aβ [220]. It is possible that Aβ oligomers may be at increased concentration
near the mitochondria, but it would have to be demonstrated that this occurs early in
the disease. It is also possible that some of the studies showing reduced mitochondrial
biochemical output could be spurious and might be secondary to atrophy and loss of
neurons rather than primary. The basic conundrum is that mitochondria are critical for
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respiration throughout the body, while AD is a disease of the cerebrum. If the primary
pathologic mechanism of AD is mitochondrial, why are problems in other organs and
systems not prominent?

10. Conclusions

Mitochondrial dysfunction plays a critical role in multiple aspects of the development
of AD (Figure 2). Failure of mitochondria leads to insufficient energy supply and oxidative
stress, which further erodes mitochondrial integrity and damages the neuron, particularly
the axon. Restoring and maintaining mitochondrial health is increasingly the focus of inves-
tigation as a therapeutic strategy in AD, particularly in light of the inability of anti-amyloid
and anti-tau treatments to halt AD progression. An intensive study is required to gain a
better understanding of the underlying mechanisms. Indeed, recent research in the field
has demonstrated the involvement of impaired mitochondrial dynamics, biogenesis, and
mitophagy in AD, which offers multiple sites and pathways to target novel interventions
directed at sustaining the integrity of mitochondria. In vitro and in vivo studies on genetic
models of AD demonstrate a role of APP or Aβ in impairment of mitochondria, opening
up the possibility of multi-targeted treatments aimed at both optimizing bioenergetics and
reducing amyloidogenesis.
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