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Abstract: Background: The ultrasound scan represents the first tool that obstetricians use in fetal
evaluation, but sometimes, it can be limited by mobility or fetal position, excessive thickness of
the maternal abdominal wall, or the presence of post-surgical scars on the maternal abdominal
wall. Artificial intelligence (AI) has already been effectively used to measure biometric parameters,
automatically recognize standard planes of fetal ultrasound evaluation, and for disease diagnosis,
which helps conventional imaging methods. The usage of information, ultrasound scan images,
and a machine learning program create an algorithm capable of assisting healthcare providers by
reducing the workload, reducing the duration of the examination, and increasing the correct diagnosis
capability. The recent remarkable expansion in the use of electronic medical records and diagnostic
imaging coincides with the enormous success of machine learning algorithms in image identification
tasks. Objectives: We aim to review the most relevant studies based on deep learning in ultrasound
anomaly scan evaluation of the most complex fetal systems (heart and brain), which enclose the most
frequent anomalies.

Keywords: deep learning; artificial intelligence; pregnancy; ultrasound; anomaly scan; fetal heart;
fetal brain

1. Introduction

Congenital fetal anomalies, which cause a high infant mortality rate worldwide, are
identified as fetal structural abnormalities at standard morphology ultrasound scans, which
involve standard planes of visible organs or body parts [1]. A fetal structural anomaly can
be identified on the ultrasound in about 3% of pregnancies, which can range from a minor
defect to severe multisystem anomalies [2]. Congenital heart disorders (CHDs) are increas-
ingly diagnosed during pregnancy in developed countries. Prenatal diagnosis of CHDs is
helpful in cases with severe abnormalities, such as hypoplastic left heart syndrome, transpo-
sition of the great arteries, and total anomalous pulmonary venous. Knowing the diagnosis
during pregnancy improves treatment outcomes, quickening postpartum intervention and
preserving the long-term neurodevelopment of the newborn [3]. The frequency of fetal
central nervous system (CNS) abnormalities is second to cardiac malformations. A precise
prenatal diagnosis with ultrasound is crucial for the right postpartum therapy for fetal CNS
disorders, which significantly cause in utero mortality and postnatal morbidity [4].
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Early fetal ultrasound is now a well-recognized technique for detecting fetal abnor-
malities and monitoring the evolution or development of intrauterine congenital dis-
eases [5]. However, the Eurofetus study [6] that involved 61 obstetrical ultrasound units
from 14 European countries showed that only 55% of significant anomalies were identified
before 24 weeks of gestation.

The fundamentals of artificial intelligence (AI) as a discipline were established in the
1950s, under the hypothesis formulated by John McCarthy as “Every aspect of learning or
any other feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it” [7]. Deep learning (DL) is a part of a more prominent family
of machine learning techniques built on artificial neural networks (ANNs). The levels
of supervision can vary from unsupervised, semi-supervised, and supervised, all being
possible [8].

Although medical errors are the third most significant cause of death in the United
States [9], AI can reduce this number by improving interpretation accuracy and reducing
workload, which can cause critical details to be overlooked. The information processing
and distributed communication nodes in biological systems inspired ANNs [10,11]. ANNs
and biological structures like the fetal brain differ in many ways. Mainly, ANNs frequently
exhibit static and symbolic behavior, whereas fetal organs exhibit dynamic (plastic) and
analog behavior.

Rapid advancements in DL algorithms have made them a powerful tool for examining
medical images. Numerous types of deep neural networks effectively handle medical
picture segmentation [12]. AI in medical science involves classification, localization, detec-
tion, segmentation, and registration of medical images. Convolutional neural networks
(CNNs) represent one of the main three types of deep learning algorithms, with remarkable
progress in image recognition [13].

AI-assisted obstetric ultrasound may automatically identify particular fetal structures
based on the gestational age of the pregnancy [14]. Also, AI-based automatic measures and
evaluations have been implemented in the last decades to decrease intra- and inter-observer
measurement variability and to increase diagnosis accuracy [15]. Moreover, AI progress
in recent years enabled the development of AI-based techniques to detect fetal anomalies.
We need to remember that AI is based on mathematical algorithms, and the accuracy of
the information provided depends not only on the algorithm but also on the quality and
quantity of the data [16].

Our review aims to highlight the performance of AI detection of normal and abnormal
aspects of the most prevalent congenital malformations concerning fetal cardiovascular
and central nervous systems.

2. Method

We conducted a search on PubMed, Elsevier, and Scopus using the keywords “deep
learning”, “pregnancy”, “Artificial intelligence”, “anomaly scan”, “fetal heart”, “fetal
brain”, and “ultrasound”, yielding 265 results from 2015 to 2023. Eligible studies for
inclusion had to be in English and focus on discussing the utilization of artificial intelligence
in ultrasound and fetal scanning. Two evaluators independently reviewed each study based
on the title, abstract, and full text. Studies meeting the selection criteria were included. Each
included study underwent assessment and was categorized as 0 = not relevant, 1 = possibly
relevant, and 2 = very relevant. Only publications scoring at least 1 point were incorporated
into our study. Any discrepancies were deliberated and resolved by a third researcher.
Specific exclusion criteria were applied to identify the most pertinent studies. These criteria
included excluding studies conducted in languages other than English, those not utilizing
artificial intelligence, articles lacking fully available texts, and studies examining systems
unrelated to the heart and brain or other medical fields outside of obstetrics and gynecology.
After applying the exclusion criteria, we identified 20 relevant articles specifically about
the fetal heart and brain along the skull, as shown in Figure 1.
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Figure 1. Flow diagram of the method for study selection.

Out of the 20 selected articles, 6 addressed the central nervous system, 7 studied the
heart, 3 examined the fetal heart rhythm, 2 focused on fetal biometry, and 2 studied nuchal
translucency. The working methods are illustrated in Figure 2.

In Figure 2, CNN—convolutional neural network; DL—deep learning; SONO—supervised
object detection with normal data Only, AUC—area under the receiver operating character-
istic curve; CAD—computer-aided detection; U-NET—network’s U-shaped architecture;
VGG-Net—visual geometry group network; PAICS—prenatal ultrasound diagnosis ar-
tificial intelligence conduct system; SFTA—segmentation-based fractal texture analysis;
MLA-ANFIS—multi-layer architecture of a sub-adaptive neuro-fuzzy inference system;
for SVM—support vector machine; MLP—multilayer perceptron; FUVAI—spatio-temporal
fetal US video analysis; MFP-Unet—multi-feature pyramid Unet network; MAPSE—mitral
valve annular planes systolic excursion; TAPSE—tricuspid valve annular planes systolic ex-
cursion; DSC—Dice similarity coefficient; VS—volume similarity; HD95—Hausdorff95 dis-
tance; HD—head circumference; BPD—biparietal diameter; AC—abdomen circumference;
FL—femur length; HD—Hausdorff coefficient; APD—average perpendicular distance.
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3. Results
3.1. Heart

The fetal heart is a complex organ to analyze and follow because of its nature, contin-
uous movement, and small size. As stated before, congenital heart diseases are the most
common [17] fetal malformations. During the first or second trimester scan, sonographers
perform an ultrasound anomaly scan as a tool for prenatal diagnosis regarding fetal malfor-
mations. Still, the reported detection rates for congenital heart disease remain low [18] Due
to these challenges, a novel concept that seeks to integrate AI into ultrasound (US) fetal
evaluations to improve the detection rates and overall fetal heart evaluation accuracy has
emerged, as shown in Figure 3.

Pregnant women are advised to undergo fetal screening in the second trimester of
pregnancy. The fetal heart scan involves examining five standard recommended planes
during the cardiac sweep, which enables physicians to diagnose up to 90% of complex
congenital heart defects [19].

In a study conducted by Arnaout et al., echocardiographic and second-trimester
screening images of fetuses with gestational age between 18 and 24 weeks were analyzed
with the help of a variety of neuronal networks, and the authors found that it was possible
to distinguish between normal heart development and the presence of inborn cardiac
anomalies. The obtained results indicate predictive performances similar to those made by
clinical experts, namely, a sensitivity of 95% (95% confidence interval, 84–99%), specificity
of 96% (95% confidence interval, 95–97%), and a predictive negative value of 100% [20].
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To identify the five screening cardiac plans from fetal ultrasound scans, including
three-vessel trachea (3VT), three-vessel view (3VV), left-ventricular outflow tract (LVOT),
axial four-chamber (A4C), and abdomen (ABDO) [21], Arnaout et al. [20] used CNNs to
categorize the images. Their results showed that the model’s sensitivity is comparable
to the physician’s and succeeds at external datasets and lower-quality images. All the
images that did not fit the criteria were categorized as non-target images (for example,
head, foot, placenta).

Philip M et al. [22] demonstrated the efficacy of CNNs in the detection and measure-
ment of mitral and tricuspid valve annular planes systolic excursion (MAPSE/TAPSE) for
the evaluation of cardiac function with the usage of two separate networks based on the
same method, one for mitral valve segmentation and the other for tricuspid valve segmen-
tation. Bland–Altman diagrams were used to analyze differences between measurements
made by two experts and the automated method. The TAPSE automatic measurement ob-
tained a correlation coefficient of r = 0.61, while the expert coefficient was r = 0.89. The root
mean squared error (RMSE) between the automated and reference measurement systems
was 0.14. The R-value for the automated MAPSE measurement was 0.30, for the expert
measurement was 0.77, and for the RMSE was 0.18. It was observed that the correlation
coefficient, both for the expert and the proposed method for MAPSE, was lower than that
of TAPSE. This was due to the rotation movement of MA, which is caused by the circular
orientation of the muscle fibers in the left ventricle, which makes MAPSE measurement
more challenging than TAPSE measurement [22].

Matsuoka et al. [23] used 2378 movie frames from 51 fetal cardiac screening scans
with normal anatomy at 18–20 weeks as the training dataset and 701 movie frames from
28 routine fetal cardiac screening scans as test data. The authors aimed to develop AI
to identify the normal position of the heart and aspect of the cardiovascular structures
as follows: crux, ventricular septum, right atrium, tricuspid valve, right ventricle, left
atrium, mitral valve, left ventricle, pulmonary artery, ascending aorta, superior vena cava,
descending aorta, stomach spine, umbilical vein, inferior vena cava, pulmonary vein,
ductus arteriosus. The accuracy with which AI managed to identify the heart structures
was 97.1% for the crux, 69.3% for the ventricular septum, 96.6% for the left ventricle, 90.6%
for the left atrium, 84.8% for the right ventricle, 96.9% for right atrium, 61.9% for the
ascending aorta; and 100% for the pulmonary artery, stomach, and spine [23].
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Komatsu R et al. [24] used 42 movie frames of a normal heart as a training database
from second-trimester scans and identified 18 different plans of the heart and peripheral
organs, such as the atrium, ventricle, blood vessels, and stomach. Movie frames with
pathologies were introduced in the study, such as Tetralogy of Fallot (TOF) and trans-
position of great arteries (TGA). The pulmonary artery was not clearly demonstrated in
the case of TOF, and the outflow tract and blood vessel detection patterns in TGA were
inconsistent compared with a normal fetus. The program failed to highlight the pathology
but successfully highlighted the aspects different from normal anatomy, according to the
receiver operating characteristic (ROC) curves [24].

In a similar study, Komatsu M et al. [25] proposed a novel architecture of supervised
object detection with normal data only (SONO) to detect fetal heart structures and cardiac
abnormalities. The correct position of 18 fetal structures was annotated. For this program,
191 videos were used for training, 22 for validation, and 34 for testing. SONO achieved
a mean value average precision (mAP) of 0.70 in the testing phase. According to each
structure’s average precision (AP), the crux, ventricular septum, ventricles, atria, outflow
tract, pulmonary artery, and ascending aorta were well detected. The tricuspid valve,
mitral valve, inferior vena cava, pulmonary vein, and ductus arteriosus identification
performed poorly in correct detection. To evaluate the detection of abnormal cardiac
structures, 104 sets of 20 sequential cross-sectional video frames around a 4CV and a 3VTV
obtained from 40 normal and 14 CHD cases were used. In normal cases, the diagnostic
components were well-detected and localized, whereas in CHD cases, the detection of
fetal structures was very poor. The ROC analyses were used to assess the performance of
detecting cardiac structural anomalies in the heart and vessels. The area under the ROC
curves (AUC) produced with SONO was 0.787 in the heart and 0.891 in vessels. Therefore,
SONO demonstrated the abnormalities more accurately in vessels than in heart chambers.

Nurmaini et al. [26] investigated the use of deep learning-based computer-aided
fetal echocardiography for heart standard view segmentation in detecting congenital
heart defects. Their study aimed to develop an automated system that can assist medical
professionals in detecting congenital heart defects early on. For this purpose, they used
1149 fetal heart images and included three cases of congenital heart defects. The program
managed to detect congenital heart defect cases with a precision of 98.30%.

Ungureanu A et al. [18] published a study protocol to develop an automated intelligent
decision support system for early fetal echocardiography using deep learning architectures.
The authors used ultrasound images from the first-trimester morphology scan using two-
dimensional heart loop videos showing a four-chamber view, left and right ventricular
outflow tracts, and a three-vessel view. The sample videos were divided into training
(60%), validation (20%), and test sets (20%). The primary outcome of their study was an
Intelligent Decision Support System (IS) that can assist early-stage sonographers in training
for the accurate detection of the four first-trimester cardiac key planes. Another important
outcome was an increase in satisfactory heart key-plane evaluations by inexperienced and
newly trained sonographers in first-trimester scans. It also resulted in a reduced rate of
diagnosis discrepancies between evaluators with different experiences. The study offers
the first standardized AI method for fetal echocardiography weeps in the first trimester of
fetal heart anomaly detection.

In contrast to previous studies that used AI in the second trimester of pregnancy,
Stoean et al. [27] used CNNs in the first trimester of pregnancy and were able to identify four
key planes for fetal heart assessment in the first trimester of pregnancy (the aorta, the arches,
the atrioventricular flows, and the crossing of the great vessels) with 95% accuracy.

3.2. Brain and Skull

Central nervous system abnormalities are some of the most common congenital fetal
malformations, with an incidence rate of 1% [28]. Examining the fetal cranium in stan-
dard reference plans, i.e., transventricular, transcerebellar, and transtalamic, represents an
essential part of the second-trimester anomaly scan [29,30] Figure 4.
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The progress of AI-assisted ultrasound diagnosis enabled a 92.93% accuracy in detect-
ing fetal morphology standard planes; therefore, AI was expected to become an alternative
screening method for central nervous system fetal malformations [31].

Huang et al. [32] investigated the use of deep learning algorithms for segmenting brain
structures imagined with fetal MRI. Their study provides an accurate and efficient method
for brain tissue segmentation in fetal MRIs, which is essential for quantifying the presence
of congenital disorders. Manual segmentation of fetal brain tissue is cumbersome and time-
consuming, so automatic segmentation can significantly simplify the process. The group
analyzed 80 fetal brain MRI scans at gestational ages from 20 to 35 weeks. A 6:1:1 ratio was
used to divide the dataset into training, validation, and test sets. Dice accuracy, sensitivity,
and specificity were used to evaluate the method objectively. The results indicated an
average Dice similarity coefficient (DSC) of 83.79%, average volume similarity (VS) of
84.84%, and average Hausdorff95 distance (HD95) of 35.66 mm. The authors compared
their approach with several others and demonstrated the superiority of their method.

Heuvel et al. [33] presented a computer-aided detection (CAD) system for auto-
mated measurement of the fetal head circumference (HC) in 2D ultrasound images for
all trimesters of pregnancy. The CAD system was tested on an independent test set of
335 photos from all trimesters after being trained on 999 images. A skilled sonographer
and a medical researcher personally annotated the test set. The outcomes of 0.98 accuracy
on the validation set and 0.97 on the test set demonstrate that the CAD system performs as
well as a skilled sonographer.

Xie B. et al. [34] utilized the first algorithm for prenatal ultrasonographic diagnosis
of central nervous system malformations. Xie et al. utilized U-Net for the cranium region
segmentation and the VGG-NET network to differentiate the images of the normal and ab-
normal structures. Thus, the group decreased false-negative results in fetal brain anomalies
by 97.5%.

Xie H.N. et al. [35] used DL-based CNNs to classify ultrasound images as normal or
abnormal in standard axial neurosonographic planes. Their study included 15.373 typical
images and 14.047 abnormal images of the fetal brain, identified correctly using the program
in a proportion of 96.9% and 95.9%, respectively. The exact location of the anomaly
was identified correctly in 61.6% of the abnormal ultrasound images, closely in 24.6% of
the cases, and irrelevantly in 13.7%. Even though these algorithms can perform simple
diagnosis, Yaqub et al. [36] assembled a system that identifies septum cavum pellucidum
on the transventricular cerebral plane. Baumgartner et al. [37] assembled a CNN-based



Life 2024, 14, 166 8 of 17

system, which helped them automatically and in real time determine 13 standard fetal plans,
including the transventricular and transcerebellar sections with an accuracy of 96.36% and
100%, respectively.

Lin et al. [38] developed an AI system based on CNN (PAICS—prenatal ultrasound
diagnosis artificial intelligence conduct system) capable of identifying nine different cere-
bral malformations based on standard, real-time ultrasound examination images, with
an average accuracy of 95%. Using the PAICS system reduced the examination time,
and the system’s performances were compared with examinations performed by highly
experienced practicians.

3.3. Fetal Cardiotocography

Cardiotocography (CTG) is crucial for determining fetal status by monitoring the fetal
heart rate (FHR) and uterine contractions. The fetal heart rate (FHR) shows remarkable
patterns for evaluating fetal physiology and common stress situations, and according to a
vast meta-analysis, continuous CTG monitoring is correlated to a 50% decrease in newborn
seizures [39] (Figure 5).
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Z. Cömert and A. F. Kocamaz used segmentation-based fractal texture analysis (SFTA)
to identify normal and hypoxic records. In total, 44 normal and 44 hypoxic fetuses instances
were analyzed, resulting in a 79.65% accuracy, 79.92% specificity, and 80.95% sensitivity to
distinguish normal and hypoxic fetuses [40].

On a CTG dataset, different topologies of the multi-layer architecture of a sub-adaptive
neuro-fuzzy inference system (MLA-ANFIS) were constructed using multiple input fea-
tures, neural networks (NNs), deep stacked sparse auto-encoders (DSSAEs), and deep-
ANFIS models. In a study conducted by Iraji MS, the results obtained with DSSAE were
more accurate than other suggested techniques to predict fetal well-being. The method
showed a sensitivity of 99.716%, a specificity of 97.500%, and an accuracy of 99.503% [41].
AI has been used with contemporary computer systems to interpret CTG to overcome
human limitations, and numerous trials are being conducted in this area.

CNNs are often used in medicine to create screening systems that automatically aid
physicians because of the apparent advantages. Li et al. [42] collected 4473 FHR records and
categorized them into three classes: normal, suspicious, and abnormal, based on the elec-
tronic fetal monitoring (EFM) system. To improve classification accuracy, the researchers
divided the high-resolution 1-dimensional FHR records into ten d-window segments and
used CNNs to process the data in parallel. Their study also conducted a comparative
experiment. This experiment extracted features from the FHR data using basic statistics.
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These features were then used as inputs for support vector machine (SVM) and multilayer
perceptron (MLP) classifiers. The accuracy of classification was reported for SVM (79.66%),
MLP (85.98%), and CNN (93.24%). These percentages represent each classification method’s
accuracy rates, with CNN showing the highest accuracy [42].

3.4. Fetal Biometry

Accurate fetal biometric measurements of head circumference (HC), biparietal di-
ameter (BPD), abdomen circumference (AC), and femur length (FL) are used to estimate
gestational age (GA) and fetal weight (EFW), which are essential for proper delivery
management [43] (Figure 6).
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Szymon Płotka et al. [44] used a novel multi-task CNN-based spatiotemporal fetal
US feature extraction and standard plane detection algorithm (FUVAI). They used video
recordings from 700 pregnancies and compared the FUVAI fetal biometric measurements
with those of experienced sonographers. Clinical studies have revealed that errors are
less than 15%, which is acceptable in clinical practice [45]. In the same study, the authors
found intraclass correlation coefficients (ICCs) between FUVAI and junior readers of 0.982,
0.989, 0.985, and 0.981 for HC, BPD, AC, and FL, respectively, and ICCs between FUVAI
and seniors of 0.987, 0.991, 0.987, and 0.986 for HC, BPD, AC, and FL, respectively. Those
results show us that FUVAI results are better correlated with senior examinators. For the
second and third trimesters of pregnancy, the corresponding values were 0.982, 0.994, 0.980,
and 0.981, and 0.982, 0.995, 0.982, and 0.983, for HC, BPD, AC, and FL, respectively, with no
notable differences between the second and third trimester of pregnancy [44].

In a study by Oghli MG et al. [46], CNNs were utilized for automatic measurement
and segmentation of fetal biometric parameters, including biparietal diameter (BPD), head
circumference (HC), abdominal circumference (AC), and femur length (FL) using a multi-
feature pyramid Unet (MFP-Unet) network. They trained this algorithm on 1334 subjects
and achieved 0.98, 1.14, 100%, 0.95, and 0.2 mm for the Dice similarity coefficient (DSC),
Hausdorff (HD), satisfactory contours, conformity, and average perpendicular distance
(APD), respectively.

3.5. Nuchal Translucency

AI can assist sonographers in automatically identifying the neck region in ultrasound
images and measuring the nuchal translucency (NT). Zhang L et al. [47] used CNNs to
screen the trisomy 21 by measuring the NT. They enrolled 822 cases in their study, including
550 participants in the training set and 272 participants in the validation set, with a similar
mean age. The DL model showed good performance in both sets for trisomy 21 screening
with a 95% confidence interval of 0.92–0.95.

Sciortino G et al. [48] proposed a methodology based on wavelet and multi-resolution
analysis. They obtained a positive rate of 99.95% concerning nuchal region detection,
and about 64% of scans presented an error of 0.1 mm Figure 4.

Table 1 gives an overview and summary of the results obtained from the research
we reviewed and contrasts the analysis performed using AI with that performed by
conventional sonographers.
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Table 1. Results summary.

Authors Method Objective Pregnancy Trimesters Results

Arnaout et al. [20] CNN Heart Second

Sensitivity to distinguish normal heart
development—95%

Specificity to distinguish normal heart
development—96%

Philip, M. et al. [22] CNN Heart Second MAPSE correlation coefficient = 0.30
TAPSE correlation coefficient = 0.61

Matsuoka et al. [23] CNN Heart Second

The accuracy with which AI managed to
identify the heart:

Crux—97.1%;
Ventricular septum—69.3%;

Left ventricle—96.6%;
Left atrium—90.6%;

Right ventricle—84.8%;
Ascending aorta—61.9%;
Pulmonary artery—100%;

Stomach—100%;
Spine—100%.

Komatsu R et al. [24] CNN Heart Second Managed to highlight an aspect different
from normal

Komatsu M et al. [25] SONO Heart Second

Median average precision for identifying
the cardiac structures—70%

AUC heart—78.7%
AUC vessels—89.1%

Nurmaini et al. [26] CAD Heart Second Precision—98.30%

Stoean et al. [27] CNN Heart First Accuracy—95%

Huang et al. [32] DL Brain Second
Third

DSC—83.79%
VS—84.84%

Hd95—35.66%

Heuvel et al. [33] CAD Brain All trimesters Accuracy: 97%

Xie B. et al. [34] U-Net
VGG-NET Brain False-negative incidence decreased by

97.5%

Xie H.N. et al. [35] CNN Brain Second
Third

Localization of the anomaly
Correctly—61.6%
Closely—24.6%

Irrelevant—13.7%

Baumgartner et al. [37] CNN Brain Second
Accuracy of identifying:

Transventricular plane—96.36%.
Trancerebellar plane—100%.

Lin et al. [38] PAICS Brain Second
Third

Accuracy for identifying different
cerebral malformations—95%

Z. Cömert and
A. F. Kocamaz [40] SFTA Fetal heart rate Third

Accuracy—79.65%
Specificity—79.92%
Sensitivity—80.95%

Iraji MS [41] MLA-ANFIS Fetal heart rate Third
Accuracy—99,503%
Specificity—97.500%
Sensitivity—99.716%

Li et al. [42] CNN
SVM MLP Fetal heart rate Third

Accuracy of the three methods:
93.24%;
79.66%;
85.98%.

Szymon Płotka et al. [44] FUVAI Fetal biometry Second
Third

Intraclass correlation coefficient:
HC—0.982.
BPD—0.995.
AC—0.982.
FL—0.983.
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Table 1. Cont.

Authors Method Objective Pregnancy Trimesters Results

Oghli, M. G. et al. [46] MFP-Unet Fetal biometry Second

DSC—0.98
HD—1.14

Good contours—100%
Conformity—0.95

APD—0.2

Zhang L et al. [47] CNN NT First Confidence interval—95% (0.92–0.95)

Sciortino G [48] Multi resolution
analysis NT First Positive rate of detection: 99.95%

3.6. Results Summary Table 1

In Table 1, CNN—convolutional neural network; DL—deep learning; SONO—supervised
object detection with normal data Only, AUC—area under the receiver operating character-
istic curve; CAD—computer-aided detection; U-NET—network’s U-shaped architecture;
VGG-Net—visual geometry group network; PAICS—prenatal ultrasound diagnosis ar-
tificial intelligence conduct system; SFTA—segmentation-based fractal texture analysis;
MLA-ANFIS—the multi-layer architecture of a sub-adaptive neuro-fuzzy inference system;
SVM—support vector machine; MLP—multilayer perceptron; FUVAI—spatio-temporal
fetal US video analysis; MFP-Unet—multi-feature pyramid Unet network; MAPSE—mitral
valve annular planes systolic excursion; TAPSE—tricuspid valve annular planes systolic ex-
cursion; DSC—Dice similarity coefficient; VS—volume similarity; HD95—Hausdorff95 dis-
tance; HD—head circumference; BPD—biparietal diameter; AC—abdomen circumference;
FL—femur length; HD—Hausdorff coefficient; APD—average perpendicular distance.

3.7. Results of Syntheses

The predictive values of the AI methods used in the included studies were divided
into groups according to the system analyzed and evaluated. The results are summarized
in Tables 2–6.

Table 2. Cord studies—synthesized records.

Arnaout
et al. [20] Boston 107,823 images

Gestational age
between 18 and

24 weeks
CNN

Sensitivity of 95%
Specificity of 96%

Predictive negative
value of 100%

Philip M
et al. [22] New South Wales 95 participants

Mean gestational age
of 30.7

Gestational age
between 22.9 and 38.0

CNN

RMSE for
TAPSE—0.14

RMSE for
MAPSE—0.18

Matsuoka
et al. [23] Japan

2378 movie frames from
51 fetal cardiac screening

scans used as the
training dataset

701 movie frames from fetal
cardiac screening used as

test data

Gestational age
between 18 and 20 CNN

The accuracy with
which AI managed to
identify the heart was

between 61.9
and 100%

Komatsu R
et al. [24] Japan 42 movie frames for database Second trimester CNN

Managed to highlight
an aspect different

from normal

Komatsu M
et al. [25] Japan

191 videos of normal cord
used for training

22 videos used for validation
34 videos used for testing

Second trimester SONO
Mean value average

precision (mAP)
of 0.70



Life 2024, 14, 166 12 of 17

Table 2. Cont.

Komatsu M
et al. [25] Japan 104 sets of 20 sequential

cross-sectional video-frames Second trimester SONO
AUC for heart—0.787

AUC for
vessels—0.891

Nurmaini
et al. [26] Indonesia 1149 fetal heart images Second trimester CAD Precision: 98.3%

Stoean
et al. [27] Romania 7251 fetal heart images First trimester CNN Accuracy: 95%

Table 3. Brain studies—synthesized records.

Huang
et al. [32] China 80 fetal brain scans 20–35 gestational age DL

Dice coefficient—83.79%
VS—84.84%

Hd95—35.66%

Heuvel
et al. [33] Netherlands 999 images for the training set

335 images for test data All trimesters CAD

Accuracy on the
validation set—0.98
Accuracy on the test

set—0.97

Xie B. et al. [34] China 13.350 images 18–32 gestational
weeks

U-net
VGG-Net

False-negative incidence
decreased by

97.5%

Xie HN
et al. [35] China 13.373 normal pregnancies

14.047 abnormal pregnancies Second trimesters CNN

Located lesions:
Precisely in 61.6%;
Closely in 24.6%;

Irrelevantly in 13.7%.

Baumgartner
et al. [37] UK 2694 ultrasound examinations 18–22 gestational

weeks CNN
Accuracy to identify the

correct plans between
96.36% and 100%

Lin et al. [38] China 43.890 ultrasound images
169 ultrasound videos

18–40 gestational
weeks PAICS Accuracy to identify the

correct plans—95%

Table 4. Fetal heart rhythm studies—synthesized records.

Z. Cömert and
A. F. Kocamaz [40] Turkey 44 normal fetuses

44 hypoxic fetuses Third trimester SFTA

Distinguished normal and
hypoxic fetuses with:
Accuracy—79.65%;
Specificity—79.92%;
Sensitivity—80.95%.

Iraji MS [41] Iran Third trimester
MLA-ANFIS

DSSAEs
Deep-ANFIS

Predicted fetal well-being with:
Specificity—97.500%;
Accuracy—99.503%;

Sensitivity—99.716%.

Li et al. [42] China 4473 FHR records Third trimester
SVM
MLP
CNN

Accuracy for classification in
three classes: normal,

suspicious, and abnormal
SVM—79.66%
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Table 5. Fetal biometry studies—synthesized records.

Szymon Płotka
et al. [44] Poland 700 pregnancies Second and

third trimester FUVAI

Intraclass correlation
coefficient:
HC—0.982;
BPD—0.995;
AC—0.982;
FL—0.983.

Oghli, M. G.
et al. [46] Iran 1334 subject Second MFP-Unet

DSC—0.98
HD—1.14

Good contours—100%
Conformity—0.95

APD—0.2

Table 6. Nuchal translucency studies—synthesized records.

Zhang L et al. [47] China 822 cases 11–14 gestational
weeks CNN

Confidence
interval—95%

(0.92–0.95)

Sciortino G [48] Italy 382 cases FIRST Multi resolution
analysis

Positive rate of
detection—99.95%

4. Discussion

This review encompasses several articles focusing on using AI in fetal ultrasound
assessment. The objective of developing these neural networks is to enhance the process
of ultrasound assessment by automating the identification of fetal structures, thereby
maximizing the accuracy of the technique and minimizing examination time.

Numerous programs were outlined in the reviewed studies, all of which success-
fully attained their objectives by achieving accuracy rates exceeding 90% in identifying
fetal brain and heart structures or their biometric measurements [27]. These findings
have exhibited promising outcomes in enhancing the precision and automation of fetal
parameter estimations.

Congenital heart diseases are the most common fetal malformations [4]. The incor-
poration of AI into ultrasound assessments is directed at enhancing both detection rates
and precision. Research studies have showcased the efficacy of AI applications applicable
across any gestational age, demonstrating the capability to identify fetal structures as early
as the first trimester of pregnancy [14,18]. These studies delineated four established fetal
heart assessment key plans and expanded to identify up to nine fetal heart structures in
the second trimester [23]. Additionally, a protocol for developing an automated intelli-
gent decision support system for early fetal echocardiography using DL architectures was
developed and successfully implemented. The goal is to aid sonographers in identifying
correctly the key cardiac planes during the first trimester.

The development of specialized systems, such as those determining various fetal plans,
emphasizes the versatility of AI in fetal ultrasound examinations. The potential of AI to
enhance prenatal care by providing more accurate and efficient methods for identifying and
diagnosing fetal anomalies is evident. These advancements underline the transformative
impact of AI on the field, offering a promising avenue for future improvements in fetal
healthcare [37].

Central nervous system abnormalities are the second most common congenital fetal
malformations, with an incidence rate of 1% [28]. AI-assisted ultrasound diagnosis has
achieved high accuracy rates of up to 100% in detecting fetal brain standard planes, making
it a potential alternative screening method for central nervous system fetal malformations.
Notably, specialized software was developed, exhibiting the ability to accurately identify
up to 13 fetal brain planes, such as the transventricular plane and the transcerebellar plane,
with a remarkable 96.36% and 100% accuracy rate, respectively [37].
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Beyond identifying standard fetal planes, AI demonstrated proficiency in distin-
guishing between typical and abnormal images, effectively pinpointing the location of
abnormalities within the fetal brain. AI was able to precisely identify different types of
brain abnormalities in real time during ultrasound tests using the PAICS system (95%
accuracy) (ventriculomegaly, non-visualization of Cavum septum pellucidum, septum
pellucidum, crescent-shaped single ventricle, non-intraventricular cyst, intraventricular
cyst, open four ventricles, and mega cisterna magna) [37].

Certain programs have utilized cases involving congenital brain anomalies (neural
tube defect, holoprosencephaly, lissencephaly, microcephalus, posterior fossa anomaly,
spare occupying lesion, intracranial hemorrhage, or ventriculomegaly) as part of the
training data, leading to the capability to detect fetal anomalies at an impressive rate
of over 96%. Moreover, AI has successfully located an anomaly with an accuracy rate of
61.6% in the cases, closely in 24.6%, and irrelevantly in 13.7% [35].

This approach underlines the efficiency of using AI-based programs as valuable
tools for less experienced medical professionals that can significantly support improving
diagnostic competence [18].

The use of AI can support sonographers in automatically identifying the neck region in
ultrasound images and measuring the nuchal translucency in cases with Down Syndrome.
The deep learning model performed well in training and validation sets, achieving a 95%
confidence interval by measuring NT [47]. Also, good outcomes were obtained in studies
that utilized normal cases for identifying nuchal translucency (99.95% detection of the
nuchal region) [48].

Our comprehensive review encompasses diverse AI-based evaluation methodologies,
recent studies, their associated advantages and disadvantages, potential obstacles, and the
anticipated applications of AI in obstetrics. With this thorough investigation, it becomes
evident that AI holds significant promise in prenatal diagnosis [14]. It has the potential to
surmount diagnostic challenges, enhance treatment options, and ultimately contribute to
improved patient outcomes in fetal medicine.

5. Conclusions

AI has seamlessly integrated into various facets of our daily lives and emerged as a
pivotal source of innovation in healthcare. It plays a substantial role in supporting clinical
decision-making and providing high-quality assistance. AI solutions prove to be highly ad-
vantageous, particularly in healthcare domains where professionals such as radiographers
and sonographers heavily depend on information derived from images. DL, a subset of
AI, excels in image pattern recognition, making it particularly effective for practitioners
relying on image-based data for diagnosis and decision-making in healthcare settings.

AI-assisted ultrasound diagnosis addresses certain limitations associated with tradi-
tional ultrasound examinations. The substantial progress made in recent years, coupled
with enhanced capabilities in detecting prenatal fetal malformations, positions AI as a
prospective adjunct or alternative screening method for identifying fetal anomalies. This
includes the assessment of complex systems like the brain and heart.

Studies highlight AI’s potential in accurately detecting heart structures. AI, par-
ticularly CNNs, effectively distinguishes normal development from cardiac anomalies,
with studies showing comparable and predictive performances to experts.

AI technologies, such as DL algorithms and CNNs, have demonstrated impressive
accuracy in identifying brain planes and structures and automated fetal head biometry
measurements. Also, comparable performance to the skilled sonographers in anomaly
detection and a reduction in false-negative results in diagnosing fetal brain anomalies
were obtained.

The development of specialized systems, such as those determining various fetal plans,
emphasizes the versatility of AI in fetal ultrasound examinations. The potential of AI to
enhance prenatal care by providing more accurate and efficient methods for identifying
and diagnosing fetal anomalies is evident. These advancements underline the transfor-
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mative impact of AI on the field, offering a promising avenue for future improvements in
fetal healthcare.
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