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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions
worldwide since its outbreak in the winter of 2019. While extensive research has primarily focused on
the deleterious respiratory effects of SARS-CoV-2 in recent years, its pan-tropism has become evident.
Among the vital organs susceptible to SARS-CoV-2 infection is the kidney. Post SARS-CoV-2 infection,
patients have developed coronavirus disease 19 (COVID-19), with reported incidences of COVID-19
patients developing acute kidney injury (AKI). Given COVID-19’s multisystemic manifestation, our
review focuses on the impact of SARS-CoV-2 infection within the renal system with an emphasis on
the current hypotheses regarding the role of extracellular vesicles (EVs) in SARS-CoV-2 pathogenesis.
Emerging studies have shown that SARS-CoV-2 can directly infect the kidney, whereas EVs are
involved in the spreading of SARS-CoV-2 particles to other neighboring cells. Once the viral particles
are within the kidney system, many proinflammatory signaling pathways are shown to be activated,
resulting in AKI. Hence, clinical investigation of urinary proinflammatory components and total
urinary extracellular vesicles (uEVs) with viral particles have been used to assess the severity of
AKI in patients with COVID-19. Remarkedly, new emerging studies have shown the potential of
mesenchymal stem cell-derived EVs (MSC-EVs) and ACE2-containing EVs as a hopeful therapeutic
tool to inhibit SARS-CoV-2 RNA replication and block viral entry, respectively. Overall, understanding
EVs’ physiological role is crucial and hopefully will rejuvenate our therapeutic approach towards
COVID-19 patients with AKI.

Keywords: SARS-CoV-2; acute kidney injury; extracellular vesicles; COVID-19

1. Introduction

The global outbreak of novel pneumonia cases of unknown cause was first seen in
Wuhan, China. Now, the pathogenic viral source of these cases is better known as severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. The family of coronaviruses
has been ever-present, and infection with SARS-CoV-2 marks the third epidemic in the
21st century [2,3]. In fact, the genomic characterization of SARS-CoV-2 demonstrated
an 88% resemblance to the bat-derived severe acute respiratory syndrome (SARS)-like
coronaviruses, a 79% resemblance to the severe acute respiratory syndrome (SARS-CoV),
and a 50% resemblance to the Middle East respiratory syndrome coronavirus (MERS-
CoV) [4]. Despite its high mortality rate, SARS-CoV-2 causes a wide range of clinical
presentations, including but not limited to psychiatric disorders, neurological disorders,
endocrine disorders, respiratory disorders, and kidney disorders [5–15]. It has also been
reported that there is a high risk of developing renal disorders, even in patients with mild
COVID-19 [16,17]. Mechanistically, SARS-CoV-2 has been shown to invade and damage
kidney tissue directly via various proinflammatory factors, inducing acute kidney injury
(AKI) [13,14]. Once the kidney has been infiltrated, the distribution of viral particles
can be propagated by extracellular vesicles (EVs) [18,19]. However, the cause-and-effect
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relationship between SARS-CoV-2, AKI, and EVs remains largely unexplained. This review
manuscript will focus on discussing the pathogenesis of SARS-CoV-2-induced AKI, the
various roles of EVs in SARS-CoV-2-induced AKI, and potential future directions.

1.1. Transmission and Infection of SARS-CoV-2 into Host Cells

SARS-CoV-2 is a positive-sense single-stranded RNA virus transmitted via aerosols
and respiratory droplets that infect the upper respiratory tract via the angiotensin convert-
ing enzyme (ACE2) receptor [20–22]. Successful transmission between those infected and
their surrounding peers has been thought to be correlated with ACE2 receptor binding and
docking [23,24]. SARS-CoV-2 is classified as a beta-coronavirus, and its structure includes
a spike glycoprotein that is 1274 amino acids long, consisting of the S1 and S2 regions,
which mediate cellular attachment [4]. The SARS-CoV-2 receptor binding domain (RBD)
is harbored within the S1 region of the spike glycoprotein, while the S2 domain assists in
membrane fusion [25,26]. Upon binding of the S1 region of the spike glycoprotein to the
ACE2 receptor, the host protease, transmembrane protease serine 2 (TMPRSS2), proteolyti-
cally cleaves the spike glycoprotein into two segments at the S1/2 site and the S2′ site. This
cleavage plays an integral role in priming the SARS-CoV-2 spike protein, facilitating the
fusion and overall entry process of SARS-CoV-2 [26–29]. Although SARS-CoV-2 has been
shown to have a multiorgan tropism, which includes the kidneys, the molecular mechanism
by which SARS-CoV-2 enters the kidneys is complex and poorly understood [30–33]. For
example, despite ACE2 and TMPRSS2 expression in renal tubules, some studies implicate
that SARS-CoV-2 infects kidney cells through neuropilin-1 (NRP-1) binding furin-cleaved
substrates and kidney injury molecule-1 (KIM-1) via immunoglobulin variable Ig-like (Ig
V) domain [34–36]. KIM-1 is a membrane protein present in the proximal tubule of the
kidney, which aids in the internalization of viruses, such as hepatitis A, and is upregulated
following ischemic kidney damage [37,38]. Notably, cells that express KIM-1 in the absence
of ACE2 are susceptible to SARS-CoV-2 infection through endocytosis of nanoparticles
(virosomes) that contain the spike protein (Figure 1A) [35]. However, once the host cell
is infected with SARS-CoV-2, it has been reported that fragile double-membrane vesicles
containing viral replication complex are assembled [39]. Further, these vesicles are released
into the extracellular space (Figure 1B) [40]. Consequently, these studies suggest the po-
tential role of EVs in the viremic phase of SARS-CoV-2, which may promote infection,
transmission, and intercellular spread.

1.2. Extracellular Vesicles and Cell-to-Cell Communication

EVs are membrane-bound particles of intracellular origin that protrude from the cell
membrane and play a part in the pathological and physiological condition of host cells [41].
In addition to their homeostatic role, EVs are released during cellular stress, activation, and
apoptosis [42]. Many forms of EVs released from eukaryotic cells are used for intercellular
communication [42,43]. Within EVs cargo, there is an abundance of biomolecules that have
the ability to target and reprogram the morphology and function of recipient cells [41,44].
Early hypotheses suggest that the function of EVs was to dispose of unwanted intracellular
compounds; however, through the evolution of research on cancer and infectious disease,
it has been documented that EVs aid in the progression of many pathological diseases [45].
Moreover, EVs have since been used to analyze the exchange of biomolecules between
cells [43].

Numerous viruses, including Epstein–Barr virus (EBV) [46], Kaposi’s sarcoma-associated
herpesvirus (KSHV) [47], cytomegalovirus (CMV) [48], and hepatitis C virus (HCV) [49] are
suspected of exploiting EVs to confer their infectivity. More specifically, in HIV-1 infections,
EVs are documented to transfer viruses and viral components from infected macrophages
to neighboring cells; thus, facilitating viral infection [50].
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Figure 1. Proposed mechanism of SARS-CoV-2 entry and release of EVs containing viral cargo in 
kidney. (A). ACE2 expression on podocyte cell surface facilitates SARS-CoV-2 entry into Bowman’s 
capsule. Viral entry results in downregulation of ACE2 expression and renal tissue damage, which 
further stimulates macrophage activation and inflammatory cytokine release leading to a local 
inflammatory response. (B). SARS-CoV-2 endocytosis leads to viral uncoating and release of viral 
RNA, which is translated to viral proteins. Viral components are trafficked to the Golgi apparatus 
and subsequently released via exocytosis of either free virus or packaged into EVs. DAMPs, danger-
associated molecular patterns; ER, endoplasmic reticulum. (Figure created with Biorender.com; 
accessed on 2 January 2024). 
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Sun et al. recently analyzed sputum samples by transmission electron microscopy 
obtained from COVID-19 patients and detected EV-like vesicles in the vicinity of the 
SARS-CoV-2 virion [19]. This study included a simultaneous in vitro investigation of the 
EVs’ cargo isolated from SARS-CoV-2 infected VeroE6 cells, which are kidney epithelial 
cells of an African green monkey. Following SARS-CoV-2 infection, the isolated EVs from 
the VeroE6 cells revealed the presence of the SARS-CoV-2 nucleocapsid (N) and spike (S) 
protein. Moreover, healthy control VeroE6 cells exhibited a death characteristic of virus-
infected cells 48 h after being subjected to EVs isolated from the SARS-CoV-2 infected 
VeroE6 cells, suggesting that the kidney-derived EVs are capable of transmitting 
intercellular viral infection in vitro [19]. Furthermore, in a study by Kongsomros et al., an 
in vitro model using human lung epithelial cells, Calu-3, investigated the composition of 
EVs released from SARS-CoV-2 infected cells. Isolated EVs from SARS-CoV-2 infected 
Calu-3 cells were found to contain the SARS-CoV-2 nucleoprotein, while EVs from the 
control were absent of viral components. These results demonstrate that EVs derived from 
human lung epithelial cells are capable of housing SARS-CoV-2 viral cargo in vitro, 
suggesting a potential EV-facilitated mechanism of SARS-CoV-2 infection [51]. 

Notably, the ACE2 receptor has been found to be expressed in EVs released by 
endothelial cells, providing evidence of ACE2 transfer from cell to cell [52]. In general, 
EVs play a role in facilitating viral infection via their ability to exchange mRNA and 
microRNA (miRNA) between host cells [53,54]. The mobile nature of protein expression, 
including the ACE2 receptor, encapsulated and within the membranes of EVs, further 
suggests that SARS-CoV-2 may utilize EVs to confer intercellular infectivity within the 

Figure 1. Proposed mechanism of SARS-CoV-2 entry and release of EVs containing viral cargo in
kidney. (A). ACE2 expression on podocyte cell surface facilitates SARS-CoV-2 entry into Bowman’s
capsule. Viral entry results in downregulation of ACE2 expression and renal tissue damage, which
further stimulates macrophage activation and inflammatory cytokine release leading to a local
inflammatory response. (B). SARS-CoV-2 endocytosis leads to viral uncoating and release of viral
RNA, which is translated to viral proteins. Viral components are trafficked to the Golgi apparatus
and subsequently released via exocytosis of either free virus or packaged into EVs. DAMPs, danger-
associated molecular patterns; ER, endoplasmic reticulum. (Figure created with Biorender.com;
accessed on 2 January 2024).

1.3. Extracellular Vesicles and Their Role in SARS-CoV-2 Pathogenesis

Currently, the use of EVs as a mechanism of viral spread in SARS-CoV-2 is not fully
understood, but evidence has surfaced suggesting the role of EVs in viral propagation. Sun
et al. recently analyzed sputum samples by transmission electron microscopy obtained
from COVID-19 patients and detected EV-like vesicles in the vicinity of the SARS-CoV-2
virion [19]. This study included a simultaneous in vitro investigation of the EVs’ cargo
isolated from SARS-CoV-2 infected VeroE6 cells, which are kidney epithelial cells of an
African green monkey. Following SARS-CoV-2 infection, the isolated EVs from the VeroE6
cells revealed the presence of the SARS-CoV-2 nucleocapsid (N) and spike (S) protein.
Moreover, healthy control VeroE6 cells exhibited a death characteristic of virus-infected
cells 48 h after being subjected to EVs isolated from the SARS-CoV-2 infected VeroE6
cells, suggesting that the kidney-derived EVs are capable of transmitting intercellular viral
infection in vitro [19]. Furthermore, in a study by Kongsomros et al., an in vitro model
using human lung epithelial cells, Calu-3, investigated the composition of EVs released
from SARS-CoV-2 infected cells. Isolated EVs from SARS-CoV-2 infected Calu-3 cells
were found to contain the SARS-CoV-2 nucleoprotein, while EVs from the control were
absent of viral components. These results demonstrate that EVs derived from human
lung epithelial cells are capable of housing SARS-CoV-2 viral cargo in vitro, suggesting a
potential EV-facilitated mechanism of SARS-CoV-2 infection [51].

Notably, the ACE2 receptor has been found to be expressed in EVs released by en-
dothelial cells, providing evidence of ACE2 transfer from cell to cell [52]. In general, EVs
play a role in facilitating viral infection via their ability to exchange mRNA and microRNA
(miRNA) between host cells [53,54]. The mobile nature of protein expression, including
the ACE2 receptor, encapsulated and within the membranes of EVs, further suggests that
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SARS-CoV-2 may utilize EVs to confer intercellular infectivity within the host. In addi-
tion, the identified SARS-CoV-2 RNA in plasma-derived EV cargo supported the evidence
that SARS-CoV-2 may also make use of the host intercellular communication system to
infect neighboring and distant cells [55]. Although plasma RNA levels of SARS-CoV-2 are
present in the blood, these findings convey a plausible scenario in which host EVs serve
as an additional mechanism to facilitate viral spread from the lungs to cell types with a
tropism for EVs, such as the renal system [56,57]. Consequently, the detection of miRNAs
delivered by EVs can be used to monitor the presence of SARS-CoV-2 infection. A recent
study has shown that ACE2 and dipeptidyl peptidase 4 (DPP4) enzymes were found to
be genomic biomarkers elevated in naso-oropharyngeal swabs of COVID-19 patients [58].
Further, Latini et al. demonstrated that increased levels of ACE2 and DPP4 were associated
with low levels of the miRNA hsa-let7b-5p in naso-oropharyngeal swabs of COVID-19
patients [59]. The inverse relationship between the miRNA hsa-let7b-5p and the presence
of the enzymes ACE2 and DPP4 reveals the utility of monitoring miRNA levels to track
the presence of SARS-CoV-2 infection. Another study has also shown that a decrease
in postsurgical miR-125a-5p levels was present in patients who developed AKI, and the
relative decrease was proportional to the severity of AKI [60]. The documented instances
of miRNAs serving as biomarkers in early disease detection and progression is a significant
finding that calls for further investigation, as it may serve a critical role in detecting and
monitoring SARS-CoV-2 induced AKI.

1.4. Extracellular Vesicles as an Indicator of Kidney Disease and COVID-19 Disease Outcome

Injury to the kidney and declining kidney function have historically been measured
with blood urea nitrogen levels, creatinine levels, and proteinuria. With the lack of evolving
tests, EVs and their contents present an exciting option to measure kidney function, as
sampling urinary EVs can be a non-invasive disease biomarker. For example, sampling of
urine Aquaporin-2 (AQP-2), an integral water channel, has been previously utilized as a
marker for water balance disorders, such as diabetes insipidus [61,62]. Similarly, Pisitkun
et al. demonstrated that EVs obtained from a patient’s urine can be used to detect and
monitor disease states. The isolation of urinary extracellular vesicles (uEVs) followed by the
use of liquid chromatography-tandem mass spectrometry for proteomic analysis revealed
nearly 300 proteins within the uEVs, including multiple protein products associated with
renal and systemic diseases [62]. Another crucial study has revealed the clinical differences
in uEVs and cytokines, further emphasizing the fact that EVs can be used to determine
disease severity [63]. Particularly, in this study the urine samples were collected from
patients with COVID-19 disease during the first days of hospitalization. The analyses of
these urine samples revealed a significantly higher level of EVs present in the urine when
compared to the healthy controls. Additionally, urine samples from the severe to critical
COVID-19 patients demonstrated a higher level of uEVs and immune mediators compared to
the mild to moderate COVID-19 patients. Increased levels of uEVs were found to be signifi-
cantly associated with urinary proinflammatory cytokines such as TNFα, IL-1α, IL-1β, IL-16,
and IL-17A. It has also been reported that uEVs may play a role in facilitating intra-nephron
communication between the glomerular and tubular regions [64,65]. In a rodent-animal model
study, AKI was shown to increase the renal biodistribution of intravenously injected labeled
EVs. In addition, this study demonstrated that the characteristics and functional nature of
miRNAs contained in uEVs are capable of identifying the stage and progression of AKI. For
example, the elevation of certain miRNAs, including miR-16, miR-24, and miR-200c, were
detected in the urine during AKI and associated with altered mRNA expression [66]. These
findings further support the evidence that uEVs may serve as an early detection point to
assess a patient’s clinical course and outcomes.

Another study has analyzed serum samples from 31 patients with mild COVID-19
symptoms at the time of their hospital admission to identify EV biomarkers capable of
serving as a predictive marker for the severity of COVID-19. Of the 31 patients analyzed,
9 developed severe COVID-19 symptoms, and 22 patients progressed with mild COVID-19
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symptoms. It was determined that COPB2 protein, a subunit of the Golgi coat complex
subunit Beta 2 found inside EVs, served as a predictive biomarker for COVID-19 disease
severity. High levels of COPB2 within EVs upon hospital admission were associated with
patients who progressed with mild COVID-19 symptoms in comparison to those with
severe COVID-19 disease outcomes and healthy controls [67].

Furthermore, the circulating EVs in plasma of patients diagnosed with COVID-19 were
analyzed and demonstrated differential expression, suggesting EVs utility in predicting dis-
ease progression and outcome. The proteomic analysis of plasma EVs obtained from COVID-
19 patients demonstrated the presence of molecules that facilitate COVID-19-associated tissue
damage and organ dysfunction, including those involved in the immune response, the in-
flammatory response, the coagulation pathway, and the complement pathway. Between the
cohorts, 157 EV proteins in the critical COVID-19 cohort and 97 EV proteins in the non-critical
cohort were significantly regulated, suggesting the existence of several potential EV-associated
biomarkers that correlate with the COVID-19 disease severity. For example, in critical COVID-
19 patients, the level of EVs enriched proteins (CRP, A1AG1, A1AG2, CXCL7, SAMP, and
ZA2G) demonstrated a positive correlation with disease severity. Differential enrichment of
such proteins suggests the potential to utilize EVs as a diagnostic tool to anticipate disease
progression, outcome, and patient response to therapy [55].

2. Acute Kidney Injury (AKI), EVs, and COVID-19

Despite Kidney Disease Improving Global Outcomes (KDIGO) current efforts to
update the clinical practice guidelines for AKI and acute kidney disease (AKD), AKD
is presently defined as an alteration of kidney structure and/or function for less than a
3-month period. Furthermore, AKI is classified as a subset of AKD, specifically referring to
the emergence of symptoms within 7 days as a result of numerous etiologies, one of which
being COVID-19. AKI is staged for severity based on the criteria of serum creatinine (SCr)
and urine output [68]. The staging criteria for AKI can be found in Table 1. The etiology
of AKI is often categorized as either pre-renal, intrinsic, or post-renal. Pre-renal causes
include any extra-renal disease that may cause hypoperfusion to the renal parenchyma,
such as sepsis, shock, and heart failure. Intrinsic AKI describes true renal disease, whereas
post-renal etiologies of AKI include any obstruction or blockage of urine flow.

Table 1. AKI Staging Criteria Outline of stages 1–3 of AKI, including stage 3 in the specific cohort
of patients under 18 years old. Serum creatinine (sCr), micromole (µmol), liter (L), milliliter (mL),
kilogram (kg), hour (h), deciliter (dL), milligram (mg), minute (min).

Stage Description

Stage 1 sCR 1.5–1.9 times baseline or ≥0.3 mg/dL (≥26.5 µmol/L)
increase and/or urine output < 0.5 mL/kg/h for 6–12 h

Stage 2 sCR 2.0–2.9 times baseline and/or urine output
< 0.5 mL/kg/h for ≥12 h

Stage 3 sCR 3.0 times baseline or increase in sCR to ≥4.0 mg/dL
(≥353.6 µmol/L) or initiation of renal replacement therapy

Stage 3 for patients <18 years old Decrease in eGFR to <35 mL/min per 1.73 m2 and/or urine
output <0.3 mL/kg/h for ≥24 h or anuria for ≥12 h

As SARS-CoV-2 began to spread globally, reports regarding the relationship between
AKI and COVID-19 were noticeable, and incident rates were as low as 0.5% in China [69]
and as high as 80% in critically ill COVID-19 patients in France [70]. As time progressed
and SARS-CoV-2 infection spread to diverse geographic regions around the world, large
cohort studies from Africa [71], China [72], England [73], India [74], Iran [75], Italy [76],
Poland [77], Portugal [78], Spain [79], UK [80–82], and USA [83,84] have reported varying
incidence rates of AKI among patients with COVID-19. The outcomes of these studies are
summarized in Table 2.
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Table 2. Reports of varying incidence rates of AKI among patients with COVID-19 around the world. Estimated glomerular filtration rate (eGFR), end-stage kidney
disease (ESKD), serum creatinine (sCr), chronic kidney disease (CKD), renal replacement therapy (RRT), polymerase chain reaction (PCR).

Author (Year) Country Sample Size Male Sex (%) Mean/Median Age
(Years) AKI (%) Exclusion Criteria of the Cohort

Study
Method of SARS-CoV-2

Diagnostic Test

Hung et al. (2022) [71] Africa 990 92.10% 68 392 (39.6%)
History of ESKD, baseline eGFR <
15 mL/min/1.73 m2, no sCr levels

recorded

PCR testing of nasopharyngeal
specimen

Chen et al. (2021) [72] China 1851 48.00% 62 115 (6.7%) Lack of renal function tests PCR testing of nasal and
pharyngeal specimens

Bell et al. (2021) [73] England 448 54.80% 69.4 118 (26.3%) ESKD, dialysis, kidney transplant,
or no sCr levels recorded Positive COVID-19 swab

Sindhu et al. (2022) [74] India 2650 81.60% 62.6 190 (7.20%) Stage 5 CKD on dialysis PCR testing of nasopharyngeal
specimen

Rahimzadeh et al. (2021) [75] Iran 516 62.80% 57.6 194 (37.6%) History of hemodialysis or ESKD

PCR testing of oropharyngeal,
nasopharyngeal, or endotracheal

specimens, or symptoms
consistent with COVID-19

Scarpioni et al. (2021) [76] Italy 1701 64.30% 72.8 233 (13.7%)
ESKD, kidney transplant, or lack

of two consecutive sCr
determinations

PCR testing of nasopharyngeal
specimen

Kilis-Pstrusinska et al. (2021)
[77] Poland 1958 52.10% 62.3 237 (12.1%) AKI at admission PCR testing

Marques et al. (2021) [78] Portugal 544 56.30% 66.2 339 (62.3%)
CKD on RRT, discharged or

deceased < 1 week after hospital
admission

PCR testing of nasopharyngeal
specimen

Procaccini et al. (2021) [79] Spain 3182 – 72 548 (17.2%) Dialysis, CKD Stage 5, or on RRT
PCR testing, clinical suspicion
based on epidemiological data,
blood parameters, and imaging

Sullivan et al. (2021) [80] UK 41,294 62.60% 68 13,000 (31.5%)
Long-term dialysis, nosocomial

infection, or readmission to
hospital

PCR testing or clinical suspicion
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Table 2. Cont.

Author (Year) Country Sample Size Male Sex (%) Mean/Median Age
(Years) AKI (%) Exclusion Criteria of the Cohort

Study
Method of SARS-CoV-2

Diagnostic Test

Jewell et al. (2021) [81] UK 1248 58.80% 69 487 (39.0%)
Probable hospital-acquired

COVID-19, ESRD requiring RRT,
or kidney transplant

Positive nasopharyngeal
specimen, symptoms consistent

with COVID-19, and a first
positive SARS-CoV-2 swab test on,

or up to 7 days after admission

Wan et al. (2021) [82] UK 1855 60.50% 65 455 (24.5%) Lack of sCr data or history of
ESKD PCR testing

Strohbehn et al. (2021) [83] USA 1091 49.50% 67 251 (23.0%) No recent baseline sCr, eGFR < 15,
or on dialysis

PCR testing and hospitalized
within 2 weeks of first positive test

Hsu et al. (2022) [84] USA 4221 63.50% 61 2361 (56.0%)

Lack of data, baseline sCr, or
kidney function at discharge, on
dialysis, or hospitalized at last

follow-up

Laboratory-confirmed
SARS-CoV-2
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Although numerous cohort studies spanning the globe report varying AKI incidences
among COVID-19 patients, there exists a gap in the literature explaining the exact etiology
of this disparity. Among COVID-19 patients worldwide, this variance is likely explained by
different demographics, hospital admission threshold, in-hospital care, genetic predisposi-
tion, variance in AKI diagnosis criteria, temporal differences in kidney function assessment,
and availability of treatment. However, there was little variance in study design, inclusion,
and exclusion criteria that was notable between clinical studies discussed in Table 2. All
studies were found to have used KDIGO AKI staging criteria, as depicted in Table 1, and
verified the presence of SARS-CoV-2 infection in patients through diagnostic testing.

Despite the varying rates of incidence, AKI is a common clinical manifestation seen
in COVID-19 patients and is associated with focal epithelial necrosis, glomerulosclerosis,
and autolysis of renal tubular cells causing acute tubular necrosis (ATN) [85–88]. COVID-
19-related AKI is presumed to be multifactorial; it is hypothesized to involve local and
systemic inflammatory and immune responses, endothelial injury, and activation of coagu-
lation pathways and the renin–angiotensin system, but the exact mechanism has yet to be
elucidated [85,88].

In the early investigation of SARS-CoV-2, there was varying evidence on whether or
not SARS-CoV-2 infected the kidney [89,90]. Emerging evidence has found that SARS-CoV-
2 directly infects the kidney [91]. Radovic et al. discovered positive staining of S1 and
NSP8 proteins in kidney parenchyma from COVID-19 patients, demonstrating evidence
of active viral replication within the kidney [92]. These findings suggest that the AKI
experienced by COVID-19 patients may result from direct infection of renal cells by SARS-
CoV-2. Furthermore, infection and replication of SARS-CoV-2 in the renal parenchymal
cells of COVID-19 patients could explain AKI presenting with manifestations of ATN
and glomerulosclerosis. In addition, several studies revealed that COVID-19 patients
showed increased levels of proinflammatory cytokines, including IL-1β, IL-2, IL-6, IL-
10, IFN-γ, TNF-α, IFN-γ-inducible protein 10 (IP-10), granulocyte macrophage-colony
stimulating factor (GM-CSF), and monocyte chemoattractant protein-1 (MCP-1) [93–95].
Further, it has been shown that the urine of COVID-19 patients contains increased levels
of proinflammatory cytokines like IL-6, IL-8, and CXCL-10, and high urinary IFN-γ upon
hospital admission proved to be a positive predictor of AKI in COVID-19 patients [96–98].
Moreover, a proteomic-based study demonstrated that changes in urinary cytokines are
indeed associated with AKI development [99]. Thus, urinary proinflammatory cytokines
such as TNFα, IL-1α, IL-1β, IL-16, and IL-17A and total uEVs in COVID-19 patients
may identify patients that are prone to renal dysfunction [63]. Interestingly, many of
these cytokines, such as MCP-1, IL-1β, and TNF-α, do overlap with the inflammatory
mediators, which are upregulated by lipopolysaccharide (LPS)-induced AKI, demonstrating
parallels between SARS-CoV-2-induced AKI and sepsis-induced AKI [99,100]. In addition,
a comparative cohort study analyzing post-mortem autopsies on patients deceased of
sepsis-induced AKI, SARS-CoV-2-induced AKI, and non-septic AKI controls found that
glomerulitis and peritubular capillaritis seen in both sepsis-induced AKI and SARS-CoV-2-
induced AKI were absent in non-septic AKI controls [101]. Further, the proteomic analysis
by the latter study showed that the SARS-CoV-2-induced AKI overwhelmingly shared
similar protein enrichment to sepsis-induced AKI, and only about 2% of the compared
proteins were uniquely enriched between the two groups. Notably, the ceramide signaling
pathway, which is a key factor in EVs biogenesis [102,103], was uniquely upregulated in
SARS-CoV-2-induced AKI when compared with sepsis-induced AKI. However, there is
no clear evidence that SARS-CoV-2 increases the likelihood of developing sepsis or vice
versa [104], and more studies are warranted to establish such relationship.

The interaction loop between macrophages and EVs has also been shown to result
in tissue injury commonly seen in AKI [105]. This interaction has been documented in
multiple studies utilizing kidney tubular epithelial cells (TECs) and macrophages, modeling
the renal landscape in which tubulointerstitial inflammation occurs. For example, in a
study by Lv et al., purified TEC EVs rich in miRNA-19b-3p from an in vitro LPS-induced
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AKI model were applied to macrophages, which resulted in the upregulation of proteins
such as p65, P-p65, and inflammatory cytokines such as MCP-1, IL-1β, IL-6, and TNF-
α [106]. This administration of EVs displayed increased mRNA and protein levels of an
M1 macrophage marker, iNOS, suggesting that TEC EVs polarize macrophages to their
pro-inflammatory subtype. Furthermore, Li et al. collected EVs containing miRNA-23a
derived from TECs subjected to hypoxic conditions. These EVs were found to activate
macrophages and were then subsequently investigated in an in vivo model to determine
their efficacy in reproducing renal tissue injury. One day after the injection of the EVs into
murine renal parenchyma, there was the presence of increased inflammatory cells in the
tubular interstitium and increased mRNA expression of the similarly reported upregulated
inflammatory factors MCP-1, IL-1β, and TNF-α [107]. These supportive studies suggest the
crosstalk between kidney TECs, EVs, and macrophages may alter inflammatory responses
and induce kidney damage by polarizing macrophages to their M1 subtype. Notably,
the overexpression of the SARS-CoV-2 N protein in the diabetic kidney of db/db mice
has been shown to increase the infiltration of M1 proinflammatory macrophages via a
macrophage-inducible C-type lectin (Mincle) pathway [108]. In addition, more studies
have demonstrated the presence of SARS-CoV-2 N protein accumulations in the kidney
tubular epithelium of patients with COVID-19 [91,109–111]. Another immunoelectron
microscopy study revealed the accumulations of SARS-CoV-2 N protein in one patient
previously diagnosed with COVID-19 three months prior to the manifestation of kidney
failure [112]. Thus, the urinary SARS-CoV-2 N protein may serve as an indicator of the
likelihood of AKI development, which may provide clinicians with insights into the severity
of COVID-19 [113].

3. Extracellular Vesicles as a Treatment Option for COVID-19

EVs possess various attributes that have facilitated investigation for their utilization in
therapeutics. A particularly relevant function of EVs is their ability to exchange mRNA and
miRNA between host cells [53,54]. In the setting of SARS-CoV-2 infection, the utilization of
mesenchymal stem cell-dervied EVs (MSC-EVs) containing miRNA as a potential thera-
peutic is a developing area of interest. The immunotherapeutic mechanism of MSC-EVs
involves miRNA binding to viral mRNA in a complementary fashion, ultimately destabiliz-
ing the mRNA and silencing translation. Highly expressed MSC-EVs miRNAs, including
miR-92a-3p, miR-103a-3p, miR-181a-5p, miR-26a-5p, and miR-23a-3p, demonstrate the
capacity to inhibit SARS-CoV-2 RNA replication and promote the suppression of host cell
proinflammatory responses induced by viral infection (Figure 2A) [54,114]. In a random-
ized controlled clinical trial performed by Zarrabi et al., patients with a progressive phase
of acute respiratory distress syndrome were divided into three groups: one receiving an
intravenous therapeutic dose of MSCs, one receiving an intravenous therapeutic dose of
MSCs followed by inhalation of MSC-EVs, and one group serving as the control [115].
Patients who received therapeutic MSCs with and without MSC-EVs inhalation had a
significant reduction in inflammatory markers, but the additional administration of inhaled
MSC-EVs showed a greater reduction in the level of inflammatory markers. Furthermore,
Vaka et al. demonstrated that the presence of IL-1β, IL-2, IL-8, IL-10, and TNF-α, key
proinflammatory cytokines commonly seen in COVID-19 patients with acute respiratory
distress syndrome, did not impact the viability or paracrine production of bone marrow
mesenchymal stem cells, heart-derived cells, and umbilical cord mesenchymal derived
stem cells [115]. These findings demonstrate that MSC-EVs are not affected by exposure to
the hostile proinflammatory environment they are intended to suppress.

In a study by Park et al., placenta mesenchymal stem cells (pMSCs) demonstrated
ACE2 receptor gene expression similar to the lung, and the EVs isolated from such placenta
mesenchymal stem cells (pMSC-EVs) showed a high expression of ACE2 mRNA [114]. It
has been proposed that pMSC-EVs expressing the ACE2 receptor could potentially act
to competitively inhibit SARS-CoV-2 infiltration. The potential antiviral effects of EVs
expressing ACE2 have been further supported by Ching et al. after an investigation
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of the effects of SARS-CoV-2 on the respiratory system. In vivo, EVs expressing ACE2
receptors (ACE2+EVs) were isolated from bronchoalveolar lavage fluid (BALF) in critically
ill COVID-19 patients. These patients were admitted to the intensive care unit (ICU)
due to respiratory failure requiring invasive mechanical ventilation. Among the ICU
patients, EVs were discovered to vary in the magnitude of ACE2 expression per EV and the
quantity of ACE2+EVs isolated. Ching et al. suggested common comorbidities, including
diabetes, may correlate to the reduction in the total amount of ACE2+EVs isolated but
did not correlate to the magnitude of ACE2 expression per EV. Despite the EVs’ variation
among patients, the presence of ACE2+EVs isolated in patients’ BALF correlated to a
reduced length of stay in the ICU and required days of ventilation. Furthermore, an
in vitro arm of this study investigated the role of defensosomes in SARS-CoV-2 infection.
Deferensosomes are a small subset of EVs understood to be involved in host defense
against bacterial infection. Defensosomes containing ACE2 receptors were found to serve
as decoys that inhibit SARS-CoV-2 infection. Moreover, defensosomes were found to
neutralize SARS-CoV-2 infection through the binding of ACE2 present on defensosomes
to the S protein on the SARS-CoV-2 virion. The defensosome-virion binding reveals that
ACE2-expressing EVs are capable of binding and clustering SARS-CoV-2 virions, inhibiting
spike protein fusion with host cells. The suspected mechanism through which SARS-
CoV-2 can promote defensosomes is via the generation of oxidized mitochondrial DNA
(mtDNA). Although toll-like receptor 9 (TLR9) commonly binds viral and bacterial DNA, it
is hypothesized that oxidized mtDNA binds TLR9, leading to the downstream generation
of interferons (IFNs) via the MYD88 pathway. IFNs were found to elicit the production of
immunosuppressive EVs that may neutralize viruses, competitively inhibiting SARS-CoV-2
viral entry. Following this determination, genomic analysis was performed on patients
with ACE2+EVs isolated in BALF, revealing increased expression of genes that facilitate
antiviral signaling, like IFNs, strengthening the association between antiviral signaling and
the production of defensosomes (Figure 2B) [116].
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bacterial DNA inducing the downstream MYD88 pathway. It has been proposed that TLR9 may be
activated by oxidized mitochondrial DNA from damage occurring during respiratory tract infections.
In the above mechanism, there is no direct activation of DNA sensors by SARS-CoV-2, but oxidized
mitochondrial DNA causes subsequent activation of TLR9, resulting in the expression of IFN I genes.
Expression of IFN I influences the expression of immunosuppressive EVs that express the ACE2
receptor. These EVs expressing the ACE2 receptor, termed defensosomes, act as decoys to inhibit
SARS-CoV-2. (Figure created with Biorender.com; accessed on 2 January 2024).

4. Limitations and Future Directions

Currently, there is a lack of sufficient studies investigating the role of EVs in SARS-
CoV-2-induced AKI. Further, the potential implementation of treatment approaches via
EVs for COVID-19 are still in the early stages. The field of MSC-EV therapy is a developing
area of interest, with emerging clinical trials recruiting patients [117], though there are
currently no FDA-approved MSC-EV therapies available. This review also acknowledges
certain limitations, including reliance on small cohort and post-mortem studies, which may
pose challenges in making broad generalizations due to their constrained sample sizes.

For future directions, a comprehensive understanding of the interactions between EVs
and SARS-CoV-2 in AKI will pave the way for innovative diagnostic tools and targeted
therapies. Thus, more targeted clinical studies are needed to demonstrate the efficacy and
safety of MSC-EV therapies, and to establish the concept of defensosomes in hindering
SARS-CoV-2-induced AKI. The evolving landscape of EV research in SARS-CoV-2-induced
AKI holds promise for advancing our knowledge and improving clinical outcomes for
affected individuals.

5. Conclusions

EVs play a major role in propagating SARS-CoV-2 during the viremic phase. Many
studies are now supporting the evidence that urinary EVs can be used to assess and
monitor AKI in patients with COVID-19. In addition, more innovative and hopeful studies
are suggesting that EVs can be clinically useful to slow or inhibit the transmission and
intercellular spread of SARS-CoV-2. Overall, the involvement of EVs in SARS-CoV-2-
induced AKI represents a novel avenue for understanding the complex interplay between
the virus and renal tissues. Further research is needed to unravel the precise mechanisms
and potential therapeutic applications of EVs in mitigating kidney injury associated with
COVID-19.
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