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Table S1 displays the training dataset used for tissue segmentation, lymphocyte detection, and 

TIL score prediction in this study. The training dataset of the TIGER challenge largely comprises 

WSIBULK, WSIROIS, and WSITILS. In this experiment, the WSIROIS dataset with ROI-level 

annotation (patch type) was used for tissue segmentation and lymphocyte detection.

Table S1. Structure and content of training dataset of the TIGER challenge.

Datasets Data Configuration Num_images Use status

WSIBULK images 92 not used

tissue-masks 93 not used

annotations-tumor-bu
lk

masks 93 not used

xmls 93 not used

WSIROIS
WSI-level-annotation
(WSI type)

images 196 not used

tissue-masks 196 not used

annotations-tissue-
bcss-masks

151 not used

annotations-tissue-
bcss-xmls

151 not used

annotations-tissue-
cells-masks

168 not used

annotations-tissue-
cells-xmls

168 not used

ROI-level-annotation
(patch type)

tissue-bcss-images 151 used

tissue-bcss-masks 151 used

tissue-cells-images 1,879 used

tissue-cells-masks 1,879 used

tiger-coco.json - used

WSITILS images 82 used

tissue-masks 82 not used



tiger-til-scores-wsitils.csv - used

Some tissue-bcss dataset within WSIROIS are annotated with only certain parts of the image as

shown in (a) and (b) of Figure S1. Therefore, the image was rotated and cropped as shown in

(c) and (d) of Figure S1 using the annotation information in the ‘annotation-tissue-bcss-xmls’.

Figure S1. Examples of rotated images and masks from the tissue-bcss dataset within 

WSIROIS: (a) raw image, (b) raw mask, (c) rotated and cropped image, (d) corresponding 

annotation mask.



Table S2 provides basic information on the large unlabeled datasets used for training the pre-

trained model in this work. These datasets consist of histopathological tissue images such as 

breast, colon, bone, lung, and prostate. All datasets are configured with a patch-type image, not 

a WSI-type.

Table S2. Summary of large unlabeled datasets used for pre-training task.

Dataset Organ Each image size Number of images

andrewjanowczyk_epi[22] Breast 1000 x 1000 125

andrewjanowczyk_mitosis[22] Breast 2000 x 2000 311

andrewjanowczyk_nuclei[22] Breast 2000 x 2000 142

andrewjanowczyk_tubule[22] Colon 775 x 522 85

BACH[45] Breast 2048 x 1536 500

breakhis[46] Breast 700 x 460 9,109

breastpathq[47] Breast 512 x 512 3,700

CoNSeP[48] Colon 1000 x 1000 41

Gleason2019[49] Prostate 5120 x 5120 331

Kather_texture_2016_image_tile
s_5000[50]

Colon 150 x 150 5,000

LC25000[51] Lung, Colon 768 x 768 25,000

Lymph[52] Various 1388 x 1040 374

MIMM[53] Bone 2560 x 1920 85

monuseg_2018_train_data[54] Various 1000 x 1000 37

NCT-CRC-HE-100K[55] Colon 224 x 224 100,000



Table S3 details the experimental setup for each self-supervised learning module used for 

pre-training. Regarding SimCLR, the maximum batch size was set to 1024 due to computation 

cost or GPU memory issues, and the SwAV batch size was set to 2048. The settings for 

augmentation methods were as follows: Random Horizontal Flip probability = 0.5, color jitter 

probability = 0.8, and Random Grayscale probability = 0.2. In our study, we adjusted the default 

color jitter values ([saturation, contrast, brightness, hue] =0.8, 0.8, 0.8, 0.4) into lighter

ones([0.4, 0.4, 0.4, 0.2]). This modification was made based on insights from the study by Ozan 

Ciga et al.[11], particularly Appendix C and Figure C7. To multi-crop an image on SwAV, we 

used the default value (Number of crops: [2, 4], Min scale crop: [0.33, 0.10], Max scale crop: [1, 

0.33]).

Table S3. Experiment setup of each self-supervised learning modules.

SimCLR SwAV

Backbone ResNet-18 ResNet-18

Batch size 1024 2048

Epochs 300 300

Optimizer Adam Adam

Learning rate 1.0e-3 1.0e-3

LR scheduler Cosine Lambda

Weight decay 1.0e-6 1.0e-6

temperature 0.1 0.5

Epsilon(SwAV) - 0.05

Sinkhorn iterations(SwAV) - 3

Number of prototypes(SwAV) - 28

Augmentation - Color Jitter
- Random Grayscale

- Random Horizontal Flip
- Gaussian blur

- Random Resize crop

- Color Jitter
- Random Grayscale

- Random Horizontal Flip
- Gaussian blur

- Random Resize crop
- Multi crop



Figure S2. SimCLR and SwAV loss curves obtained during pre-training. The red curve depicts

SimCLR, and the blue depicts SwAV during (a) training and (b) validation.



Table S4 details the experimental setup of tissue segmentation and lymphocyte detection tasks. 

While U-Net’s encoder typically comprises general convolutional neural networks, we employed 

ResNet-18 as an encoder backbone. For tissue segmentation and lymphocyte detection, we 

performed experiments by sweeping the learning rate [1.0e-3, 1.0e-4, 1.0e-5] and selected the 

most optimal learning rate for each task. The optimal learning rate was 1.0e-4 for tissue 

segmentation and 1.0e-3 for lymphocyte detection. Figure S3 presents the validation loss curve 

according to the learning rate for each downstream task.

Table S4. Experiment setup of each downstream tasks.

Tissue segmentation task Lymphocytes detection task

Module DeepLabv3 U-Net

Backbone ResNet-18 ResNet-18

Batch size 40 15

Epochs 100 25

Optimizer Adam Adam

Learning rate 1.0e-4 1.0e-3

LR scheduler Cosine Cosine

Weight decay 1.0e-6 1.0e-6

Evaluation metric Dice score FROC score

Loss function Dice BCE loss BCE loss



Figure S3. Validation loss curves for each downstream task relative to learning rate: (a) tissue

segmentation and (b) lymphocyte detection.
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