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Abstract: Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to
the high mortality rate, people suffering from CVD often endure difficulties with physical activities
and productivity that significantly affect their quality of life. The high prevalence of debilitating
risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia
only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however,
they compound the severe economic strain of health-related expenditures. Furthermore, these
therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated
new treatment options by confronting CVD at an epigenetic level. This involves modulating gene
expression by altering the organization of our genome rather than altering the DNA sequence
itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as
medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions
can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect
of addressing more than just the symptoms of CVD. This review discusses various risk factors
contributing to CVD, perspectives of current traditional medications in practice, and a focus on
potential epigenetic therapeutics to be used as alternatives.

Keywords: cardiovascular diseases (CVDs); epigenetics; CVD treatment; traditional CVD medications;
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1. Introduction

Cardiovascular disease (CVD) is a major threat to health worldwide, as the leading
cause of death [1]. In the United States alone, CVD is responsible for causing one in every
five deaths [2]. CVD encompasses but is not limited to vascular diseases, peripheral artery
disease, stroke, hypertension, and atherosclerosis as well as various heart diseases such as
heart failure and coronary heart disease [3]. As of 2019, specifically ischemic heart disease
and ischemic stroke are responsible for being the leading causes of CVD death in the United
States [4]. The debilitating toll that CVD takes on human life is only made heavier by the
cost of patient care. Effective treatment for these diseases is a huge economic burden, with
an estimated cost of over USD 400 billion being spent in the United States just from 2018 to
2019 [5]. Graver is that the surging of the global dual epidemics of obesity and diabetes
that can contribute to the development of CVD [6–8]. This paints a daunting future for
health worldwide if left unaddressed.

Astonishingly, in the past almost 30 years, CVD incidence and mortality rates have
dramatically decreased [9]. This decline can be attributed to the fact that many preventative
measures were introduced at the turn of the century [10]. Efforts to promote healthy
behaviors as a means for prevention included public smoking bans, the accurate monitoring
of blood pressure, as well as the implementation of medications to control low-density
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lipoprotein (LDL) cholesterol or cardio-protective medications such as aspirin [10]. Recently,
the American Heart Association (AHA) has introduced the updated “Life’s Essential 8”
to help mitigate the overwhelming burden of CVD by providing an enhanced system
for the measurement of cardiovascular health [11]. This system can guide both clinical
recommendations and patient decisions towards achieving better cardiovascular health to
prevent and treat CVD. Disparities with this system, however, still exist pertaining to race,
ethnicity, age, socioeconomic standing, and other characteristics [12,13]. These multiple
factors can contribute to why, despite prior initiatives, CVD still maintains its status as the
leading cause of death worldwide [1]. These circumstances thus demand an arduous shift
from conventional therapeutic approaches to overcome this crisis.

Epigenetics is a branch of science that refers to the ability of the genome to adapt to the
environment through the modulation of its organization. By altering factors surrounding
DNA, such as the organization of chromatin or the methylation of DNA, there can thus
be the regulation of gene expression [14]. Gene expression can be controlled by several
external factors including prenatal malnutrition, ultraviolet radiation, plasticizer exposure,
smoking, etc. For example, a poor diet and perinatal nutrition can cause deviations in DNA
methylation, which can make an individual more susceptible to metabolic diseases [15].
The DNA methylation of specific genes can prevent their expression, while variations in
DNA methylation can result in phenotypic effects such as changes in body weight and
blood pressure [16,17]. Recent studies also suggest that parental habits and environmental
exposures can also affect one’s offspring’s epigenome; therefore, the inheritance of altered
gene expression can highly influence a person’s risk of CVD [14,18]. Thus, epigenetic
drugs, also known as epidrugs, present a potential alternative to traditional therapeutics by
offering the benefit of addressing epigenetic insults incurred throughout life and even those
inherited transgenerationally. This review discusses potential targets for CVD therapeutics
through contributing risk factors, current medications that are implemented in traditional
practice, and a comparison with novel epidrug candidates for the treatment of CVD.

2. CVD Risk Factors
2.1. Obesity

Obesity is defined as the excessive accumulation of adipose tissue. A person is
considered overweight if their body mass index (BMI) ranges between 25 kg/m2 and
29.9 kg/m2, obese if their BMI is greater than or equal to 30 kg/m2, and severely obese
if their BMI is greater than or equal to 40 kg/m2 [19]. By 2030, it is predicted that almost
half of the United States will be obese [20]. More dire is that over the past approximately
50 years, the prevalence of severe obesity has increased almost ten-fold [21]. Obesity is a
key risk factor for CVD, as the accumulation of body fat can incite a vicious cycle leading
to the deterioration of metabolic health and the promotion of disease development.

To compensate for the excess lipids that are present due to overnutrition, characteristic
of obesity, adipose cells must undergo remodeling. This involves increasing the size and the
number of adipose cells in the body; however, this remodeling processes induces stress on
the cells [22]. In response to stress, the cells will release several proinflammatory adipokines
and cytokines, thereby directly increasing inflammation. There can also be an allocation of
lipids to other tissues, such as to the liver or within blood vessels, if the adipose cells are
unable to keep up with the influx of lipids [23]. This chronic inflammatory environment
and excess lipid content set the stage for the development of CVD. Several studies have
exhibited that diet and exercise can reduce obesity and the risk of CVD-related morbidity;
however, these interventions may not be maintainable [24]. Therefore, perhaps a new
approach involving epigenetics for targeting obesity can potentially provide therapeutic
value in combating CVD.

Recent evidence has demonstrated that several epigenetic mechanisms can contribute
to the development of obesity and CVD. The methylation of the promoter region for the
hormone leptin, which is responsible for eliciting a sensation of fullness, was found to
have an inverse correlation with body weight, where reduced promoter methylation was
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observed in obese participants [25]. Typically, the hypomethylation of promoter regions is
indicative of gene upregulation. This can contribute to the explanation of how there is a
compensatory upregulation of leptin in obesity that then results in leptin resistance [26].
Another example is demonstrated by Mikula et al., where there was increased histone
acetylation on histone 3 lysine 9 and 18 of proinflammatory genes in mice fed on a high-fat
diet [27]. These increased activating histone marks can thereby contribute to the elevation of
inflammation associated with obesity. This promotion of inflammation can also exacerbate
the risk of CVD development, making these histone modifications worthy therapeutic
targets. Additionally, increased acetylated lysine and B-type natriuretic peptide (BNP) was
observed alongside downregulated Sirtuin (SIRT) 3 expression in cardiac tissue from obese
patients with heart failure [28]. The downregulation of SIRT3 was proposed to induce mito-
chondrial dysfunction through increased membrane permeability via the hyperacetylation
of cyclophilin D. A similar scenario was described by Romanick et al., where the enlarged
hearts of obese mice displayed increased BNP and lysine acetylation [29]. Further analysis
revealed that pathways relating to mitochondrial dysfunction, oxidative phosphorylation,
calcium signaling, and SIRT signaling were dysregulated by obesity. By evaluating overlap-
ping therapeutic targets, the reversible nature of epigenetics can be leveraged to combat
both obesity and CVDs.

2.2. Type 2 Diabetes Mellitus (T2DM)

Currently, there are 537 million diabetic adults worldwide, with the vast majority
suffering from T2DM [30]. By 2030, it is projected that the global prevalence will increase
to 643 million, and by 2045, it will reach 783 million. Diabetes places an overwhelming
financial burden on the United States healthcare system. As of 2017 an estimated USD
327 billion was spent on diabetes-related medical costs [31]. It is established that T2DM
is a significant risk factor for CVD; people with T2DM can experience a two- to fourfold
increase in cardiovascular risk compared to those without diabetes [32]. Hyperglycemia
that is characteristic of T2DM can specifically accelerate the development of atheroscle-
rosis and thereby Atherosclerotic Cardiovascular Disease (ASCVD) [33]. Uncontrolled
hyperglycemia, another feature of T2DM, causes extensive endothelial damage and elicits
inflammatory responses mediated by macrophage release, thereby exacerbating plaque
buildup and atherosclerosis [34,35]. Epidemiological studies indicate that improvements in
T2DM management have led to significant reductions in diabetes-associated cardiovascu-
lar morbidity [36]. More recently, a new class of antidiabetic pharmaceuticals known as
sodium glucose co-transporter (SGLT2) inhibitors have exhibited promise in ameliorating
T2DM symptoms as well as reducing cardiovascular complications [37]. These preliminary
improvements can potentially be further propelled if epigenetics is also considered.

Several epigenetic modifications such as DNA methylation, histone modification, and
noncoding RNAs have been associated with the prognosis of T2DM [38,39]. As epigenetics
bridges our genome and the environment, there are environmental factors that can similarly
promote both CVD and T2DM disease progression. These factors can then lead to conse-
quences that resonate from within cells and propagate throughout the entire body [40]. A
hyperglycemic environment inhibited the protective JunD proto-oncogene subunit (JunD)
expression in diabetic mouse model hearts, later validated in the hearts of T2DM patients,
and was proposed to be mediated by several epigenetic mechanisms [41]. Specifically,
diabetic mice exhibited the hypermethylation of two regions of CpG islands, decreased
promoter histone 3 lysine 4 mono- and trimethylation, increased promoter histone 3 lysine
9 trimethylation, and reduced microRNA-673 expression. This emphasizes the overlapping
layers of epigenetic regulation that can interact to direct gene expression. Further, dimin-
ished microRNA-24 expression was found to be exacerbated in patients with coronary heart
disease (CHD) and T2DM compared to patients with only CHD or neither diagnosis [42].
This was accompanied by an inversely proportionate increase in chitinase 3-like 1 (YKL-40)
that was found to be a downstream target of microRNA-24 and negatively correlated
with its expression in either circumstance of patients with CHD and T2DM or CHD alone.
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Upregulated YKL-40 was exhibited in several inflammatory diseases, especially T2DM and
coronary artery disease, and highlights how proinflammatory processes can contribute to
disease development [43]. For instance, increased cellular oxidative stress, endoplasmic
reticulum (ER) stress, and mitochondrial dysfunction can mediate inflammation that exac-
erbates endothelial dysfunction and insulin resistance [44,45]. By targeting the epigenetic
dysregulations incurred, we can address more than just the symptoms of T2DM and CVD.

2.3. Smoking

In 2018, an estimated 13.7% (34.2 million) of U.S. adults were cigarette smokers [46].
Smoking is well established in causing vascular dysfunction through reduced nitric oxide
bioavailability, the increased expression of adhesion molecules, increased inflammation,
the activation of prothrombic factors, and the promotion of endothelial dysfunction [47].
Cigarette smoke contains toxic chemicals and carcinogens whose oxidants and free rad-
icals create a pro-oxidative environment [48]. Inflammatory processes begin to ignite as
macrophages take up these oxidative species and lipids to form foam cells that play a
primary role in arterial lipid deposition and plaque formation [49]. Additionally, smoking
is known to increase total serum cholesterol, VLDL, LDL, and triglyceride serum concen-
trations, which in turn increases the risk of atherosclerosis and other forms of CVDs [50].
The cessation of smoking was found to significantly reduce the risk of CVD events such
as nonfatal myocardial infarctions, nonfatal strokes, and death [51]. The repercussions of
smoking also do not just end at the individual level.

Increasing evidence suggests that maternal smoking can affect the offspring’s risk
for developing CVD risk factors [52,53]. One study conducted by Power et al. found
that individuals whose mothers smoked during pregnancy had a higher prevalence of
metabolic syndrome in addition to increased BMI, waist circumference, blood pressure,
HbA1c, and triglyceride levels on average compared to the offspring of non-smoking
mothers [52]. This exemplifies an epigenetic effect of smoking on offspring from the actions
of their mothers. Further, smoking can modulate interferon-gamma (INF-γ) transcription
via histone acetyltransferases to contribute to proinflammatory effects and macrophage
activation [54]. This is significant, as INF-γ is implicated in the priming of enhancers used
to mediate the activation of inflammatory pathways and alter macrophage expression
in the pathogenesis of CVD [54]. The promotion of apoptosis is another consequence of
smoking demonstrated using nicotine-exposed cardiomyocytes, continuing to warn against
the repercussions of smoking on cardiovascular tissue [55]. Apoptosis was theorized to
be mediated by inhibited extracellular signal-regulated kinase (ERK) signaling leading to
reduced serum response factor expression, decreased microRNA-133, and a subsequent
increased expression of caspase-9 and caspase-3. This illustrates how disturbed epigenetic
regulators such as microRNAs can act as both a receiver and inducer of CVD. Recently, dys-
regulated epigenetic modifications obtained during smoking were discovered to respond
to cessation [56]. While some modifications can be reversed by cessation, there may be
others that require further intervention. By considering epidrugs, there is the potential for
ameliorating the damage caused by smoking as well as CVD development and progression.

2.4. Hypertension

The American College of Cardiology and the American Heart Association (ACC/AHA)
define hypertension as a blood pressure level > 130/80 mmHg, and it afflicts 48% of the
American population [57]. In addition to its high prevalence, hypertension adds a signif-
icant financial strain on the American health system, with an estimated USD 131 billion
per year being spent on hypertension-related care [58]. Further, only half of Americans
diagnosed with hypertension achieve adequate blood pressure control [59]. There also
exists a racial disparity in this context, as a majority of minority groups are observed to
have worsened control over their hypertension compared to non-Hispanic White individ-
uals [60]. This causes major concern, as uncontrolled hypertension is a high-risk factor
for CVD development. The continual pressure and strain on the blood vessels can cause
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them to narrow, weaken, and potentially burst, leading to an increased workload on the
heart [61].

While there are several different pharmacological classes of anti-hypertensive med-
ications, not all classes are equally effective across patients. For example, angiotensin-
converting enzyme inhibitors (ACEIs) have displayed reduced efficacy in the Black com-
munity [62]. This characteristic should subsequently direct physicians’ decisions to not
prescribe ACEIs as a first-line monotherapy for Black patients. Instead, a thiazide diuretic,
calcium channel blocker, or combinatorial therapy should be considered [63]. While the pre-
cise mechanisms responsible have yet to be fully elucidated, there is evidence that suggests
genetic and environmentally acquired contributions can play a role in this variable re-
sponse [64]. Epigenetics can thus offer potential in discerning the impact between these two
elements. In a recent epigenome-wide association study conducted on sub-Saharan African
participants, van der Linden and colleagues were able to identify differentially methylated
positions in genes such as Protein Tyrosine Phosphatase Receptor Type N2 (PTPRN2) that
contribute to the homeostasis of the renin–angiotensin–aldosterone system [65]. Further,
differing levels of methylation in genes, including PTPRN2, correlated with coronary heart
disease and metabolic syndrome and were discovered to be specific to race [66,67]. Epige-
netic modifications that play a role in blood pressure regulation can be targeted to overcome
the barriers posed by traditional pharmaceutical therapeutics [68,69]. By also preceding the
development of disease, epigenetics can also provide novel therapeutic targets. A study
investigating potential biomarkers for hypertension identified microRNA-126, -221, and
-222 to be inversely correlated with a rise in systolic blood pressure in a Japanese cohort
across 5 years [70]. MicroRNAs (miRNA) can act as both enhancers or suppressors of gene
expression and can be an early indicator of disease before the onset of symptoms. Our lab
demonstrated the prowess of the miRNA biomarker miR-17 alongside other epigenetic
modulators in the hypertensive pregnancy disorder of preeclampsia (PE), awarding us a
patent [71]. Women that suffered from PE during pregnancy are twice as likely to develop
CVD, bringing forth the magnanimous potential value that early intervention afforded by
miRNAs can pose in both PE and CVD [72]. Collectively, this points to how epigenetics
can provide prospective opportunities of addressing CVD at early time points, prior to the
onset of symptoms.

2.5. Hyperlipidemia/Atherosclerosis

Hyperlipidemia is a condition associated with abnormal levels of lipids in the body
that can be in the form of different kinds of cholesterol and/or triglycerides [73]. Due to
its high occurrence, antihyperlipidemic pharmaceuticals are one of the most frequently
prescribed medication classes in the United States [74]. Adults between the ages of 40 and
75 that exhibit at least one risk factor for CVD and that are at a 10% or greater risk for
having a cardiovascular event in the next 10 years are recommended for statin therapy [75].
With the high prevalence of risk factors such as obesity, T2DM, smoking, and hypertension,
there is an ongoing demand for aggressive lipid-lowering therapies [76].

A role by which hyperlipidemia is a major risk factor for CVD is that, if left unattenu-
ated, hyperlipidemia can be conducive of atherosclerosis development [77,78]. Prolonged,
increased lipid levels in the blood can lead to their accumulation along the arterial walls,
resulting in the formation of plaques. These plaques can then contribute to inflammation
as well as narrow and stiffen arterial walls, which defines atherosclerosis [79]. Epigenetic
modifications have also been identified to participate in this process. In atherosclerotic
lesions, there was a decreased methylation and increased acetylation of histone 3 lysine
9 and lysine 27 in smooth muscle cells taken from human carotid vessels [80]. Recently,
DNA methyltransferase 3b (DNMT3b) was implicated in atherosclerosis progression, as its
inhibition was found to ameliorate the plaque content, regulatory T cell (Treg) populations,
and inflammation in apolipoprotein E (ApoE) knockout mice [81]. DNMT3b was described
to be responsible for the hypermethylation of the regulatory T-cell-specific demethylated
region of forkhead box P3 (FOXP3), resulting in decreased FOXP3 expression that in turn
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downregulated Treg levels. As Tregs are proposed to be protective due to their secretion
of anti-inflammatory cytokines, decreased Treg populations can potentially contribute to
the propagation of plaques and ultimately the pathogenesis of atherosclerosis [82]. Most
concerning is that these plaques can ultimately lead to death. Plaques can rupture, causing
subsequent injuries to the arteries, potentially resulting in acute thrombosis, and triggering
acute coronary syndromes [83]. Thus, ASCVD was termed to describe the associated
outcomes such as aortic aneurysm, aortic stenosis, peripheral arterial disease, coronary
artery disease (CAD), non-fatal myocardial infarction (MI), stroke, and even sudden cardiac
death [84].

Current guidelines for treatment include an assessment of cardiovascular risk in
10 years using the Framingham Risk Score (FRS) algorithm, which takes into consideration
various factors such as LDL, age, race, gender, diagnosis of T2DM, systolic blood pressure,
and smoker status [85,86]. While the overall incidence of ASCVD has declined over the
course of many years, there still lies therapeutic disparities. Women, for instance, are
observed to not only have poorer patient outcomes related to ASCVD but are also not
equally offered preventative therapies (e.g., statins and antiplatelet therapies) compared
to men [87–89]. While hyperlipidemia and atherosclerosis are known to be directly linked
to CAD, the underpinning genetic regulations that contribute to these conditions remain
elusive [90,91]. There are currently fewer than 200 genes that have been associated with
hyperlipidemia, atherosclerosis, or CAD [92–94]. A few human studies have provided a
promising link of differential gene expression in hyperlipidemia with inflammation and
CAD, although there are no current drug therapies targeting these genes such as pro-
platelet basic protein (PPBP) and α-defensin (DEFA1/DEFA3) [95]. This demonstrates the
demand for more innovative therapeutic approaches.

3. Epigenetics

Epigenetics is the study of changes in gene expression without any alteration to the
DNA sequence. This involves altering the organizational status of the chromatin. For exam-
ple, modifications to the tails of histones such as acetylation can activate gene expression
by loosening the chromatin structure [96]. The three key epigenetic modifications include
histone modification, DNA methylation, and noncoding RNAs. Environmental factors
such as diet and exposure to toxins can contribute to the regulation of these modifications
that lead to modulated gene expression. When gene expression is dysregulated due to
these affected epigenetic modifications, it can often lead to comorbidities such as metabolic
disease [97]. Further, these modifications are heritable, which can result in the accumulation
of altered epigenetic modifications across generations [98].

This phenomenon of a transgenerational effect has been demonstrated in evolution
and adaptation. For example, Gonzalez et al. tested the effects of genome-wide DNA
methylation on plants based on maternal stresses (drought, soil contaminations, and
shading) [99]. Plants grown in copper-contaminated soils in the maternal generation
demonstrated a positive transgenerational effect due to its importance in plant develop-
ment [59]. In another study, two subsequent generations of offspring from rats fed on a
high-fat diet experienced poor metabolic health such as higher blood glucose levels and
decreased insulin secretion [100]. History has also provided examples where populations
acquired adaptations to extreme environmental changes such as famine, war, and poverty
that were then passed on to future generations. For instance, in utero exposure to famine
during the Dutch Hunger Winter that occurred during 1944–1945 resulted in an increased
risk of metabolic diseases, such as T2DM, in affected offspring, which was further passed
on to future generations [101]. Researchers hypothesize that when exposed to stressful
environments including famine, certain epigenetic modifications were favored to improve
survival rates [102]. When these modifications are passed down to generations who are not
exposed to the same environments, the once advantageous adaptations can then increase
susceptibility to metabolic disease.
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The consequences of previous generations are not set in stone, as another quality of
epigenetics is that it is reversible. The manner in which exposure to toxins and stress can
alter epigenetic modifications is the same manner in which positive factors can attenuate
these modifications. Interventions of a healthy diet and exercise can go farther by rectifying
epigenetic dysregulations associated with CVD [103]. However, these interventions may
not be suitable nor maintainable for certain populations. This necessitates the pivoting of
treatment to modern epigenetic medicine.

Though there are defined guidelines and pharmacological therapies for the treatment
of CVD, several studies have shown that polypharmacy decreases patient adherence and
increases drug interactions, especially in older populations [104–106]. There can also be
adverse side effects to these medications that have harmful consequences. For example,
many drugs used for cardiovascular health such as diuretics cause electrolyte imbalances,
which can result in life-threatening arrhythmias if not closely monitored [107,108]. It is
typical for patients to be on these traditional CVD medications long-term or even for the
rest of their lives [109,110]. Therefore, it is vital to assess the pharmaceuticals’ mechanisms
of action and their associated side effects to pair the patient with the most suitable therapy.
A few traditional medications have also exhibited the additional capacity to modulate
epigenetic factors. As these dual acting medications are rare, it is vital to seek medications
that directly target epigenetic modifications. These medications, also known as epidrugs,
are an emerging class of therapeutics that must be investigated for their value in the
treatment of CVD. By addressing CVD at an epigenetic level, epidrugs offer promise for
future therapeutics. Below is a comprehensive list of traditional medications that are
currently available, examples of those with epigenetic action, and potential epigenetic
medications for the treatment of patients with CVD.

4. Traditional CVD Medications
4.1. Statins

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, also known
as statins, are a common class of medications prescribed to patients for the prevention and
treatment of ASCVD. The primary prevention method of statins is to reduce endogenous
cholesterol production via inhibiting the rate-limiting step of mevalonate synthesis [111].
By inhibiting the production of this cholesterol precursor, cholesterol concentrations in the
plasma will decrease. The secondary prevention method includes a reduction in inflamma-
tion, decreased activation of platelets, and stabilization of atherosclerotic plaques [112]. As
there is a lowered activation of the cholesterol biosynthetic pathway due to statins, there
are these beneficial pleiotropic effects. Medical practitioners refer to the 2019 ACC/AHA
Guideline on the Treatment of Blood Cholesterol to Reduce ASCVD Risk for prescribing
direction [113].

Although statin therapy is proven to be effective in the management of dyslipidemia
and the reduction in mortality in patients with CVDs, poor adherence due to their side
effects such as statin-related myopathies, potential liver damage, and memory loss have
proven to be limiting factors for the use of this class of medication [114]. There is also
evidence of the onset of T2DM with statin therapy; however, the findings of these studies
are still controversial [75,115,116]. Specifically, characteristics such as the type of statin—for
example, rosuvastatin or atorvastatin, —age, and other risk factors have been exhibited to
contribute to this onset [117]. A mechanism that can contribute to both the onset of T2DM
and the common myopathic side effects of statins is the inhibition of byproducts from the
mevalonate pathway that play roles in mitochondrial health, calcium channel activity, and
insulin signaling [118–120]. Together, these are significant factors that should be considered
when choosing an appropriate CVD therapy for each patient.

One venue through which statin treatment can epigenetically address CVD is by
promoting histone acetylation. In cancer cells, a panel of statins were tested for their ability
to affect histone acetylation, primarily histone 3, compared to known HDAC inhibitors
(HDACi) Trichostatin A (TSA) and valproic acid (VPA) [121]. Several statins exhibited
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the capacity to impede HDAC activity; however, lovastatin was found to most effectively
inhibit HDACs 1, 2, and 3 via competitive inhibition. The implications of these HDACs in
CVD are still under investigation; however, there are studies that suggest a cardioprotective
effect of HDACis [122–124].

Another means by which statins have demonstrated epigenetic effects is by altering the
expression of miRNAs. The miRNA miR-34a was observed to be upregulated in patients
with CVD and in animal models experiencing cardiac complications [125–127]. Being tied to
CVD, aging, and inflammation, miR-34a is a prime therapeutic target for the improvement
of cardiovascular health [128,129]. A study by Tabuchi et al. revealed that atorvastatin can
decrease miR-34a expression in CAD patient-derived endothelial progenitor cells [130].
Conversely, in cancer cell lines, simvastatin was described to reduce miR-34a [131]. The
epigenetic effects of statins have already played a central role in recent cancer research
and their promising results are of great inspiration to further expand their research to
potentially combine statin and epigenetic therapy for the treatment of CVDs.

4.2. Calcium Channel Blockers

There are two major sub-categories of Calcium channel blockers (CCB): dihydropy-
ridine CCBs (DHP CCB) and non-dihydropyridine CCB (Non-DHP CCB). DHP CCBs
comprise pharmaceuticals such as amlodipine and nifedipine, whereas Non-DHP CCBs
include verapamil and diltiazem [132]. DHP CCBs act by dilating smooth vascular tissue
through the inhibition of the long-lasting, also known as L-type, voltage-dependent calcium
channels [133]. Conversely, Non-DHP CCBs work at inhibiting the calcium channels in
the heart, specifically at the sinoatrial and atrioventricular nodes, to reduce the heart’s
contractility and rate as well as dilate blood vessels [134]. These differences in the mecha-
nism of action between the subcategories can heavily influence practitioner prescription
decisions. Typically, CCBs are used for the treatment of angina and have demonstrated
benefits in morbidity and mortality when used to treat hypertension and other CVDs, such
as arrhythmias [135,136]. CCBs can also be useful after myocardial infarction (MI); however,
certain criteria including a prior attempt with combinatorial therapy of a beta blocker and
an angiotensin-converting enzyme (ACE) inhibitor should be met before proceeding [137].
Conversely, it is not recommended for CCBs to be used in patients with heart failure (HF),
as more recently, they have not demonstrated any beneficial therapeutic effects or, in more
perilous cases, have caused harm [138].

Typical side effects patients experience while taking CCBs are edema, nausea, headache,
and dizziness [139]. Some studies have discussed the potential association between CCBs
and an increased risk of MI, gastrointestinal hemorrhage, and cancer [140–142]. These
associations are still unclear, as other publications have described no association [143,144].
Further research on these potential associations is necessary, especially pertaining to sub-
category-specific associations. Another consideration for prescribing CCBs is their con-
traindications and interactions. For example, certain Non-DHP CCBs are not recommended
for patients with atrial fibrillation, atrioventricular blocks, or low blood pressure and can
raise digoxin levels [145].

Aside from their vasodilatory capacities, some CCBs can also exert epigenetic ef-
fects. There is evidence of CCBs reducing the biological age via epigenetic clocks by
maintaining the status of DNA methylation [146,147]. Modified DHP CCBs known as 1,4-
dihydropyridines (1,4-DHP) have exhibited the ability to activate SIRTs [148]. A study by
Manna et al. evaluated the 1,4-DHP derivative 3,5-diethoxy carbonyl-4-(4-nitrophenyl)-2,6-
dimethyl-1,4-dihydropyridine (DHP-8) in activating SIRT1 via protein docking, modeling,
and binding abilities [149]. DHP-8 was identified to be an allosteric enhancer of SIRT1
leading to the increased binding of SIRT1 to its targets and its cofactor NAD+. More recently,
another 1,4-DHP, MC2789, was found to activate SIRT3 in cancer cell lines, resulting in
elevated activation of manganese-dependent superoxide dismutase (MnSOD) [150]. This is
especially advantageous, as MnSOD protects the mitochondria from oxidative stress and
subsequent dysfunction [151]. The cardioprotective, antioxidant qualities of these Sirtuins
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and their link to longevity and metabolic regulations make them promising therapeutic
targets in the treatment of CVD [152,153].

4.3. Beta Blockers

Beta blockers are a diverse collection of drugs with varying pharmacokinetic and
pharmacodynamic properties. They work by primarily targeting the receptors in the heart,
beta-1 (β1) receptors, but can also target other tissues such as smooth and skeletal muscle
due to their versatile locations, beta-2 (β2) receptors [154]. Through the blocking of these
beta receptors, there can be a slowing of the heart rate, vasodilation, and an extension
of refractory times in the heart [155]. Beta-3 (β3) receptors were commonly targeted for
their utilization with weight loss and bladder control, but recently, they have exhibited
therapeutic value in the treatment of heart failure [156]. They have proven positive effects
on mortality and CVD when used in people with heart failure or acute MI; however, their
merit as a first-line therapeutic is under deliberation [157,158].

One study found that in the group of patients who had previously experienced an
MI and those who were diagnosed only with coronary artery disease (CAD) without
an MI, no significant difference was observed between the groups that received either
placebo or beta blockers [159]. In a recent meta-analysis, evidence for the benefits of beta
blockers was described to be heavily dependent on the context of the patient condition
such as the left ventricular ejection fraction (LVEF) capacity, the diagnosis of T2DM, or
the diagnosis of chronic kidney disease [160]. There are also common side effects such
as hyperglycemia, diarrhea, and dizziness to consider before prescribing [161,162]. Beta
blockers are also observed to modulate epigenetic regulations. Recently, a study conducted
in zebrafish demonstrated the ability of the beta blocker atenolol to reduce the methylation
of DNA [163]. This was exhibited to be mediated by atenolol’s binding and inhibition
of DNMT1. The connection between the regulation of DNA methylation and CVD is
well described; however, specifics on the therapeutic targeting of DMNTs still remain elu-
sive [164,165]. Other epigenetic modulators that the beta blockers metoprolol and atenolol
were described to impact were the expressions of miR-19a, -101, and let-7e from responsive
and nonresponsive patients [166]. By revealing which miRNAs are correlated with a re-
sponse to beta blockers, there can be the discovery of new drug epigenetic mechanisms,
potential therapeutic targets, and methods for guiding the prescription of beta blockers in a
patient-specific manner. Further investigation into the potential epigenetic mechanisms of
beta blockers and their promise in precision medicine is urged.

4.4. ACEIs/ARBs

Angiotensin I enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARB)
are recognized as first-line hypertension therapeutics for patients who are between the
ages of 18 and 60, are diabetic, have a risk or diagnosis of chronic kidney disease, or are
not black/African American [167]. ACEIs and ARBs both block different parts of the
renin-angiotensin-aldosterone system (RAAS) to reduce blood pressure. ACEIs were found
to reduce MI, CVD-related, and all-cause mortality in patients with heart failure, whereas
ARBs were more advantageous in the context of stroke and end-stage renal disease [168,169].
More recently, a meta-analysis conducted by Awad et al. described how ACEIs facilitated
the reduction in the expression of inflammatory markers such as tumor necrosis factor
α (TNF-α) and C-reactive protein (CRP), while ARBs only reduced interleukin 6 (IL-6)
expression [170]. The differences in the mechanisms of action between these classes can be
what are responsible for both the deviation in efficacy and for the emergence of side effects.

ACEIs block the Angiotensin I enzyme to inhibit the conversion of Angiotensin I
to Angiotensin II, which leads to vasoconstriction and a decrease in sodium and water
reabsorption [171]. Since ACE is produced in the lungs, the inhibition of this enzyme
prevents the breakdown of an inflammatory mediator, bradykinin. The increased buildup
of this mediator leads to a dry, hacking cough and, in severe cases, angioedema [172].
While the side effects of coughing may not seem perilous, this can affect quality of life
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and cause patients to discontinue this medication. Most patients describe the cessation
of the cough after a couple months of treatment; however, if persistent, other therapeutic
options such as ARBs should be considered [173]. Instead of inhibiting ACE, ARBs inhibit
the binding of angiotensin II by acting upon the receptors, predominantly Angiotensin II
type 1 (AT1) receptors, to reduce blood pressure [174,175]. Patients on this class of drugs
do not experience a dry cough, and other reported side effects are milder, making it more
tolerable than ACEIs [176]. As both classes offer benefits against CVD, their side effects
may be the determining factor for prescription decisions.

In addition to their attenuation of hypertension, ACEIs and ARBs can also exhibit epi-
genetic action. The ARB losartan was found to alter histone modifications in diabetic mice
when observing its benefits in diabetic nephropathy [177]. Both HATs and HDACs were
found to have modulated gene expression under losartan treatment, which was associated
with decreased inflammatory markers and improved kidney function. As the kidney is a
central component of the RAAS, recovering its function and mitigating its inflammation are
critical in ameliorating hypertension and subsequently CVD. Another study demonstrated
that losartan treatment attenuated the adipose-specific hypomethylation of AT1 receptor
genes and the upregulation of receptor expression in high-fat-diet rats [178]. Losartan
treatment not only reduced the blood pressure of the high-fat-diet-fed rats that persisted
even after 16 weeks of the discontinuation of the treatment but also improved the metabolic
lipid profiles and inhibited weight gain. This exemplifies that by addressing epigenetic
dysregulations, the prescription of medications does not have to be perpetual.

5. Epigenetic CVD Medications
5.1. HDAC Inhibitors (HDACIs)

Histone deacetylase (HDAC) is an enzyme that removes acetyl groups from the lysine
residues of both the histone and nonhistone proteins. HDACs are divided into zinc (Zn2+)-
dependent and nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms of
deacetylation [179]. Zn2+-dependent HDACs encompass Class I, Class II, and Class IV. Class
III HDACs are NAD+-dependent and known as Sirtuins (SIRTs), which will be elaborated
on later. When histones are deacetylated, usually at lysine and arginine residues, they
hold an overall positive charge, leading to tighter interactions with the negatively charged
DNA [180]. As a result, chromatin condensation occurs, restricting transcription factors
and other transcription machinery from accessing the DNA. In addition to transcriptional
changes at the site of deacetylation, HDACs can interact with other epigenetic mediators in
complexes or independently to direct further chromatin remodeling [181].

HDACs play vital roles in several physiological functions not limited to cell prolif-
eration and survival, insulin resistance, gluconeogenesis, as well as cardiac myocyte and
endothelial cell growth and function [124,182]. HDACs are observed to contribute to the
development and progression of atherosclerosis [183]. They are also exhibited to regulate
the signaling cascades in HF [184]. HDACs are crucial in the expression of leptin, a hor-
mone that promotes satiety and can contribute to obesity, which is a major risk factor in the
development of CVDs [185,186]. The inhibition of HDACs in diabetic and high-fat-diet-fed
mice has led to improved cardiac function, reduced oxidative inflammation, decreased
weight, and decreased serum glucose [187,188]. A summary of HDACIs, STACs, and HATIs
and traditional drugs with comparable mechanisms of action is depicted in Table 1. With
such a myriad of functions, HDACs and their inhibition open a huge venue for exploring
various treatment options for CVDs.
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Table 1. Summary of epigenetic and traditional drugs with similar mechanisms of action.

Epigenetic Drugs Mechanism of Action Similar Traditional Drug

Valproic Acid

Decreases the transcription of the
mineralocorticoid receptor to reduce
sodium and water retention, inhibits
cardiac remodeling, and attenuates

atrial fibrillation

Statins, ARBs, ACEIs,
Beta Blockers

Sodium Phenylbutyrate
Increases MnSOD activity, mitigates

reperfusion therapy post-MI, and
reduces ER stress

Calcium Channel Blockers

Vorinostat

Anti-inflammatory, prevents cardiac
remodeling, attenuates cardiac

dysfunction, lowers systolic and
pulmonary arterial pressure, inhibits

cardiac hypertrophy

ACEIs, Statins, ARBs

Trichostatin A

Decreases cardiac hypertrophy,
inhibits MAPK pathway activation,

decreases inflammatory marker
expression, and improves

eNOS expression

Statins, ARBs

Resveratrol

Anti-inflammatory, inhibits
cardiomyocyte apoptosis, inhibits
platelet adhesion and aggregation,
increases SOD expression, inhibits

oxidative stress, and improves
mitochondrial function

Statins, Calcium Channel
Blockers, Beta Blockers

Curcumin (Turmeric)

Inhibits miRNA expression, mitigates
cardiac hypertrophy, inhibits IL-6,
IL-1β, IL-18, and TNF-α, reduces

serum lipid levels, and reduces CVD
risk factors

Statins, ACEIs, ARBs,

5.1.1. Valproic Acid

Known for its original indication as an anticonvulsant, valproic acid is a staple
HDACI [189,190]. Valproic acid is an inhibitor of HDACs 1, 2, 3, and 8 from class I and
HDACs 4, 5, 7, and 9 from class II, with a preference for class I [191]. By inhibiting HDACs,
valproic acid can offer new options for CVD treatment. A study was conducted with
valproic acid to determine if the prevention of hypertension was possible by the acetylation
of the mineralocorticoid receptor (MR) in hypertensive rats [192]. It was identified that
treatment with valproic acid inhibited HDAC3, resulting in the increased acetylation of MR
and subsequent decreased transcriptional activity. MR controls the salt balance and water
homeostasis by regulating aldosterone, whose primary function is to increase sodium and
water retention [193]. A high retention of sodium and water increases intravascular volume
and pressure, contributing to hypertension and fluid retention in heart failure patients. In
another study, valproic acid was investigated for its potential to attenuate the remodeling
of the heart in a mouse model where an isoform of cAMP-responsive element modulator
(CREM) associated with atrial fibrillation was induced [194]. Valproic acid demonstrated
benefits for atrial remodeling through a reduction in fibrosis, thrombosis, and delaying the
onset of atrial fibrillation. This can offer significant promise in CVD treatment, as atrial
fibrillation is known to increase CVD and death [195]. Valproic acid has also exhibited
direct protective effects in cardiomyocytes after MI [196]. Recently, the same lab conducted
a meta-analysis on two retrospective studies under a similar circumstance after MI to eval-
uate the risk of HF between patients that had active prescriptions for valproic acid when
MI occurred and those who did not [197]. This meta-analysis provided some insight into
how those who had been prescribed valproic acid, specifically at a higher dosage, possibly
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experienced a protective effect against HF. While this can indicate the potential of valproic
acid in HF, further clinical studies are warranted to fully elucidate the effects. Cumulatively,
this preliminary evidence illustrates the merit of the consideration of valproic acid as a
treatment for CVD.

5.1.2. Sodium Phenylbutyrate

Sodium phenylbutyrate, a 4-phenyl butyric acid (PBA), is a pan-HDACI that also
serves as a chemical chaperone in facilitating the reduction in ROS [198]. An earlier account
of PBA’s potential in CVD treatment arose when it was implemented in a study to observe
if it can mitigate the toxic effects that the anticancer drug Adriamycin induced in the hearts
of mice [199]. Impressively, PBA was able to reduce several cardiac insults elicited by
Adriamycin treatment such as an improved ejection fraction, reduced cardiac structural
defects, and increased MnSOD activity. Another study demonstrated that through its
chaperone function, PBA facilitated the decrease in the unfolded protein response, which
is a detriment of myocardial reperfusion therapy after MI [200]. This study exhibited
that by inhibiting endoplasmic reticulum (ER) stress, PBA was able to improve cardiac
health. Through a similar mechanism, Wu et al. revealed that PBA treatment reduced ER
stress and ameliorated the remodeling of the pulmonary arteries in hypertensive rats [201].
Conversely, there are also studies that describe PBA as exacerbating cardiac dysfunction
and hypertrophy, especially when compared to other epidrugs [202]. The use of PBA in
CVD treatment still requires further inquiry; however, these initial findings have provided
a positive basis for future opportunities.

5.1.3. Vorinostat

Suberoylanilide hydroxamic acid (SAHA, also known as Vorinostat) is an HDACI
that is part of the hydroxymate group that also encompasses other HDACIs such as
Givinostat, Panobinostat, and Trichostatin A [203]. It works primarily by inhibiting Class I
and Class II HDACs and by competitively binding to the catalytic site. Vorinostat’s anti-
inflammatory properties and inhibitory effect on apoptosis can be of potential use for CVD
treatment, especially when HDACIs have been shown to prevent cardiac remodeling [204].
In rabbits with ischemic reperfusion injury and aged mice with diastolic failure, vorinostat
attenuated and even reversed cardiac dysfunction [205]. Another study demonstrated
that by vorinostat’s inhibition of HDAC6, there was a boosted cardiac pump function and
increased heat shock protein expression in MI rat models [206]. Heat shock proteins are
responsible for protein maintenance and have arisen as a potential target for the treatment
of CVD [207]. Vorinostat has also exhibited promise in the treatment of hypertension. In
samples from patients with pulmonary arterial hypertension (PAH), HDAC1 and HDAC8
were observed to be increased [208]. To investigate potential treatment options, pulmonary
artery-isolated adventitial fibroblasts were made hypoxic to mimic PAH as well as treated
with vorinostat and were found to markedly lower systolic pressure, mean pulmonary
arterial pressure, and cardiac hypertrophy. Together, these findings present the prospective
efficacy of vorinostat in CVD therapeutics.

5.1.4. Trichostatin A

Similar to Vorinostat, Trichostatin A (TSA) is a pan-HDAC inhibitor that works
both epigenetically and non-epigenetically by inhibiting mitogen-activated protein ki-
nase (MAPK) signaling [209,210]. Notably, the activation of MAPK signaling pathways
has been thoroughly implicated with cardiac hypertrophy, remodeling, and even the de-
velopment of atherosclerosis [211,212]. This can potentiate two approaches by which TSA
can be utilized for CVD intervention. Yang et al. put these approaches to practice as they
elucidated the MAPK regulation of nitric oxide (NO) production in the context of ischemia
and reperfusion [213]. They discovered that HDAC1 mediated the reduced acetylation
state of the gene promoter for endothelial nitric oxide synthase (eNOS) and that treatment
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with TSA rescued NO production. In CVD, eNOS and NO play pivotal roles in blood
pressure regulation, making them attractive therapeutic targets [214].

Other downstream targets of the MAPK signaling cascade include matrix metallopro-
teinases (MMP) that are responsible for the degradation of the extracellular matrix and
subsequent fibrosis during cardiac remodeling [215]. Further, inflammation can exacerbate
fibrosis, as inflammatory markers such as Interleukin-1 (IL-1), Interleukin-6 (IL-6), and
nuclear factor-κB (NF-κB) can upregulate MMP expression. This sets the stage for an
investigation into the mechanisms regulating cardiac fibrosis. In a study using mouse
cardiac fibroblasts, it was revealed that Angiotensin II activated HDAC1 and HDAC2,
resulting in the initiation of fibrosis [216]. Treatment with TSA proved to be advantageous
against fibrosis by inhibiting the binding of NF-κB to the promoter region of MMP9 and
Interleukin-18 that induces their expression. By addressing inflammation, MAPK pathway
activation, and epigenetic modifications, TSA sets a foundation for continued research into
the benefits of epidrugs in the treatment of CVD.

5.2. SIRT Family + Sirtuin-Activating Compounds (STACs)

Originally identified in yeast, SIRTs are Class III histone deacetylases that are nicoti-
namide adenine dinucleotide NAD+-dependent. In humans and other mammals, there are
7 SIRTs, each consisting of different subcellular localization, enzymatic activity, and binding
targets [217]. The SIRT family members are divided into four classes: Class I (consisting
of SIRT1, SIRT2, and SIRT3), Class II (SIRT4), Class III (SIRT5), and Class IV (SIRT6 and
SIRT7) [218]. Specifically, SIRTs 1, 2, 3, 6, and 7 have been identified to contribute to cardiac
regulations [219]. As Sirtuins are implicated across aging, metabolic diseases, and CVD, the
utilization of compounds that can modulate their activity can offer alternative epigenetic
therapeutic options [220].

Resveratrol

Resveratrol is a naturally occurring polyphenol that was originally discovered in the
roots belonging to Veratrum grandiflorum and Polygonum cuspidatum, plants that were used
in folk medicine [221]. Presently, resveratrol is found to be abundant in a multitude of
fruits and legumes. Resveratrol is a well-established epidrug, primarily for its prowess
in metabolic disease. As CVD is a metabolic disease and other metabolic diseases such as
obesity and T2DM are significant risk factors for CVD, the potential use of resveratrol for
CVD treatment is well founded. In a clinical study evaluating the effect of resveratrol on
platelet aggregation in participants with T2DM, it was revealed that resveratrol treatment
decreased platelet adhesion, aggregation, and thromboxane A2 production in both the
healthy and diabetic participants [222]. Other benefits from resveratrol treatment included
an improved expression of glucose metabolism enzymes and inhibited thrombus formation,
all while not impacting the viability of the platelets. One limitation of prolonged antiplatelet
therapy for the prevention of CVD is the risk of increased bleeding, especially in older
patients; resveratrol may provide a more viable alternative.

Recently, a clinical study over six months investigated the therapeutic value of resver-
atrol alongside traditional medications in hypertensive participants [223]. The effects of
combinatorial therapy with resveratrol on cardiac remodeling were modest; however, in the
serum, there were increased levels of SIRT3, superoxide dismutase (SOD), and klotho pro-
teins. This can be a strong indicator of the inhibition of oxidative stress, the enhancement of
mitochondrial function, and the attenuation of mineral reabsorption and excretion, which
can potentially continue even after halting resveratrol treatment [224–226]. Additionally,
the axis between resveratrol, SIRT3, and SOD is further demonstrated in a study using
the cell lines of patients with mitochondrial complex I deficiency [227]. It was elucidated
that resveratrol treatment increased SIRT3 expression and activity, leading to an increase in
SOD2 expression and activity, and ultimately mediated a reduction in oxidative stress.

Another Sirtuin that has presented promise in the treatment of CVD is SIRT1. Its
expression and activation have been linked to decreasing inflammation, modulating NO
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production, and improving metabolic parameters [228]. In rats modeling coronary mi-
croembolization (CME), resveratrol was assessed for the potential protective roles it may
play in cardiac health [229]. Resveratrol treatment demonstrated an amelioration of cardiac
function in CME rats via increased SIRT1 expression that directly led to reduced cardiomy-
ocyte apoptosis. A similar effect of resveratrol’s ability to reverse cardiac dysfunction was
exhibited in cardiomyocytes of diabetic cardiomyopathic mice [230]. This reversal included
improving the ejection fraction, the heart’s blood volume capacity, and reducing cardiac
fibrosis, which was identified to be mediated by SIRT1. Overall, these mechanisms of
resveratrol accentuate the advantages of resveratrol in the treatment of CVD.

5.3. HAT Inhibitors (HATIs)

As opposed to HDAC inhibitors, HAT inhibitors regulate acetylation by inhibiting
the enzymes that add the acetyl groups. The acetylation of histone tails neutralizes the
positively charged residues to impede the tight interaction between histone proteins and
DNA, thus promoting gene transcription. HATs are divided into two major classes: Type A,
the nuclear HATs and Type B, the cytoplasmic HATs [231]. Similar to HDACs, HATs can also
interact with other epigenetic modulators as well as participate in complexes [232]. HATs
are also described to contribute to the development and progression of CVD [233–235]. As
we have discussed the role of HDACs in CVD therapeutics, we must also look at the other
side of the coin.

Curcumin

Curcumin is a polyphenolic compound found in turmeric, a common spice historically
used in Southeast Asian cultures, whose pharmacological effects have been studied in
several diseases like cancer, arthritis, and other inflammatory diseases [236]. Curcumin’s
primary HAT target is p300 [237,238]. However, curcumin has demonstrated more versa-
tile epigenetic capacities such as inhibiting HDACs, modulating DNA methylation, and
altering miRNA expression [239]. Curcumin’s capacity to reduce inflammation, modulate
signaling cascades, and work at an epigenetic level makes it a viable therapeutic option for
CVD treatment.

Using a hypertensive rat model and an MI rat model, Morimoto et al. ventured to
observe the potential effects of curcumin on these mediators of heart failure [240]. In both
rat models, curcumin treatment demonstrated an enhancement of ventricular function and
mitigated cardiomyocyte hypertrophy. These benefits were proposed to be mediated by
curcumin’s inhibitory effect on p300, resulting in the decreased acetylation and activation
of the cardiac transcription factor GATA4 in the hypertensive rat model. This mechanism
was expanded upon in a more recent study where the same group sought to investigate
curcumin’s effects in left ventricular hypertrophy induced by hypertension [241]. Again,
curcumin exhibited cardioprotective effects by reducing fibrosis, hypertrophy response
gene expression, and the cell diameter of cardiomyocytes. This was accompanied by re-
duced GATA4 acetylation due to p300 inhibition. Activated GATA4 is known to associate
with other transcription factors such as serum response factor (SRF) and NK2 homeobox
5 (NKX2-5) to initiate the pathway for cardiac hypertrophy-related gene expression [242].
Curcumin has also exhibited antifibrotic potential in the heart of MI mouse models; to
further understand the mechanism, LPS-stimulated Raw 264.7 cells treated with curcumin
demonstrated an inhibition of inflammation through the downregulation of interleukin-1β
(IL-1β), interleukin-18 (IL-18), IL-6, and TNF-α [243]. Specifically, the decrease in IL-18 was
identified to inhibit transforming growth factor-β1-phosphorylated-small mothers against
decapentaplegic 2/3 (TGFβ1-p-SMAD2/3) signaling, responsible for cardiac fibrosis, down-
stream [244]. Curcumin can also be beneficial in CVD intervention by ameliorating risk
factors. In a meta-analysis investigating the lipid-lowering potential of turmeric and its
star compound curcumin, TG and LDL cholesterol were significantly reduced in patients
that received either treatment [245]. Additionally, no severe adverse effects were reported.
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With the potential to attenuate cardiac fibrosis and hypertrophy and reduce inflammation,
curcumin adds to the list of epidrugs that can be advantageous in the treatment of CVD.

5.4. Interventional Clinical Trial Updates of Epigenetic Drugs

A list of interventional clinical trials of epigenetic drugs in the treatment of CVDs is
compiled in Table 2. Even though many clinical studies are completed, the publication
of those studies’ outcomes is still required. One clinical trial (NCT03903302; https://
clinicaltrials.gov/ (accessed on 7 November 2023)) investigated the pharmacokinetics of
valproic acid in obese, borderline hypertensive but otherwise healthy subjects. Another
clinical trial (NCT00774306; https://clinicaltrials.gov/ (accessed on 7 November 2023))
evaluated the effects of valproic acid for its use as an antiepileptic medication in patients
with subarachnoid hemorrhages. Serum cholesterol, non-HDL cholesterol, HDL cholesterol,
lipoprotein A, and C-reactive protein were measured at baseline and post-treatment with
valproic acid or another antiepileptic medication. This study was terminated due to
inadequate follow-up, and no further analysis was conducted on this data. Other studies
investigating valproic acid have been withdrawn due to sponsorship termination, are of
unknown status, possibly due to recruitment, or are ongoing. Interestingly, there are no
recorded studies of sodium phenylbutyrate, vorinostat, or Trichostatin A in the context of
CVD. This can present a lucrative opening for the further research of HDACis as potential
interventions for CVD.

Table 2. Interventional Clinical Trials of Epigenetic Drugs in the Treatment of CVD.

Drug Condition/Disease Status NCT
Number Phase

HDACi
Valproic Acid Thrombosis Completed NCT03903302 Phase 1

Subarachnoid Hemorrhage Terminated NCT00774306 N/A
Anoxic Encephalopathy; Cardiac Arrest; Status

Epilepticus; Completed NCT02056236 N/A

Brain Injuries, Acute; Brain Injuries, Traumatic;
Brain Ischemia; Brain Hypoxia;

Hypoxia-Ischemia, Brain; Heart Arrest; Stroke;
Intracranial Hemorrhages; Coma; Persistent

Vegetative State;

Not Yet Recruiting NCT06081283 Phase 4

Acute Ischemic Stroke Recruiting NCT06020898 Phase 2
Cardiac Valve disease; Coronary Brain Artery

Disease; Organ Failure, Multiple; Unknown Status NCT03825250 Phase 1,
Phase 2

Cerebral Aneurysm Unknown Status NCT01460563 N/A
Acute Kidney Injury; Ischemia Reperfusion

Injury Withdrawn NCT04531579 Phase 2

Acute Kidney Injury; Ischemia Reperfusion
Injury Withdrawn NCT04531592 Phase 2

Post Cerebral Hemorrhage Completed NCT01115959 Phase 4
Cardiac Arrest Unknown Status NCT01083784 Phase 4

Cardiac Arrest; Status Epilepticus Recruiting NCT05756621
Pulmonary Arterial Hypertension Recruiting NCT05224531 Phase 2

Sodium
Phenylbutyrate No Recorded Studies

Vorinostat No Recorded Studies
Trichostatin A No Recorded Studies

STAC
Resveratrol Cardiovascular Diseases Completed NCT01449110 Phase 2

Cardiovascular Disease Completed NCT01564381 Phase 1,
Phase 2

Hypercholesterolemia Completed NCT02409537 Phase 2

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Table 2. Cont.

Drug Condition/Disease Status NCT
Number Phase

Vascular System Injuries, Lipid Metabolism
Disorders, Endothelial Dysfunction; Completed NCT01668836 N/A

Peripheral Artery Disease Completed NCT02246660 N/A
Metabolic Syndrome, Coronary Artery Disease Completed NCT02137421 N/A
Cardiovascular Diseases; Autonomic Nervous

System; Polyphenols; Recruiting NCT06020313 N/A

Coronary Artery Disease; Diabetes Mellitus,
Type 2; Active, Not Recruiting NCT03762096 Phase 1,

Phase 2
Pulmonary Disease, Chronic Obstructive; Completed NCT02245932 N/A
Chronic Obstructive Pulmonary Disease Completed NCT03819517 N/A

Peripheral Artery Disease Completed NCT03743636 Phase 3

Hypertension; Vascular Resistance; Terminated NCT01842399 Phase 1,
Phase 2

Coronary Artery Disease; Endothelial
Dysfunction; Menopause Recruiting NCT05808387 N/A

Cardiovascular Disease; Atherosclerosis;
Inflammation; Unknown Status NCT02998918 Phase 2

Autonomic Nervous System Disease; Blood
Pressure; Coronary Artery Disease; Heart Rate; Completed NCT06095635 N/A

Congestive Heart Failure Chronic Completed NCT03525379 Phase 2
Dilated Cardiomyopathy Unknown Status NCT01914081 Phase 3

Coronary Artery Disease; Metabolic Syndrome Completed NCT02137421 N/A
Coronary Artery Restenosis; In-stent Coronary

Artery Restenosis; In-stent Restenosis; Withdrawn NCT05093244 N/A

Diastolic Heart Failure; Heart Failure with
Preserved Ejection Fraction; Hypertension;

Hypertensive Heart Disease; Oxidative Stress;
Completed NCT01185067 Phase 1

Hypertension in Pregnancy; Intrauterine
Growth Restriction; Pre-Eclampsia; Pre-Term; Completed NCT04633551 N/A

HATi
Curcumin Cardiovascular Disease Completed NCT02088307 N/A

Abdominal Aortic Aneurysm; Acute Kidney
Injury; Completed NCT01225094 Phase 2,

Phase 3
Coronary Artery Disease; Inflammation;

Oxidative Stress; Unknown Status NCT04458116 N/A

Cardiovascular Disease; Atherosclerosis;
Inflammation; Unknown Status NCT02998918 Phase 2

Cardiovascular Abnormalities; Type 2 Diabetes
Mellitus; Unknown Status NCT01052597 Phase 4

Diabetes Mellitus, Type 2; Dyslipidemias;
Hypertension Recruiting NCT05753436 Phase 2

Cardiovascular Risk; Insulin Resistance;
Pre-diabetes; Type 2 Diabetes; Unknown Status NCT01052025 Phase 4

Heart Diseases; High Blood Pressure; High
Cholesterol; Obesity; Type2 Diabetes; Completed NCT03542240 N/A

Blood Pressure; Chronic Kidney Diseases;
Hyperemia; Vasoconstriction; Withdrawn NCT04132648 Phase 2

Hematoma, Subdural, Chronic; Withdrawn NCT03845322 Early
Phase 1

Hypertension in Pregnancy; Intrauterine
Growth Restriction; Pre-Eclampsia; Pre-Term; Completed NCT04633551 N/A

The list is compiled from ClinicalTrials.gov using the keywords ‘cardiovascular disease’ as the condition/disease
and ‘drug’, which are substituted with different epigenetic drugs as other terms. These trials are updated
as of 7 November 2023. (Abbreviations: NCT indicates ClinicalTrials.gov Identifier Number; N/A indicates
not available).
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There have been clinical trials within the STAC class focusing mainly on resveratrol. A
clinical study (NCT01449110, https://clinicaltrials.gov/ (accessed on 7 November 2023))
explored the safety and efficacy of resveratrol-enriched grape extract in patients for primary
and secondary cardiovascular prevention. This clinical trial provided a basis for interven-
tion with CVD at two time points of 6 months and 1 year. At the 6-month time point, grape
extract enriched with resveratrol significantly reduced ApoB, LDL, and oxidized LDL levels
in the serum samples compared to placebo [246]. The enrichment of grape extract with
resveratrol was key, as grape extract alone did not present with as impressive effects. After
a year, grape extract enriched with resveratrol was found to decrease IL-1β, TNF-α, C–C
motif chemokine ligand 3 (CCL3), and IL-6 in the peripheral blood mononuclear cells of
T2DM patients with hypertension [247]. Conversely, in stabilized patients with CAD, grape
extract enriched with resveratrol reduced plasminogen activator inhibitor type 1, which is
conducive to blood clotting, while increasing the anti-inflammatory cytokine adiponectin
in serum [248]. Most significantly, there were no observed adverse events across the clinical
study. In another trial inspired by the “French Paradox” of high saturated fat diets and low
CVD risk, the Effects of Resveratrol Supplements on Vascular Health in Postmenopausal
Women (NCT01564381, https://clinicaltrials.gov/ (accessed on 7 November 2023)) sought
to seek if a novel form of resveratrol can provide cardiovascular benefits. Different formu-
lations of Resveratrol have also been explored, but so far, no data have been reported from
any of these trials.

A clinical study (NCT01225094, https://clinicaltrials.gov/ (accessed on 7 November
2023)) investigated the potential of an acute prophylactic treatment of 4 g of curcumin daily
in patients that underwent elective abdominal aortic aneurysm repair to prevent associ-
ated complications [249]. It was revealed that curcumin supplementation unexpectedly
increased the risk of acute kidney injury compared to placebo or had no effect on targeted
biomarkers such as c-reactive protein, interleukin-18, and creatine. Possible reasons for
these outcomes that are contrary to a previous study are the formulation of the curcumin
supplement, the duration of the intervention period, and the concentration of each dose
provided [250]. Other completed clinical trials with curcumin have yet to be published, and
further studies are warranted to elucidate its therapeutic potential. There is an anticipation
for new clinical studies being implemented to delve deeper into the prowess that these
epidrugs have against CVDs.

6. Conclusions

As the demand for individualized and optimized therapy continues to increase, epi-
genetic modifications can help bridge the gap. Currently, novel epigenetic regulations
are being discovered in their contributions to the development and progression of sev-
eral diseases including obesity, metabolic dysfunction-associated steatotic liver disease,
osteoporosis, and, of course, CVD [251,252]. This begins to illustrate the major impact that
epigenetics can have on our current medical care practices in CVDs. As CVD maintains its
status as the leading cause of death globally, it is evident that traditional CVD therapeutics
alone are not enough to overcome this villain. In the battle against cancer, the combinatorial
therapeutics of chemotherapy medications and epidrugs are ongoing and encourage this
two-pronged approach [253]. This approach can also be applied in the CVD scenario,
although contraindications and drug interactions must be thoroughly evaluated for their
safety prior to prescription. The deficit of knowledge of the potential synergistic effects of
traditional CVD medications and epidrugs provides an exciting opportunity to not only
advance the field of medicine, but to also find new ways to improve patients’ quality of life.
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