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Abstract: Human schistosomiasis is one of neglected tropical diseases that remain highly prevalent in sub-
Saharan Africa (SSA). Human schistosomiasis is mainly caused by two species, Schistosoma haematobium
and S. mansoni, leading to urogenital and intestinal schistosomiasis, respectively. The World Health
Organization (WHO) recommends mass drug administration (MDA) with praziquantel as the primary
method of global intervention. Currently, MDA with praziquantel covers over half of the target
population in endemic SSA countries. However, an accurate diagnosis is crucial for monitoring
and evaluating the effectiveness of MDA. The standard diagnosis of both urogenital and intestinal
schistosomiasis relies on the microscopic identification of eggs. However, the diagnostic sensitivity of
this approach is low, especially for light or ultra-light infections. This is because Schistosoma eggs are
laid inside of the venous plexus of the urinary bladder or mesenteric vein, where the adult flukes live.
Approximately half of the eggs circulate in the blood vessels or are packed in neighboring tissues,
while the remaining half are expelled into the lumen of the urinary bladder or intestine intermittently
when the blood vessels are ruptured. In the field setting, the accuracy of any diagnostic method is
critical for proper management of the intervention. The present article reviews the recent prevalence of
urogenital schistosomiasis in SSA and highlights the practical limitations of diagnostic methods such
as urine microscopy, urine reagent strips, molecular diagnosis, and ultrasound scanning in the field
setting. Despite continuous global efforts to eliminate schistosomiasis over the past 20 years, many
areas still remain endemic in SSA. No single diagnostic approach achieves acceptable sensitivity
and specificity in the field setting. Therefore, any field survey should employ a combination of
these methods based on the purpose of the study to accurately monitor and evaluate urogenital
schistosomiasis. Based on diagnostic values and a cost–benefit analysis, a urine reagent strip test can
replace urine microscopy in the field setting. The WHO criteria by ultrasound diagnosis should be
updated including the echogenic snow sign and contour distortion.

Keywords: Schistosoma haematobium; urogenital schistosomiasis; sub-Saharan Africa; diagnosis; urine
microscopy; urine reagent strips; ultrasound scanning; echogenic snow sign

1. Introduction

Schistosomiasis is a human helminthiasis, acute or chronic, caused by the blood fluke
Schistosoma spp. Human schistosomiasis is clinically categorized into two forms: urogenital
and intestinal schistosomiasis. About 90% of the victims live in tropic or subtropic Africa.
The World Health Organization (WHO) estimated that at least 236 million people required
preventive chemotherapy (PC) in 51 endemic countries in 2019 [1].

There are six human-infecting species in the genus Schistosoma, but urogenital schis-
tosomiasis (UGS) is caused only by Schistosoma haematobium and other species induce
intestinal schistosomiasis (IS). UGS by S. haematobium and IS by S. mansoni are mixed en-
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demic in most poor communities of Sub-Saharan Africa (SSA). Both diseases are transmitted
to the human body by contacting contaminated water during daily life [1].

The WHO, the Schistosomiasis Control Initiative (SCI), global pharmaceutical compa-
nies, and several global and local non-governmental organizations (NGOs) are supporting
the implementation of PC by mass drug administration (MDA) with praziquantel to
eliminate both UGS and IS in endemic countries. The United Nations (UN) direction of
Sustainable Developmental Goals (SDGs) proposed a roadmap achieving the elimination
of schistosomiasis by 2030 [2].

The pharmaceutical company Merck KGaA has donated 1.5 billion tablets of prazi-
quantel in partnership with the WHO to support the MDA for both UGS and IS [3]. The
donation has enabled the coverage rates of PC for schistosomiasis to be over 60% for
school-aged children (SAC) in most African countries, but the national coverage varied by
country from 0.4% in South Sudan to 96.5% in Burundi in 2021 (Table 1) [4]. In the countries
where armed conflicts last for several years like South Sudan, the data might not be correct
because the control efforts by PC are limited.

The control programs by MDA mainly target SAC due to limited resources, but
about half of the UGS and IS victims are in communities outside of schools who are least
covered by PC. Many of them are children of pre-school age, and also there are many
school-unregistered children of school age. Furthermore, some groups of adults with
high risks are infected heavily, although adults are less infected than children [1]. The
MDA-uncovered infected people cause the discharge of eggs and keep a re-infection force
in the community. Those infected outsiders of the PC are the main hurdle to effectively
eliminate schistosomiasis in most endemic SSA countries for achieving the SDGs by 2030.
The WHO intends to achieve coverage of over 75% of SAC and encourages all partners
to eliminate both UGS and IS under streamlining the UN SDGs. The coverage rates have
increased continuously. The 75% overall coverage in SAC has been achieved but not in
national coverage in many SSA countries (Table 1). There are many limitations in the
control programs but uninterrupted MDA for all SAC in and out of schools may break the
fetters in SSA.

The control or elimination program of schistosomiasis can begin by successful funding
and the funding must be sustainable. When any country-owned self-funding program is de-
veloped, international programs may synergistically keep them sustainable. Of course, the
programs should organize various items of the field setting for real implementation, such
as work design, manpower training and supply, sampling and baseline survey, diagnosis,
drug supply and distribution, chemotherapy, education, monitoring of adverse effects after
chemotherapy, and evaluation of PC effects. The whole process must be complete for the
successful implementation of any control program. All of the components are important,
but the diagnostic measure in the field setting is especially critical for the program.

Field surveys of UGS or IS in a certain area give basic epidemiological information
of the main target community and population before launching an elimination program.
During or after implementation of the program, monitoring and evaluation (M&E) is
essential for correct interpretation. The baseline survey and M&E require a quality diagnosis
of UGS or IS. There are several kinds of diagnostic technologies for both UGS and IS, but
the practical diagnostic measures are limited in the field setting because of their diagnostic
values, compliance, and feasibility. The present article reviews the recent prevalence of
UGS in SSA and challenges of current diagnosis in the field setting.
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Table 1. WHO reports on preventive chemotherapy for schistosomiasis in sub-Saharan African
countries, 2021.

Countries No. of Treated People No. of Treated SAC SAC Coverage (%) National Coverage (%)

Angola 2,025,995 2,025,995 62.6 40.0

Benin 755,772 755,772 79.5 28.6

Botswana 364,502 364,502 86.3 25.7

Burkina Faso 1,154,320 870,624 89.9 89.9

Burundi 1,681,868 1,681,868 105.5 96.5

Cameroon 2,766,864 2,766,864 83.7 51.1

Central African Republic 106,940 106,940 68.4 6.5

Chad 1,887,341 1,887,341 91.3 45.5

Congo 79,859 79,859 70.2 18.5

Côte d’Ivoire 2,328,781 1,904,844 85.4 56.7

Democratic Republic of Congo 11,885,901 11,146,568 93.4 67.8

Egypt (2020) 2,897,891 1,448,102 98.9 98.8

Eritrea 374,853 168,590 95.3 82.8

Ethiopia 3,562,162 3,071,245 84.2 23.0

Gambia 63,011 37,607 46.6 13.6

Ghana 2,792,184 2,792,184 79.5 24.1

Guinea 2,192,543 2,192,543 91.8 45.4

Guinea-Bissau 83,515 83,515 99.8 50.7

Kenya 3,165,901 1,374,465 95.2 80.0

Liberia 489,715 489,715 84.8 35.3

Madagascar (2020) 2,705,026 2,676,453 80.4 27.3

Malawi 2,780,558 1,431,603 82.6 30.6

Mali 3,977,709 3,896,892 93.9 42.3

Mauritania 141,370 141,370 86.7 15.2

Mozambique 1,125,297 864,811 95.6 6.5

Namibia (2019) 143,383 143,383 70.7 57.4

Niger 6,943,175 2,748,014 92.8 65.2

Nigeria 1,810,420 1,433,132 49.0 6.6

Rwanda 2,856,299 1,027,010 98.4 94.8

Sao Tome and Principe 17,322 17,322 90.2 42.8

Senegal 1,845,926 1,482,743 95.6 64.1

Sierra Leone (2020) 1,071,836 678,929 61.1 35.7

Somalia (2020) 2,549,993 2,549,993 113.7 89.6

South Sudan 12,461 8,067 66.1 0.4

Sudan (2019) 3,058,201 2,483,677 55.0 37.9

Togo 463,782 174,469 94.6 11.3

Uganda (2020) 5,301,075 2,628,166 84.1 53.0

Tanzania 9,374,223 8,209,186 82.2 51.6

Zambia 1,925,614 1,925,614 80.0 43.8

Zimbabwe (2020) 404,006 317,617 79.0 11.8

Source: WHO. Control of Neglected Tropical Diseases. PCT Databank—Schistosomiasis, 2023 [4]. SAC = school-aged
children.



Life 2023, 13, 1670 4 of 22

2. Recent Status of UGS in Sub-Saharan Africa
2.1. Overall Reports on Prevalence

Every year, hundreds of articles are published on schistosomiasis. Table 2 summa-
rizes the recently reported prevalence of UGS in SSA that was indexed in PubMed [5–82]
following a review of reports by Aula et al. [83] up to 2020. Most of these reports were
cross-sectional studies describing the endemicity of UGS through parasitological surveys
that detected S. haematobium eggs in urine samples using urine microscopy (UM). Al-
though the reports were listed from most endemic countries in SSA, a higher number
of reported surveys were found in Cameroon, Ethiopia, Ghana, Nigeria, Tanzania, and
Zimbabwe (Table 2).

Table 2. Summary of prevalence reports of UGS by UM and hematuria in sub-Saharan Africa
countries after 2018.

Countries Studies Subjects No. of
Examined

Positive Rate, % by Year of
Survey

Year of
Publish References

UM MicH MacH

Angola

Mapping SAC 31,938 12.6 2018-9 2022 [5]

Cross-sectional SAC 17,093 5.0 13.6 2022 [6]

Cross-sectional SAC 1283 61.2 65.7 17.1 2013-4 2015 [7]

Benin Mapping SAC 19,250 17.56 2013-5 2019 [8]

Burkina Faso Cross-sectional SAC 228 0 2021 [9]

Cameroon

Cross-sectional Men 89 31.4 2022 [10]

Cross-sectional SAC 389 32.6 24.4 2018 2021 [11]

Cross-sectional Community residents 778 31.5 24.9 2018 2021 [12]

Cross-sectional Adults 509 18.7 16.5 2019 2021 [13]

Chad
Cross-sectional SAC 11,832 100 55 2015-9 2022 [14]

Cross-sectional SAC + Ad 258 39.2 58.9 2019 2022 [15]

Côte d’Ivoire

Cross-sectional SAC 170 20.6 2023 [16]

Cohort/ SAC + Ad 12,239 13.1 2015-9 2022 [17]

Cross-sectional Ad 901 1.0 2022 [18]

Ethiopia

Cross-sectional SAC 1171 12.2 22.5 2022 [19]

Cross-sectional SAC 1288 31.6 32.1 2021-2 2022 [20]

Mapping SAC 15,133 0.13 2.8 2018-9 2022 [21]

Cross-sectional SAC + Ad 12,102 0.2 2.4 2022 [22]

Gabon

Cross-sectional SAC 451 26.3 2021 [23]

Longitudinal SAC 328 43 2019 [24]

Longitudinal SAC 739 30.3 2012-4 2018 [25]

Gambia
Cross-sectional SAC 2016 10.2 18.0 0.5 2015 2021 [26]

Mapping SAC 10,434 4.2 2014 2021 [27]

Ghana

Cross-sectional SAC 336 12.8 2022 [28]

Cross-sectional SAC 520 6.5 2022 [29]

Cross-sectional SAC + Ad 114 22.8 2022 [30]

Cross-sectional SAC 309 10.4 2021 [31]

Cross-sectional SAC 469 21.1 2021 [32]

Cross-sectional SAC + PSAC 493 1.6 2021 [33]

Kenya

Cross-sectional Women 534 3.8 2018 2022 [34]

Cross-sectional SAC + Ad 897 3.2 [35]

Cross-sectional Health center visitors 451 15.1 2018 2020 [36]

Madagascar Cross-sectional SAC 1958 30.5 2015 2016 [37]
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Table 2. Cont.

Countries Studies Subjects No. of
Examined

Positive Rate, % by Year of
Survey

Year of
Publish References

UM MicH MacH

Malawi
Cross-sectional Fisherman 129 20.9 2022 [38]

Cross-sectional SAC 240 24.0 2019 2020 [39]

Mozambique Cross-sectional SAC 19,039 60.4 2011 2018 [40]

Niger Cross-sectional SAC + Ad 48,192 15.7 2011 2020 [41]

54,451 8.8 2015 2020 [41]

Nigeria

Cross-sectional SAC 250 15.2 2023 [42]

Cross-sectional SAC 5514 7.1 2019 2022 [43]

Cross-sectional Pastoral community 34.2 2.5 2022 [44]

Cross-sectional SAC 279 67.4 29.7 2022 [45]

Cross-sectional SAC 777 1.7 11.6 2015-6 2022 [46]

Cross-sectional SAC + Ad 432 28.9 2020 2022 [47]

Cross-sectional SAC 487 34.1 2022 [48]

Cross-sectional SAC 1113 13.7 13.7 2021 [49]

Cross-sectional SAC 2023 10.4 2021 [50]

Cross-sectional SAC 466 19.1 2021 [51]

Cross-sectional SAC 400 49.2 83.0 2021 [52]

Cross-sectional SAC 400 17.3 22.0 2021 [53]

Cross-sectional SAC 251 65.3 2018 [54]

Senegal

Cross-sectional Sac 821 66.7 2018 2021 [55]

Cross-sectional SAC
Ad

1285
300

54.2
32.0 2016-8 2020 [56]

South Africa
Cohort SAC 1976 16.9 2007-8 2020 [57]

Cross-sectional SAC 970 32.2 2010 2020 [58]

South Sudan Cross-sectional SAC 13,286 3.7 2016-9 2022 [59]

Sudan
Longitudinal SAC 9.1/35.2 2020 [60]

Mapping SAC 100,726 5.2 2016-7 2019 [61]

Tanzania

Cross-sectional SAC + PSAC 20,389 7.4 9.3 0.3 2019 2022 [62]

Hospital Women 216 2.3 2021 2022 [63]

Cross-sectional SAC 396 5.8 2022 [64]

Cross-sectional SAC 649 52.7 46.2 13.1 2021 2022 [65]

Cross PSAC 385 16.9 17.9 6 2021 2022 [66]

Cross-sectional Adolescents 433 15.9 3.0 2022 [67]

Cross-sectional SAC 1288 31.6 32.1 2021-2 2022 [68]

Cross-sectional SAC 389 6.9 9.5 1.3 2022 [69]

Cross-sectional SAC+ PSAC 1560 0.83 0.9 2021 [70]

Cross-sectional Women RA 426 4.5 2019 2020 [71]

Mapping Population-based
subjects 17,280 5.3 2006-7 2020 [72]

Cross-sectional SAC
Adult

39,207
18,155

5.4
2.7

6.5
2013-6 2018 [73]

Zambia

Cross-sectional SAC 173 3.5 2022 [74]

Cross-sectional SAC 421 9.7 2022 [75]

Cross-sectional SAC 243,148 61 2020 [76]
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Table 2. Cont.

Countries Studies Subjects No. of
Examined

Positive Rate, % by Year of
Survey

Year of
Publish References

UM MicH MacH

Zimbabwe

Cross-sectional PSAC 136 22.1 2022 [77]

Cross-sectional Pregnant women 4437 10.6 24.4 2021 [78]

Longitudinal PSAC 204 19.6 2019 2021 [79]

Cross-sectional SAC 361 26.8 2020 [80]

Cross-sectional SAC 12,656 17.6 2010-1 2020 [81]

Cross-sectional PSAC 416 35.1 2020 [82]

UGS = urogenital schistosomiasis, UM = urine microscopy, MicH = microhematuria, MacH = macrohematuria,
SAC = school-aged children, Ad = adults, PSAC = school-aged children.

2.2. Mapping Reports

Some of the surveys reported national- or state-level mapping of UGS (Table 2).
Mendes et al. [5] reported a 12.6% UGS prevalence through a mapping of 31,938 SAC in
Angola in 2018–2019. One population-based survey of 19,250 SAC in Benin confirmed
that UGS was predominant, with a 17.6% prevalence [8]. In Ethiopia, a mapping of
15,133 SAC in 2018–2019 reported a prevalence of 0.13% [21], while Camara et al. reported
a prevalence of 4.2% among 10,434 SAC in 2014 in Gambia [27]. Similarly, mapping in
Sudan reported a prevalence of 5.2% among 100,726 SAC in 2016–2017 [61], and a cross-
sectional study in Tanzania reported a prevalence of 5.3% through a population-based
mapping in 2006–2007 [72].

These mapping data have reported a relatively low prevalence, likely due to random
statistical population-based sampling. Given the random sampling, the prevalence of UGS,
reported as 4–5% in Gambia and Sudan by mappings, suggests medium to high endemicity
in that area [27,61]. Even when a focal survey reports rather high prevalence within limited
areas, neighboring communities show low endemicity in the real situation because UGS
forms its ecology within a rather narrow range. In this context, the mapping reports from
Angola of 12.6% and 17.6% in Benin among SAC suggest a high prevalence of UGS in
the subjected zone [5,8]. These mapping reports can be extrapolated to estimate, rather
accurately due to their statistical sampling, the number of infected individuals and the
distribution of UGS in the surveyed states. Therefore, mapping studies or population-based
surveys produce highly significant epidemiological data for better design of elimination
programs. It is optimal to implement regular mapping of UGS and other infectious tropical
diseases with continuous interventions in endemic countries.

2.3. Local Prevalence Reports

As shown in Table 2, most surveys screened SAC following WHO recommenda-
tions, which is a cost-effective approach and well reflects endemicity in the surveyed
locality [5–81]. The egg-positive rates varied from 0 to 67.4%, but the reported prevalence
rates mostly ranged from 10–20% between 2018–2022 (Table 2). An article reported a 0/228
egg-positive rate in Burkina Faso in 2021, which did not necessarily suggest no prevalence,
but a low prevalence [9].

Recent prevalence reports of UGS in known endemic areas in SSA showed a definite
reduction in most countries compared to those by Aula et al. [82] and Kalindra et al. [83].
These lowered rates are likely outcomes of extensive global PC under the UN direction
of SDGs [2–4]. After the launch of the Millennium Development Goals (MDGs) by the
UN in 2000 and ending in 2015, the impact on the elimination of tropical diseases was
significant. Since 2016, the SDGs have taken over the task of disease control activities. The
SDGs have identified neglected tropical diseases (NTDs) as major target diseases, alongside
HIV/AIDS, tuberculosis, and malaria [2]. Currently, global activities supported by MDGs
and successively by SDGs could have contributed to the reduction in the prevalence, deaths,
and disabilities caused by major tropical diseases, including schistosomiasis [4].
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Field surveys in endemic areas have continuously reported the persistent transmis-
sion of UGS in all of SSA (Table 2). Several articles have reported a high prevalence of
over 50% positivity in recent local surveys, including 100% and 39.2% in Chad [14,15],
60.4% in Mozambique [40], 67.4% and 65.3% in Nigeria [45,54], and 59.7% and 66.7%
in Senegal [55,56]. Most of these reports were from hotspots with high re-infection rates,
but some were unrecognized hyperendemic foci. Additionally, all surveys conducted in
Cameroon [10–13], Chad [14,15], Gabon [23–25], and Senegal [55,56] reported over 30% egg-
positive rates. In endemic areas of these countries, UGS is still highly transmitted locally,
although many previously known areas have become less endemic by repeated MDAs.

Taken together, UGS is still dominantly prevalent throughout SSA (Table 2) but the
endemicity is slowly becoming less due to extensive PC with praziquantel. As summarized
in Table 1, PC coverage is high in SAC, but the national coverage is still low in many
countries. Furthermore, the COVID-19 pandemic has suspended or cancelled most of the
intervention programs of NTDs, which may mean an actual increase in UGS prevalence
compared to what is currently known. The strategy for continuous and more extensive PC
focusing on the hotspots is required during the remaining SDG era.

3. Diagnosis of UGS

The recommended principal diagnosis for IS is fecal microscopy by the Kato–Katz
(KK) smear, according to the WHO guidelines [1]. The KK smear can detect IS by both
qualitative and quantitative screening of the fecal smear, but this method is limited by
its low diagnostic sensitivity. Fortunately, a rapid test that detects a circulating cathodic
antigen (CCA) or circulating anodic antigen (CAA) of S. mansoni can supplement the low
diagnostic sensitivity of the KK fecal microscopy for IS [84,85]. Because the CCA/CAA
test can detect trace amounts of an antigenic protein in urine, a positive test means active
infection, the same as egg positive. Therefore, the CCA/CAA test is a useful screening
of IS with a sensitivity of 89% and specificity of 55% and is especially sensitive for low-
intensity infection groups of IS [84]. While CCA/CAA is known to be specific to the
genus Schistosoma, its diagnostic sensitivity for S. haematobium infection is not high, with a
sensitivity of 39% and specificity of 78% [84]. The CCA rapid kit is useful for field surveys
of IS but not of UGS.

For the diagnosis of UGS, the global standard is UM for identifying eggs of S. haematobium
in the urine. The microscopic detection of eggs from urine provides the only direct evidence
of parasite infection and has the highest specificity. However, it is widely acknowledged
that the diagnostic sensitivity of UM is low; therefore, the egg-positive rates represent the
minimum confirmed rates. The actual infected population is likely higher than what is
detected due to the diagnostic limitations of UM. UM is particularly less sensitive for the
diagnosis of light infections caused by a low burden of infected worms, similar to the KK
smear for IS, because of the irregular and uneven passage of eggs. Other indirect methods
can supplement the diagnosis, such as the rapid stick test of microhematuria, serology, and
ultrasound scanning for the diagnosis of UGS.

3.1. Urine Microscopy

The microscopic observation of urine allows for the relatively easy identification of
S. haematobium eggs. These eggs possess distinctive size and shape characteristics that
enable microscopists to identify them with relative ease, provided that the urine samples
have been properly prepared. However, the diagnostic sensitivity of UM is limited due to
the irregular passage of eggs into the urine.

The worms may continuously lay eggs in their habitat. Some of these eggs are carried
along with the blood and flow systematically, while others become trapped near the
worms, forming blood clots adjacent to the infected venule. The infected venule undergoes
inflammation and swelling due to the stimulation by worms and eggs, which weakens its
wall particularly during acute UGS. When the urinary bladder is full, the pressure from
the bladder lumen compresses the venule wall, helping to keep it intact. However, during
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voiding, when the bladder is being emptied, the pressure is reversed, exerting force from
the wall towards the lumen. This pressure change can cause rupturing of the inflamed,
weakened, and engorged venule wall. The rupture of the venule wall during voiding leads
to the release of eggs into the urine which are then discharged into the environment. Once
in the environment, the eggs can continue the life cycle of S. haematobium through asexual
reproduction and larval growth in a snail host. After the rupture, the bladder wall and
venule undergo rapid tissue repair, resulting in only a few eggs being discharged through
the repaired venule wall.

UM is capable of detecting eggs of S. haematobium only when they are present in the
urine, and it is important to note that only approximately half of the eggs are passed in this
manner [84,85]. The remaining eggs are not excreted but instead are deposited in nearby
tissues such as the urinary bladder wall, male or female genital organs, or other organs in
the body via the bloodstream [38]. This process of egg deposition leads to inflammation,
granulation, fibrosis, and calcification of the affected tissues, which are characteristics of
chronic UGS.

3.1.1. UM by Filtration

The microscopic screening of filtered urine and morphological identification of S. haematobium
eggs constitute the globally recommended standard diagnosis for UGS as endorsed by the
WHO. According to this method, urine samples of 10 mL are filtered through a Millipore
membrane and the membrane is subsequently examined under a microscope [4]. Due
to their big size, the eggs can easily be observed and identified on the membrane. This
method allows for both qualitative and quantitative analysis, as the number of eggs on the
filter membrane can be counted. These egg counts are positively correlated with the worm
burden in infected individuals.

While the filtration-based UM is widely used in most surveys, it has certain limita-
tions. The procedure necessitates the use of filter membranes and cartridges, which are
produced solely by high-tech companies that may not be located in SSA. Moreover, in
endemic areas, urine samples can often contain sludge materials of blood cells, blood clots,
epithelial cells, and desquamated tissues, which can make the filtration process challenging
(Figure 1). In such not-uncommon scenarios, routine UM by filtration becomes difficult to
perform properly.
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The use of repeated UM with multiple urine samples taken on consecutive days may
enhance the detection of eggs, thereby addressing the low diagnostic sensitivity observed
in a single UM examination. Zulu et al. (2020) [58] conducted a study in South Africa
and reported that the egg-positive rate increased from 24.1% with a single urine sample
examination to 34.0% when using 3-day urine samples. Another study by Midzi et al.
(2020) [80] estimated the diagnostic sensitivity of a single UM to be 53.8% when employing
a comprehensive gold standard that combined UM, micro- and macrohematuria, and a
history of macrohematuria as positive evidence.

It is important to note, however, that this approach of multiple sampling and exami-
nation or the establishment of a comprehensive positive gold standard is feasible only in
limited intensive surveys on a small scale. This is due to challenges related to compliance
from both examinees and examiners. Consequently, most field surveys in practice adopt a
single sampling and examination approach, as they are cross-sectional studies that adhere
to the limitations of low sensitivity.

Researchers should take into account the low sensitivity of UM in prevalence surveys
despite UM being the standard diagnosis of UGS. The sensitivity is influenced by the
prevalence of disease and the infection burden. As the prevalence decreases, the sensitivity
of diagnosing UGS also decreases. In other words, the challenge lies in the diagnosis
of low or ultra-low-intensity infections of UGS, where the sensitivity of UM becomes a
significant concern.

3.1.2. UM by Centrifugation

In field settings, UM by centrifugation is used as an alternative to UM by filtration,
primarily due to the limitations of the filtration method. Since the eggs of S. haematobium are
relatively large and heavy, they can be easily concentrated through a short centrifugation
process of approximately 5 min or by allowing the urine to stand for a specific period of
time. By counting the eggs in the entire pellet obtained after centrifugation of 10 mL of
urine, quantitative UM can be performed. This method has the potential to replace UM by
filtration for both qualitative and quantitative examinations.

However, it is important to note that UM by centrifugation is limited by the require-
ment of centrifuge machines and additional time needed for the microscopy of speci-
mens with large pellet samples. Similar to UM by filtration, it also faces the limitation of
low sensitivity.

3.1.3. UM by or Mobile Phone Microscopy or SchistoScope

A mobile phone microscope, recently named the “SchistoScope,” was developed for
point-of-care screening and counting of S. haematobium eggs in urine within limited lab
settings in SSA [85–87]. This method offers several advantages, such as using mobile phones
instead of voluminous microscopes and the availability of semi-automatic programmed
screening. Numerous studies have reported the development of improved devices that are
more suitable for mobile lab use in the microscopic diagnosis of malaria and helminthiases.

One meta-analysis reviewed two reports on S. haematobium diagnosis using the
SchistoScope [85]. The first report showed a diagnostic sensitivity of 35.6% (95% CI 25.9–46.4%)
and a specificity of 100% (96.6–100%). The second report demonstrated a sensitivity of
72.1% (95% CI 56.1–84.2%) and a specificity of 100% (95% CI 75.9–100%) [85]. While the
diagnostic specificity was comparable to that of UM, the sensitivity was lower. However,
this method requires a special device to attach to the mobile phone and a light source for
reading the filtration membrane [86,87].

Despite microscopic examination of specific eggs being the standard diagnosis of
UGS, it is limited by low sensitivity. Particularly, light or ultra-light infections often yield
false-negative results. Therefore, when interpreting data and formulating intervention
strategies for elimination, it is crucial to consider these limitations.
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3.2. Detection of Hematuria

Hematuria refers to the presence of blood in the urine, either microscopical or gross.
Various diseases can cause hematuria, including malignancy, inflammations, infections,
and stones in the kidney, ureter, or urinary bladder. Among these diseases, UGS is the
most common cause of hematuria, particularly in SSA, both in its microscopic and gross
(or macroscopic) forms.

Gross hematuria is more frequently observed in cases of acute UGS, while the urinary
bleeding tends to become microscopical as the UGS progresses chronically. Consequently,
the detection of hematuria has been considered as evidence of UGS in SSA, especially
among children, as they rarely present with malignancies or other conditions that cause
urinary bleeding. The detection of hematuria is relatively simple and easy to implement in
the field setting for diagnosis, and several studies have reported its use as a diagnostic tool
for UGS (Tables 2 and 3).

3.2.1. Detection of Microhematuria by Urine Reagent Strips

Microhematuria (MicH) is defined as the observation of five or more red blood cells
per field using UM on a direct smear of urine, even when there are no visible signs of blood
in the urine. Direct smear UM is not practical in the field; therefore, urine reagent strips,
also known as urine dipsticks, are commonly used for screening purposes to detect MicH.
Numerous reports have compared the rates of MicH positivity with egg positivity using
urine reagent strips. Table 2 presents survey reports with UM and MicH or macrohematuria
(MacH) results, while Table 3 provides reports of the diagnostic evaluation of MicH.

Overall, urine reagent strips have shown higher positive rates than UM when using
the same urine specimens (Tables 2 and 3). Among SAC, the MicH rate ranged from 13.6%
with a 5.0% UM positivity [6], while it was 65.7% MicH among 1283 SAC with a 61.2% UM
positivity in Angola [7]. In a mapping study of SAC in Ethiopia, the positive MicH rate was
2.8% compared to a 0.13% UM positivity [21], and among 12,102 SAC and adults, MicH
was detected in 2.4% of individuals with a UM positivity of 0.2% [22]. While some studies
reported lower rates of MicH compared to UM in the same surveyed subjects, these studies
reported higher positive rates of MicH ranging from 0.5% to 10% (Table 2). The difference
between MicH and UM positivity was more pronounced in cases of ultra-light infections.
For instance, one cross-sectional survey reported a rate of 83% positive MicH cases among
400 SAC, with a UM positivity of 49.2% in Nigeria [52]. In UGS cases with heavy infections,
the two methods showed little difference in their positive rates.

The survey findings indicate that a certain portion of UGS cases with hematuria are
falsely negative by UM due to its low sensitivity. In SSA, it is reasonable to speculate that
most of the people with hematuria may have UGS because other causes of bleeding are less
common. When the UM positivity was set as the gold standard, the sensitivity of MicH by
urine reagent strips ranged from 60% to 100%, with a specificity of 75.7–99.8% (Table 3).
Ochodo et al. [84] reviewed 74 previous studies and estimated a sensitivity of 75% (95%
confidence interval 71% to 79%) and a specificity 87% (95% confidence interval 84% to
90%). Knopp et al. [72] reported an MicH positivity of 2.7% among 37,077 egg-negative
children and 71.6% among 2130 egg-positive children in Tanzania. The difference between
UM and MicH positivity is more significant in ultra-light infections with 1–5 eggs/10 mL
than those with other egg counts. The MicH-positive rates were 50.1% for 1–5 eggs/10 mL,
70.1% for 6–10 eggs/10 mL, 81.6% for 11–49 eggs/10 mL, and 93.0% for >50 eggs/10 mL.
Among egg-positive children, 28.4% were MicH negative and 7% of children with heavy
egg counts >50 tested negative [72]. These findings undoubtedly demonstrate the higher
diagnostic sensitivity of one urine reagent strip test compared to UM, although there are
some false-negative cases. Hematuria is not consistently present in UGS like egg passing
in urine. Another study demonstrated the infection-intensity-dependent accuracy of the
urine reagent strip test for the diagnosis of UGS, with 100% sensitivity observed for over
15 egg counts/10 mL [88]. Yet another study described a good sensitivity of 81% (95% CI
79–83%) and a specificity of 89% (95% CI 87–92%) of the MicH test [89]. Consequently, the
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detection of MicH using urine reagent strips is a choice of primary screening of UGS, and it
may replace UM for the diagnosis of UGS in the field setting of SSA.

3.2.2. Macrohematuria

Macrohematuria (MacH) is a condition characterized by visibly bloody urine that
is recognized with the naked eye. Prevalence surveys in SSA reported MacH positivity
rates from 0.3% to 3.0% in areas where the UM yielded 6.9–34.2% positive rates (Table 2).
Generally, the MacH rates were reported to be 1/10 or less compared to the positive rates of
UM or MicH. In a hyperendemic area, however, Bocanegra et al. (2015) [7] reported a high
MacH positivity rate of 17.1% among SAC in Angola, where the egg-positive rate was 61.2%
by UM and 65.7% by MicH. The diagnostic sensitivity of MacH was estimated at 27.1%,
while the specificity was 97.5% in the study [7]. The highest MacH positivity was recorded
at 55% at tip-villages in Chad, where the UM of subjected SAC identified a 100% positivity
rate in a newly recovered hyperendemic area of UGS [13]. Despite the extraordinarily high
prevalence, the area had not been noticed until the survey. Until 2015, UGS in that area
had been completely neglected, and the MacH survey marked the global record of 55%
positivity. In Nigeria, a MacH-positive rate of 29.7% was observed among 279 SAC, while
their UM-positive rate was 67.4% [45]. These reports demonstrated extraordinarily high
rates of MacH in hyperendemic areas of UGS where the UM-positive rate exceeded 60%.

Gross urinary bleeding occurs as a result of severe desquamation of the urinary
bladder wall and bleeding by rupture of multiple inflamed veins in acute UGS. The acute
inflammatory lesion of the bladder wall slowly progresses to a chronic state due to repeated
rupture and healing of the mucosa and veins, leading to progressive fibrosis. In chronic
UGS, even in cases with many eggs, the majority of urine samples appear grossly clear,
indicating a low diagnostic sensitivity of MacH. In reality, most individuals with MacH
have mixed lesions of acute and chronic UGS as they experience repeated super-infections
in hyperendemic areas [90,91]. The high positive rate of MacH in SSA suggests a state of
hyperendemicity of UGS in the survey regions.

3.3. Serodiagnosis and Molecular Diagnosis of UGS
3.3.1. Serology

Serology is one of common diagnostic methods of infections by identifying specific
antigens or antibodies. The detection of a CAA or CCA of S. mansoni in serum or urine by a
rapid dip test is promising for the diagnosis of IS but not for UGS [92].

Mangano et al. (2020) [93] examined 288 residents in Burkina Faso by enzyme-linked
immunosorbent assay (ELISA) to detect anti-SEA (secretory egg antigen) IgG antibodies in
their serum and the study reported a 63% positivity rate for S. haematobium infection. The
percentage of positive individuals increased in the age group of 5–9 years over 50% and
reached a peak of nearly 90% in individuals 10–14 years and 15–19 years; it decreased to
60% in adults. The serum antibodies remained detectable longer in aged individuals, which
represented cumulative exposure to the antigen rather than the current prevalence. The
serology data suggested that approximately 10% of the population remained unexposed
to S. haematobium infection in the surveyed endemic area of Burkina Faso [93]. Therefore,
serologic screening of serum antibodies provides endemicity information of UGS within a
certain defined area.

Song et al. (2018) [94] developed an in-house ELISA system for the diagnosis of UGS
using SEA of S. haematobium and detecting specific serum IgG antibodies. They screened
149 Sudanese subjects and found that 27 (18.1%) were negative by both UM and ELISA,
58 (38.9%) were UM positive, 119 (79.9%) were ELISA positive, 55 (36.9%) were positive
for either, 3 were UM-only positive, and 64 were ELISA-only positive. Considering UM as
the gold standard, the diagnostic sensitivity of ELISA was 94.8% while the specificity was
29.7%. These findings demonstrated that ELISA for specific IgG antibodies is not a suitable
choice for UGS diagnosis. The report also recorded that 18.1% of subjects were negative by
both UM and ELISA, suggesting that a proportion of the subjects had not been exposed
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to antigenic challenge by the parasite. A review by Hinz et al. (2016) [95] summarized
serological approaches for the diagnosis of all species of Schistosoma infection. Based on the
review, ELISA for serum antibodies to SEA of S. haematobium showed 87–96% sensitivity
and 31–32% specificity.

Serodiagnosis has limited diagnostic value with low specificity in high endemicity
areas due to numerous false-positive cases after cure. However, serology data may provide
valuable epidemiological information in target areas. Additionally, serodiagnosis holds
potential for diagnosing UGS in non-endemic or ultra-low-endemicity settings.

Sheele et al. (2013) [96] developed a rapid diagnostic test for S. haematobium based on
the detection of the surface IgG coat on filtered eggs with 97% sensitivity and 78% specificity.
However, no further studies were reported on this method.

3.3.2. Molecular Diagnosis

The detection of DNA or RNA fragments through polymerase chain reaction (PCR),
quantitative PCR (qPCR), loop-mediated isothermal amplification (LAMP), and recom-
binase polymerase amplification (RPA) has been applied for the diagnosis of UGS. In
Nigeria, PCR showed a positive rate of 34.7% in the 777 subjects while UM yielded only
a 1.7% positivity rate. This significant disparity between the two methods highlights the
notable difference in diagnostic outcomes [97]. Sow et al. (2023) [98] compared diagnostic
values of qPCR for UGS, which produced a sensitivity of 98.9%, specificity of 81.8%, positive
predictive value (PPV) of 58.1%, and negative predictive value (NPV) of 99.6%. Archer et al.
(2020) [99] conducted isothermal RPA targeting the S. haematobium Dra1 genomic region in
urine samples and assessed its diagnostic value in comparison to UM findings. The study
reported a sensitivity of 93.7% (88.7–96.9%), specificity of 100% (69.1–100%), PPV of 100%
(97.5–100%), and NPV of 50% (27.2–72.8%). The findings proposed RPA as a promising
field-applicable diagnostic measure because it used a low-temperature isothermal reaction
with minimally required equipment [99].

Table 3. Diagnostic evaluation of microhematuria for UGS.

Country

Urine Strip Test for Microhematuria

Gold-Standard (%) ReferencesPositive
Rate (%)

Sensitivity
(%)

Specificity
(%)

Positive
Predictive Value

Negative
Predictive Value

Angola 65.7 96.0 61.3 88.8 UM 61.2 [7]

Cameroon 24.9 70.3 87.9 UM 31.5 [12]

Ethiopia 22.5 99.3 88.1 53.8 99.8 UM 12.2 [19]

Ethiopia 2.35 100 97.4 UM 0.2 [22]

Tanzania 9.3 78 99.8 97.8 97.8 UM 7.4 [62]

0

48.0 96.6 82.6 77.8 97.4 UM 38.7

Zimbabwe 81 96.9 87.2 95.2 Early SI [78]

Zambia DDIA 60 UM 61% [75]

IHA 74

Meta-analysis 81 89 [89]

Tanzania 26.6 75.0 75.7 18.4 97.6 UM 6.8 [90]

Senegal 23.1 UM 20.3
qPCR 34.6 [98]

UGS = urogenital schistosomiasis, UM = urine microscopy, qPCR = quantitative polymerase chain reaction,
SI = Schistosoma infection, DDIA = dipstick dye immunoassay, IHA = indirect hemagglutination.

Gandasegui et al. (2015) [100] developed a LAMP assay called the Rapid-Heat LAM-
Pellet method targeting S. haematobium ribosomal intergenic spacer DNA sequences. The
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study used 94 urine samples and amplified their extracted DNA with primer pairs to show
100% sensitivity and 86.67% specificity.

Overall, several molecular diagnosis methods have been developed and all of them
have shown higher sensitivity than UM and MicH. The methods can serve as a reliable
gold standard for the diagnosis of UGS as they exhibit almost 100% sensitivity. It is well
known that UM is not sufficiently sensitive as a gold standard of UGS diagnosis; therefore,
the gold standard is a limitation of the evaluation of any diagnostic measure. However, the
molecular methods are limited in the field setting due to the requirements of sophisticated
reagents, complex procedures, and specialized equipment. The methods are warranted in a
well-established laboratory mainly for research purposes.

3.4. Ultrasound Scanning

In the year 2000, the WHO convened the Second International Workshop, during
which a guideline was developed to standardize the morbidity assessment of UGS using
ultrasound images [101]. Field researchers have utilized sonography to supplement UGS
diagnosis in endemic areas following the WHO guideline.

Kim et al. (2016) [102] analyzed sonography images of 948 subjects and proposed
inclusion of the “echogenic snow sign” in the urinary bladder as an additional sonographic
finding for diagnostic criteria of UGS. The study was conducted in Sudan, where UM
identified a 14.0% positive rate for S. haematobium eggs. Sonography of the same subjects
demonstrated a positivity rate of 16.4% according to the old WHO criteria, and a positivity
rate of 20.9% when the new criteria, which included the echogenic snow sign, were ap-
plied [102]. The study estimated the diagnostic sensitivity of ultrasound to be 81.6% using
the old criteria and 85.0% using the new criteria. When the gold standard was defined
as a positive result by either UM or ultrasound, the diagnostic sensitivity of UM was
70.0% according to the old criteria and 57.1% according to the new criteria. These findings
provide strong evidence supporting the diagnostic enhancement provided by sonography
in overcoming the low sensitivity of UM.

The term “echogenic snow sign” was coined to describe bright sonographic flares
observed within the urinary bladder. The flares are caused by tissue debris and aggluti-
nated blood cells suspended in the urine (Figure 2). The bladder wall in UGS undergoes
pathological changes of inflammation, thickening, tumor or polyp formation, and calcifica-
tion. The changes lead to desquamation of the bladder wall and/or blood vessels during
expansion and contraction of the bladder. The resulting tissue debris and desquamated
cells become suspended in the urine and appear as echogenic flares during sonography.
The urine containing necrotic tissue and cells looks grossly turbid and/or bloody and
echogenic by ultrasound (Figures 1 and 2).

Sonography is influenced by the subjective interpretation of images, requiring well-
trained sonographers and expensive portable equipment. However, despite these lim-
itations, this technique provides precious information of the bladder pathologies and
morbidity related to UGS. Ngome (2020) [103] recommended sonography as a useful di-
agnostic tool in Africa to differentiate morbidities and to ensure proper management of
patients’ conditions. In a study in Angola, Bocanegra et al. (2018) [104] followed up 70 SAC
by ultrasound scanning 6–8 months after praziquantel medication. Their images showed
improvement in 53 SAC (75.7%), no changes in 12 (17.1%), and progression in 5 (7.1%) [105].
The use of ultrasound allows for the practical and beneficial management of infected cases
of UGS by providing non-invasive and safe screening of the pathological consequences and
outcomes after medication.

Santos et al. (2015) [105] compared ultrasound images and cystoscopy findings of
80 subjects with UGS in Angola. They highlighted the diagnostic significance of identifying
the distorted shape of the urinary bladder [105]. Cystoscopy can directly visualize patho-
logical changes of the urinary bladder, but it is limited by its invasive nature. Cozzi et al.
(2020) [106] collected various ultrasound images of UGS as a pictorial essay, which may be
reference images for diagnostic image criteria.
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Figure 2. Ultrasound images of the urinary bladder in S. haematobium egg-positive Sudanese with 
the echogenic snow sign (arrows), wall thickening, and/or mass: (A) 14-year-old boy; (B) 18-year-
old girl; (C) 20-year-old man; (D) 6-year-old girl; (E) 5-year-old-girl. 
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In this context, ultrasound scanning of the urinary bladder serves as a valuable
diagnostic tool of UGS in the field setting. This method offers the advantages of being
non-invasive and providing real-time information on the pathological changes associated
with UGS. Furthermore, ultrasound scanning may produce other abdominal morbidities
together, such as liver pathologies by IS. The diagnostic sensitivity of ultrasound is higher
than that of UM, but it is important to update the old WHO criteria to include additional
findings, such as the echogenic snow sign [102] and distorted contour of the urinary
bladder [105]. However, it is essential to note that ultrasound diagnosis requires well-
trained sonographers and the use of expensive portable ultrasound equipment, which can
be a limitation in certain settings.

4. Conclusions

The present review summarized recent reports on UGS prevalence in SSA, mostly by
using UM of SAC. There were some mapping studies that reported prevalence rates ranging
from 0.13% in Ethiopia to 17.56% in Benin, but many cross-sectional surveys reported a
wide range of UGS prevalence, often much higher than those reported in the mapping
studies (Table 2). Furthermore, most of the reports were conducted before the COVID-19
pandemic. During the pandemic, most ongoing schistosomiasis control programs in SSA
had to be halted or cancelled, which may have resulted in an actual increase in UGS
prevalence compared to what is currently known. This situation is likely to cause a delay
in the elimination of UGS as outlined in the original roadmap set by the World Health
Organization (WHO). More aggressive surveys and intensive control activities are required
to eliminate UGS in SSA by 2030.

Table 4 summarizes advantages, limitations, and a cost–benefit analysis of the currently
used diagnostic methods of UGS. The diagnosis of UGS is crucial for any program, but there
is no single diagnostic method that is sensitive, specific, and practical enough for the field
setting. The current diagnostic methods for UGS have their advantages and limitations, as
described in Table 4. The global standard for UGS diagnosis is the detection of eggs through
UM, but its diagnostic sensitivity is low, especially in cases of ultra-light infections. The use
of a urine reagent strip may complement or replace UM by detecting microhematuria with
acceptable sensitivity and specificity. I propose the urine reagent strip as an alternative
standard method for UGS diagnosis in the field setting in SSA. Ultrasound may also be
included in the field program for UGS to monitor morbidity on site, but the diagnostic
criteria should be updated including the echogenic snow sign and deformity. There are
several options available for UGS diagnosis in the field setting, and researchers can choose
the most suitable methods based on the purpose of the survey.
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Table 4. Advantages, limitations, and cost–benefit analysis of current diagnostic measures of UGS in
the field setting.

Diagnosis Advantages Limitations Cost–Benefit Analysis

Urine microscopy
Standard method

Familiar in most endemic areas
High specificity (96.6–100%)

Low sensitivity (25.9–46.4%)
Very low sensitivity in

ultra-light infections (<10%)

Good
Cheap cost

Feasible

CCA/CAA

High sensitivity (89%) and
moderate specificity (55%)

for intestinal schistosomiasis
Good for field surveys in areas

with ultra-light infection

Reliable for S. mansoni infections
Not acceptable for diagnosis of

UGS
Cross reactions with other types

of schistosomiasis
Limited supply of the kit

Moderate
Moderate cost

Most feasible in the field
setting for IS

Urine reagent strips for
microhematuria

High sensitivity (71–79%)
High specificity (84–90%)

Easy to implement

Not standard, supplementary to
UM

Good
Cheap cost

Most feasible in the field
setting for UGS

Gross screening of
macrohematuria

Cheap
Easy

High specificity
Reflects acute infections

Low sensitivity (<10%) with
numerous false-negative cases Most cheap

Serology (ELISA) High sensitivity (87–96%)
Optimal in non-endemic areas

Low specificity (31–32%)
Not practical in the endemic

field setting in SSA

Moderate
Moderate cost

Lab facilities required

Molecular diagnosis
(PCR, qPCR, and LAMP)

High sensitivity (>90%)
High specificity (>95%)

Optimal for setting gold standard
Expensive reagents and high

technique

Well-established lab support,
not practical in the field setting
Feasible for small-scale surveys

Poor
Expensive method and

feasible only in lab

Ultrasound

High sensitivity (>80%)
High specificity (>80%)

Morbidity information of UGS
on site

Detection of other co-morbidities

Experienced sonographer
Expensive sonograph

Feasible for small-scale surveys

Poor
Expensive method

Feasible with a portable
sonograph

UGS = urogenital schistosomiasis, CCA = circulating cathodic antigen, CAA = circulating anodic antigen,
UM = urine microscopy, ELISA = enzyme-linked immunosorbent assay, PCR = polymerase chain reaction,
qPCR = quantitative polymerase chain reaction, LAMP = loop-mediated isothermal amplification.
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Abbreviations

CAA circulating anodic antigen
CCA circulating cathodic antigen
ELISA enzyme-linked immunosorbent assay
IS intestinal schistosomiasis
KK Kato–Katz
LAMP loop-mediated isothermal amplification
MacH macrohematuria
M&E monitoring and evaluation
MDA mass drug administration
MDGs millennium development goals
MicH microhematuria
NGO non-governmental organization
NTDs neglected tropical diseases
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PC preventive chemotherapy
PCR polymerase chain reaction
qPCR quantitative polymerase chain reaction
RPA recombinase polymerase amplification
SAC school-aged children
SCI schistosomiasis control initiative
SDGs sustainable developmental goals
SEA soluble egg antigen
SSA sub-Saharan Africa
UGS urogenital schistosomiasis
UM urine microscopy
UN United Nations
WHO World Health Organization
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