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Abstract: The female genital tract (FGT) performs several functions related to reproduction, but due
to its direct exposure to the external environment, it may suffer microbial infections. Both the upper
(uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells
(macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its
upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An
alteration of the physiological equilibrium between the local microbiota and immune cells leads
to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic
vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can
lead to severe complications in reproduction and pregnancy. The use of natural products, such
as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current
investigation. In spite of positive results, more research is needed to define the most appropriate
administration, according to the type of patient.

Keywords: female genital tract; microbiota; immunity; lactoferrin; polyphenols; probiotics

1. Introduction

The female genital tract (FGT) consists of the uterine cervix, fallopian tubes, vagina
and vulva, which perform various functional steps, such as the passage of the spermatozoa
during insemination, and the expulsion of the fetus and placenta during delivery, and of
the exfoliated endometrium during the menstrual period [1,2].

Because of its direct exposure to the external environment, the FGT is very susceptible
to suffering microbial infections and inflammation. Under steady-state conditions, protec-
tion from invading pathogens is afforded by epithelial cells, resident immune cells, and
the microbiota [3]. The cervix and vagina are covered by a stratified squamous epithelium,
which represents a barrier against pathogens, as demonstrated by the evidence that its
destruction increases the risk of HIV infection [4]. Innate immunity is based on the function
of uterine natural killer (NK) cells, which recognize and lyse infected cells [5].

Macrophages represent the second most copious contingent of immune cells in the
endometrium, which engulf and kill microbes, as well as self-cells [6].

As far as adaptive immunity is concerned, it is mostly T cells that are found in
cervical and vaginal tissues, with tissue-resident memory (TREM) cells protecting against
pathogens [7].

The cervico-vaginal microbiota constitute a complex micro-ecosystem, which play a
critical role in maintaining homeostasis. The cervico-vaginal microbiota and their main
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functions have been well known for a long time, thanks to Albert Döderlein’s 1892 work
that discovered and described the main features of certain vaginal acidogenic bacteria.
However, the uterine microbiota have been less investigated than those of the vagina. Their
composition appears to depend on disease status, such as in the case of endometrial cancer,
and implantation failure [8,9].

Lactobacillus spp. form the predominant genus in the healthy FGT, providing several
beneficial effects to the host. In fact, they maintain the vaginal pH at 3.8–4.5, through the
production of lactic acid by the vaginal epithelial cells. In turn, the lactic acid regulates
inflammation in the acidic microenvironment, while inhibiting the proliferation of other
microorganisms, and competing with pathogens for survival and nutrition.

According to a few reports, Lactobacillus spp. Are not often detected in the en-
dometrium, where a prevalence of Gardnerella (G.) vaginalis, Enterobacter, and Streptococcus
(S.) agalactiae has been observed [10–15].

In the vagina, the microbiota are influenced by hygienic conditions, temporal dynam-
ics, menstrual cycles, hormone levels, and concurrent diseases [16,17].

An alteration of the FGT microbiota may lead to a condition of so-called dysbiosis,
with an increase in pathogenic bacteria over Lactobacillus [18–20]. In this respect, the
main dysbiosis-mediated infections include vaginitis, endometritis, cervicitis, and pelvic
inflammatory disease (PID) [21–23].

Aerobic vaginitis (AV), bacterial vaginosis (BV), and Chlamydia trachomatis (C. t.)
infections represent the most-studied FGT infections.

In women of childbearing age, the incidence of AV is about 10%, with a preva-
lence of aerobic bacteria or Enterococcus [24]. BV is the most frequent vaginal disease
in childbearing-age women, with serious consequences, such as infertility, miscarriage,
the premature rupture of membranes, premature delivery, and an increased risk of sexu-
ally transmitted infections [25,26]. Microbiologically, BV is characterized by a decrease in
Lactobacillus and an increase in anaerobic and microaerobic bacteria [27]. The prevalence
of C. t. in women aged 15–49 years is 1.5–7%, with an asymptomatic clinical course. As
lactic acid is an inhibitor of C. t. growth, vaginal microbiota containing Lactobacillus iners,
which produces less lactic acid, promote the risk of C. t. infection [28,29]. Among 10% of
C. t.-infected women, a progression toward PID has been reported, with the risk of severe
ectopic pregnancy, abnormal reproductive function, and cancer [30].

Novel therapeutic approaches to improve the function of the FGT immunity–microbiota
axis are mainly represented by the administration of natural compounds; i.e., probiotics,
lactoferrin (LF), and polyphenols.

Probiotics exert several beneficial effects, even including the release of antimicrobial
substances, and the modulation of the immune system [31–33]. LF is an antimicrobial
peptide (AMP) that is able to prevent bacterial and fungal infections in the FGT [34].
Polyphenols are endowed with antioxidant, anti-inflammatory, and microbicidal activi-
ties [35], but data related to their effects on FGT infections are still experimental.

In the present review, an emphasis will be placed on the description of the resident
immune cells and the microbiota of the FGT. Then, the main dysbiosis-mediated FGT
infections will be elucidated. Finally, novel therapeutic attempts to treat FGT infections
with natural products will be discussed.

2. Anatomy of the Female Genital Tract

The FGT consists of the lower FGT (vagina and ectocervix), with a large colony of
microbes, and the upper FGT (endocervix, uterus, and oviduct) which, conversely, is sterile.
Histologically, the cervix is composed of stroma and epithelial cells with an extracellular
matrix, including type I and type II collagen. Type I collagen, which represents 70% of the
extracellular matrix, maintains tissue integrity. The endocervix is covered by a columnar
epithelium, while the ectocervix and vagina are covered by continuous stratified non-
keratinized squamous epithelial cells. The area between the endocervix and the ectocervix
is the so-called transformation zone, which is composed of squamous columnar epithelial
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cells. Columnar epithelial cells are composed of tight junctions that are regulated by
estrogen, cytokines, and growth factors. On the other hand, the squamous epithelium
contains adhesive junctions and desmosome junctions, which permit the passage of small
molecules through the intercellular space. Notably, epithelial cells can act as presenting cells,
thus recognizing microbial antigens and secreting antibiotics, cytokines, and chemokines.

3. Main Features of the Cervical Mucus

Cervical mucus is a product of goblet/secretory cells, in the context of the crypts.
Mucins are the main constituents of cervical mucus, with mainly MUC5B and MUC5AC
contained in the cervix. MUC5B reaches its highest level at the ovulation phase, with a
watery secretion, which permits the entry of sperm into the upper reproductive tract. Con-
versely, during the luteal phase, the MUC5B expression level is decreased by progesterone,
thus leading to a thickening in the cervical mucus. There is evidence that the menstrual
cycle determines a bimodal distribution of the cervical immune components. Taking into
consideration IgG/IgA, lactoferrin, interleukin (IL)-10, and antimicrobial peptides, these
factors are expressed at higher levels at the early stage of the follicular phase, followed by a
dramatic decrease in the middle of menstruation, and a further increase at the latter stage
of menstruation.

In general terms, the cervical mucus represents a defense barrier, with mucin able
to capture pathogens; meanwhile, the local immune response begins to act. In this last
respect, lactoferrin, IgG, and IgA inhibit the adhesion and invasion of the cervical cells by
pathogenic microorganisms [36].

4. The Immune Arsenal of the FGT
4.1. Innate Immunity

The epithelial cells of the FGT are non-immune cells that mostly defend the lower
reproductive tract, cervix, and vagina. A stratified squamous epithelium, where tight
junctions (TJ) predominate, covers the lower tract, while the upper portion, fallopian
tubes, uterus, and inner cervix are characterized by a monolayer columnar epithelium,
endowed with a more tightly connected network [37,38]. The effectiveness of the epithelial
barrier of the FGT is supported by the evidence that its destruction appears to promote
HIV infection, as well as the recruitment of HIV target cells. As was recently reported,
the treatment of bovine endometrial epithelial cell lines with astaxanthin, a carotenoid,
could reduce the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines,
while increasing the activity of cell superoxide dismutase and catalase, insulin-like growth
factor, and epithelial growth factor [39]. In particular, such a treatment led to an increased
expression of claudin, a TJ involved in the maintenance of the epithelial defense barrier
against pathogen invasion.

Thanks to the toll-like receptors (TLRs) expressed on their membrane, epithelial cells
from FGT are able to bind specific molecules of gram-positive and gram-negative bacteria,
e.g., peptidoglycans and LPS, respectively [40], thus secreting anti-microbial peptides
(AMPs) and cytokines [41–44]. AMPs, such as human beta defensin (HBD), LL-37, S200
protein, lysozyme, and iron metabolism proteins, prevent invasion by microbes in the
upper FGT, while regulating the vaginal microbiota [45].

Moreover, epithelial cells from the FGT release a plethora of cytokines, i.e., interleukin
(IL)-1 alpha, IL-1 beta, and tumor necrosis factor (TNF)-alpha, in response to Prevotella,
Mobiluncus, and Sneathia, in the course of BV [46,47].

Natural killer (NK) cells are mostly confined to the uterus and perform a protective
function against pathogens [48]. Functionally, NK cells protect the placenta from Listeria
infection, and prevent the infection-induced abortion via secretion of granulysin into the
placental trophoblast [49].
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Macrophages are very abundant in the endometrium, playing a double role in the
context of the FGT [50]. In fact, they engulf and kill pathogens, thus contributing to local
innate immune defenses [51]. On the other hand, they maintain a tolerance milieu in the
FGT, via the release of interleukin (IL)-10, transforming growth factor (TGF)-beta, and
indoleamine (IDO) [52,53].

Dendritic cells (DCs) are the major APCs of the immune system and, via the activation
of T regulatory (TREG) cells, maintain a steady-state condition in the FGT microenviron-
ment [54]. Conversely, evidence has been provided that in the context of the cervical
mucosa, DCs can capture and transfer HIV-1 via Siglec-1, thus facilitating viral dissemina-
tion [55].

4.2. Adaptive Immunity

In the context of the FGT, T and B lymphocytes represent the major players. In the
human cervical mucosa and vagina, antigen-specific TRM CD8+ cells have been identified,
and T-cell-induced vaccines are able to prevent FGT HIV infection [56,57]. Quite inter-
estingly, estradiol has been shown to increase the TRM CD4+ cell response to the Herpes
simplex (HSV) virus, via IL-17 secretion [58]. With special reference to the contingent of FGT
Treg cells, they maintain the local immune tolerance, also attenuating the inflammatory
response in the case of microbial stimulation of the immune system [59].

B cells are scarcely present in the FGT mucosa and, just recently, it has been reported
that migrant memory B cells secrete specific IgG-2b anti-HIV in the vagina [60].

The immune components of the FGT are described in Figure 1.
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Figure 1. Local immunity in the FGT. Natural immunity and adaptive immunity contribute to the
protection of the mucosal FGT, and also to maintaining a tolerogenic profile of the genital habitat.

Studies on the effects of the menstrual cycle and menopause on cervical T lymphocytes
are controversial. For instance, the total number of CD8 + T cells and CD4 + T cells in
the cervix remains unaltered, even including CD8 + T cell toxicity. Notably, transforming
growth factor (TGF)-beta plays a dual role, inhibiting endometrial CD8 + T cells in the
secretory phase, while TGF-beta does not act on cervical CD8 + T cells. This still allows
a protective role by the cervix against pathogens, when the secretory endometrium is
immunosuppressed by embryo implantation. Conversely, other studies report that the
menstrual cycle and age impair the immune function. The levels of chemokine (C-C) motif
ligand 2 (CCL2) and local CD4+ TRM cells increase during the follicular phase, because the
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inhibitory effect of progesterone decreases, and more CD8+ TRM cells are recruited to the
cervix.

Furthermore, the frequency of CD8 + T cells and DCs decreases with age in the cervical
tissue of postmenopausal women, thus supporting the increased susceptibility of these
women to genital infections.

5. Composition and Function of the FGT Microbiota

With special reference to microbial communities, there are differences between the
upper and lower tract of the FGT, with a higher bacterial load in the latter [61,62]. Mostly,
the vaginal microbiota have been the object of intensive investigation, which has led to the
identification of five separate community state types (CSTs) [63–65]. Lactobacillus represents
the major microbiota of the vagina, with Lactobacillus (L.) crispatus, L. gasseri, L. iners, and
L. jensenii very dominant [66]. Notably, the microbiota that are non-Lactobacillus prevalent
appear to be associated with disease status and inflammation [67].

Among CSTs, CST-I, CST-II, and CST-V, which contain higher levels of L. crispatus,
L. gasseri, L. iners, and L. jensenii, are characterized by a low pH, a high concentration
of lactic acid, and a less inflammatory status [68–70]. Conversely, CST-IV, dominated by
bacteria such as Atopobium, G. vaginalis, Mobiluncus, Prevotella, Anaerococcus, and Sneathia,
are somewhat associated with BV [71,72].

The composition of the vaginal microbiota seems to influence the epithelial barrier
function, as in the case of L. crispatus, which is associated with mucus that is able to trap
HIV more effectively than other types of Lactobacillus spp. do [67]. On the other hand,
BV-associated bacteria produce sialidase, which degrades sialic acid, a critical component
in the mucus [68].

The vaginal levels of AMPs are associated with vaginal microbial diversity, and higher
amounts of HBD-2, lactoferrin (LF), and LL-37 have been detected in the cervico-vaginal
lavage of women with BV [73–75].

It is worth mentioning the role played by microbial metabolites in the vagina. The
levels of D-lactic acid (D-LA) and L-lactic acid (L-LA) produced by the vaginal Lactobacillus
greatly contribute to vaginal health. In fact, both reduce the pH of the vaginal mucosa,
preventing the growth of pathogens, and also reducing the release of pro-inflammatory
cytokines by epithelial cells [76]. In particular, LA in vitro induced the release of the
anti-inflammatory cytokine, Il-1 receptor antagonist, and inhibited the TLR-mediated
production of pro-inflammatory cytokines, in response to seminal plasma [77]. Furthermore,
Lactobacillus spp. produce hydrogen peroxide and bacteriocins, which inhibit the growth of
pathogens [78,79]. Furthermore, cervicovaginal supernatants of L crispatus could restore the
endocervical barrier integrity, otherwise impaired by G. vaginalis culture supernatants [80].

A few studies have been focused on the role of vaginal short-chain fatty acids (SCFAs),
for their protective role at the gut-mucosa level [81]. There is evidence that SCFAs are
elevated in the vaginal mucosa of BV patients [82].

According to another report, high levels of SCFAs could, in vitro, trigger the release of
pro-inflammatory cytokines from vaginal and cervical epithelial cells [83]. Taken together,
the above results suggest that more studies are required, to clarify the exact role of SCFAs
in the FGT.

The composition and function of the FGT microbiota are illustrated in Figure 2.



Life 2023, 13, 1531 6 of 16
Life 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 2. Composition and functions of the vaginal microbiota. Lactobacillus spp. and their metab-

olites are able to increase the protective epithelial barrier, also acting as microbicidal and anti-in-

flammatory agents. pH < 4.5; L. a. concentration 120 mm; SCFAs concentration: acetate <120 mm. 

6. Dysbiosis and FGT Infections 

Both the microbiota and metabolites undergo modifications during cervicovaginal 

dysbiosis. Lactobacilli utilize sugars, such as glycogen and glycogen hydrolysates, to pro-

duce lactic acid that, together with bacteriocins and biosurfactants, protect the cervicovag-

inal milieu. As described in the following paragraphs, BV is one of the most frequent 

forms of dysbiosis in the vagina, due to a decrease in Lactobacilli and an increase in anaer-

obic bacteria. At the same time, metabolites are also altered during cervicovaginal dysbio-

sis, with high levels of biogenic amines and short-chain fatty acids, and low levels of some 

amino acids, such as tyrosine and glutamate. Conversely, the metabolic signature of AV 

is less defined than that of BV [84–86]. 

In the following paragraphs, the major FGT infections will be described, in relation 

to the condition of dysbiosis. 

Aerobic Vaginitis 

AV patients harbor increased numbers of aerobic bacteria or Enterococcus in the 

vagina. Among these, Escherichia (E.) coli, S. agalactiae, S. anginosus, Staphylococcus (S.) au-

reus, S. epidermidis, and Enterococcus faecalis are the main ones. 

With special reference to the pathogenic mechanisms elicited by AV-related bacteria, 

Staphylococcus spp. in the vagina cause an increase in SCFAs, especially acetate, as well as 

the triggering of the anti-inflammatory pathway sustained by Treg cells [87–89]. 

Figure 2. Composition and functions of the vaginal microbiota. Lactobacillus spp. and their
metabolites are able to increase the protective epithelial barrier, also acting as microbicidal and
anti-inflammatory agents. pH < 4.5; L. a. concentration 120 mm; SCFAs concentration: acetate < 120 mm.

6. Dysbiosis and FGT Infections

Both the microbiota and metabolites undergo modifications during cervicovaginal dys-
biosis. Lactobacilli utilize sugars, such as glycogen and glycogen hydrolysates, to produce
lactic acid that, together with bacteriocins and biosurfactants, protect the cervicovaginal
milieu. As described in the following paragraphs, BV is one of the most frequent forms
of dysbiosis in the vagina, due to a decrease in Lactobacilli and an increase in anaerobic
bacteria. At the same time, metabolites are also altered during cervicovaginal dysbiosis,
with high levels of biogenic amines and short-chain fatty acids, and low levels of some
amino acids, such as tyrosine and glutamate. Conversely, the metabolic signature of AV is
less defined than that of BV [84–86].

In the following paragraphs, the major FGT infections will be described, in relation to
the condition of dysbiosis.

Aerobic Vaginitis

AV patients harbor increased numbers of aerobic bacteria or Enterococcus in the
vagina. Among these, Escherichia (E.) coli, S. agalactiae, S. anginosus, Staphylococcus (S.)
aureus, S. epidermidis, and Enterococcus faecalis are the main ones.

With special reference to the pathogenic mechanisms elicited by AV-related bacteria,
Staphylococcus spp. in the vagina cause an increase in SCFAs, especially acetate, as well as the
triggering of the anti-inflammatory pathway sustained by Treg cells [87–89]. Conversely, in
AV, other uropathogens are able to increase the expression of an array of pro-inflammatory
cytokines, even including IL-1 beta, IL-6, IL-8, and TNF-alpha, as an indication of the local
immune imbalance between inflammatory and anti-inflammatory forces [90,91]. Quite
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interestingly, some bacteria, in the course of AV, become resistant to the host immune
response, as in the case of S. aureus, which evade the microbicidal activity locally produced
by nitric oxide (NO) [92,93]. Moreover, S. aureus upregulates the NO-inducible lactate
dehydrogenase, thus surviving to lactic acid fermentation [94]. In the same manner, the
toxic shock syndrome toxin-1 (TSST-1) strains elude the local immune response, and induce
the release of pro-inflammatory cytokines from vaginal epithelial cells, with a severe
damage of the mucosal barrier [95].

There is evidence that, in BV patients, the vaginal microbiota are subverted with a
decrease in Lactobacillus spp. and an increase in anaerobic bacteria and microprobes, e.g.,
G. vaginalis, Atopobium, Mycoplasma, Megasphaera, Mobiluncus, Roseburia, Diadister, Sneathia,
and Prevotella spp. [96,97]. Notably, in BV patients, the metabolites of the genital tract
appear to be more specific indicators of the disease phenotype than the bacteria do [98]. For
instance, 2-hydroxyisovalerate and gamma-hydroxybutyrate are increased in the course
of BV, with a decrease in lactic acid and tyrosine [99]. Furthermore, the production of
succinic acid by Prevotella spp. and Mobiluncus spp. leads to the inhibition of leukocyte
chemotaxis, and the modulation of the immune response. Moreover, the release of SCFAs
in combination with bacteria influences the vaginal immune response, either recruiting
neutrophils and monocytes, or inhibiting the release of pro-inflammatory cytokines [100].

C. t. infection is widely diffused among women aged 15–49 years, and may progress
toward severe complications, such as ectopic pregnancy, reproductive abnormalities, and
cancer [101]. From a pathogenic point of view, the predominance of L. iners in the vagina
increases the risk of C. t. infection, as it produces less lactic acid [102]. In this respect, the
production of L. iners for therapeutic use has started [103].

Furthermore, in C. t.-infected patients, the vaginal levels of valine, isoleucine, tyramine,
cadaverine, and succinate were lower than those detected in healthy people [104]. This
may indicate that C. t. likely utilizes nitrogen as a nutrient source or affects the nitrogen
metabolism of the host. INDO is largely produced by Prevotella spp. in the course of BV,
and it may promote C. t. overgrowth [105,106].

C. t. exploits INDO, to activate the synthesis of tryptophan, thus neutralizing the
inhibition of C. t. growth mediated by interferon (IFN)-gamma [102]. In fact, IFN-gamma
promotes the synthesis of indoleamine 2,3-dioxygenase with the consumption of trypto-
phan required for the growth of C. t. [107].

Another mechanism of escape by C. t. relies on its property of depriving the inducible
nitric oxide synthase (iNOS) substrate, arginin, ultimately abrogating the microbicidal
activity of NO [108].

The evasion of the immune response by C. t. leads to a condition of chronic infection,
where T helper (h)1, Th2, and Th17 lymphocytes become activated, provoking damage,
fibrosis, and scarring of the FGT [109,110].

The pathogenic mechanisms of FGT infections are expressed in Table 1.

Table 1. Pathogenetic mechanisms responsible for vaginal infections. The bacteria responsible for
infection perform different activities, aimed at decreasing the vaginal antimicrobial function, or
utilizing substances necessary for these microbes’ growth.

Disease Pathogenetic Mechanisms

Aerobic vaginitis • Increased production of pro-Inflammatory cytokines
• Production of oxide-inducible lactate dehydrogenase with survival to lactic acid

fermentation (S. aureus)

Bacterial vaginosis • Reduced release of lactic acid and tyrosine
• Increased release of succinic acid with inhibition of leukocyte chemotaxis
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Table 1. Cont.

Disease Pathogenetic Mechanisms

Chlamydia trachomatis (C. t.) infection • Less production of lactic acid
• Reduced vaginal levels of valine, tyramine, cadaverine and succinate
• Utilization of tryptophan for its growth
• Abrogation of anti-microbial activity of nitric oxide

7. Treatment with Natural Products for Maintaining the Health of the FGT

As discussed in the previous sections of this review, the dysbiosis of the FGT leads to
different pathologies, even including infectious events. In particular, the misuse and abuse
of antibiotics reduces the Lactobacillus contingent in the vagina, promoting a resistance to
antimicrobials, with the generation of multi-resistant microorganisms [111–114]. Therefore,
attempts have been made to normalize the vaginal microbiota with the supplementation of
natural products.

Among these products, probiotics are currently used in FGT infections [115]. By defi-
nition, probiotics are “live microorganisms that, when administered in adequate amounts,
confer a health benefit to the host” [116].

As was recently reported [117,118], for the treatment of FGT infections, probiotics
can be administered in various combinations, i.e., vaginal/oral capsules, vaginal/oral
powders, ovules, and sanitary towels. As far as the mechanisms of action of probiotics
are concerned, they include the production of antimicrobials (bacteriocins, lantibiotics)
and enzymes (arginine deaminase), promotion of adherence to epithelial cells, release of
the components of mucus, extracellular matrix-colonization permanence, competition for
nutrients, and modulation of the immune system [119,120].

Among relevant clinical trials, evidence has been provided that the administration of
four Lactobacillus species could increase the vaginal colonization of Lactobacillus, followed
by an improvement in the clinical symptoms of the infection [121–123].

Concerning the local administration of probiotics, vaginal suppositories increased
the total number of vaginal Lactobacillus bacteria after seven days of treatment, in view
of their ability to adhere to, and colonize, the vaginal epithelium [124]. A Lactin-V (L.
CTV-05) vaginal treatment gave rise to a lower incidence of BV recurrence [125]. In a series
of trials based on the administration of probiotic strains to healthy women, in patients with
AV and BV, or in women with vulvo-vaginal candidiasis, an absence of side effects, the
colonization and permanence of Lactobacillus, and reduced number of recurrences were
observed [126–128].

Commercial products have been shown to be very effective in the course of FGT
infections. Trivagin◦, a product enriched in L. rhamnosus, L. gasseri, L. fermentum, and
L. plantarum was very effective in normalizing the vaginal microbiota and attenuating
symptoms of inflammation [129]. In another trial, women with BV who were treated
with Ecovag◦ vaginal gelatin capsules, containing two strains of Lactobacillus, demon-
strated resolution of disease at the end of the six-month follow-up [130]. Floridia® vaginal
tablets, composed of L. brevis CD2, L. salivarius FV2, and L. plantarum FV9, were very
effective in the eradication of BV-related bacteria, with a decrease in pro-inflammatory
cytokines and reactive oxygen species (ROS) [131,132]. Notably, probiotic suppositories
are usually devoid of major side effects, but vaginal discharge has been reported in some
studies [113,119,120,133].

Despite the above-cited positive results, further trials are needed, to establish the
efficacy of probiotics in pregnant and post-menopausal women, and for the prevention of
preterm birth.

Polyphenols are natural substances that are largely contained in fruits, vegetables,
cereals, extra virgin olive oil, and red wine [35,134]. They are endowed with antioxidant,
anti-inflammatory, and antimicrobial effects and, therefore, are currently used in differ-
ent pathologies [135,136]. With special reference to FGT infections, a recent paper has
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demonstrated the anti-inflammatory activity of polydatin, a polyphenol extracted from the
rhizome of Polygonum cuspidatum, in the course of LPS-induced murine endometritis [137].
Polydatin was able to deactivate the NF-kB pathway, with a dramatic reduction in pro-
inflammatory cytokine release. Therefore, it was proposed as a potential remedy in the case
of human endometritis. A resveratrol-loaded liposome has been prepared for the topical
treatment of vaginal inflammation and infections, in view of its in vitro scavenging activity,
and its inhibition of pro-inflammatory cytokine release [138].

Lactoferrin is an AMP endowed with antimicrobial and immunomodulating prop-
erties, secreted by the uterine and vaginal epithelial cells [139–141]. The LF levels in
cervicovaginal fluid increase in the course of FGT infections, correlating with the number
of infiltrating neutrophils [142,143]. In a series of clinical trials in women with dysbiosis of
the FGT and bacterial and fungal infections, the oral and/or intravaginal administration of
LF led to clinical and histological improvements, with a dramatic reduction in pathogens
and biomarkers of inflammation [144–147]. Of note, LF from bovine milk has been used as
a dietary supplement, acting as a prebiotic on the intestinal microbiota, and increasing the
colonization of Lactobacillus strains in the vagina [148].

The effects of natural-product administration on FGT infections are described in
Table 2.

Table 2. Main natural products used in the correction of FGT dysbiosis. Probiotics, lactoferrin, and
polyphenols attempt to reconstitute the normal microbiota, and also conduct anti-inflammatory,
antimicrobial, and immunomodulating activities at the vaginal level.

Probiotics Lactoferrin Polyphenols

• Production of bacteriocins
• Adherence to epithelial cells
• Generation of mucus components
• Extracellular matrix-colonization
• Modulation of the immune system

• Increased levels of
polydatin-mediated inhibition of
lactoferrin in cervicovaginal fluid in
FGT infections

• Reduction of pathogens and
inflammatory biomarkers in FGT
dysbiosis, following oral vaginal
administration

• Polydatin-mediated inhibition of
NF-kB pathway in murine
endometritis

• Resveratrol-loaded liposomes in
vaginal inflammation

8. Conclusions

In summary, the network between the FGT microbiota and the local immune system
plays a fundamental role in the maintenance of homeostasis, with special reference to
the vaginal milieu. Any disturbance of the above indicated equilibrium may lead to a
disease status; i.e., AV, BV, and C. t. infection, which may culminate in female infertility.
The correction of FGT dysbiosis using natural products is a field of current interest, and
clinical trials using probiotics and LF have led to positive results. Polyphenols, despite
their well-known antioxidant, anti-inflammatory, and antimicrobial activities, have been
investigated less.

In general, further data are needed, to define the exact interactions between FGT
microbes and natural products, as well as in relation to the disease status of patients.
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Abbreviations

AMPs Antimicrobial peptides
APCs Antigen-presenting cells
AV Aerobic vaginitis
BV Bacterial vaginosis
CSTs Community state types
DCs Dendritic cells
D-LA D-lactic acid
FGT Female genital tract
HBD Human beta defensin
HSV Herpes simplex virus
IL Interleukin
INOS Inducible nitric oxide
LF Lactoferrin
LPS Lipopolysaccharide
L-LA L-lactic acid
NK Natural killer
PID Pelvic inflammatory disease
ROS Reactive oxygen species
SCFAs Short-chain fatty acids
Th T helper
TGF Transforming growth factor
TJ Tight junction
Treg T regulatory cell
TREM Tissue resident memory
TSST-1 Toxic shock syndrome toxin-1
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128. Harasim-Dylak, A.; Roguska, M.; Maździarz, A. Role of Trivagin in restoration and maintenance of normal vaginal ecosystem in
women treated for recurrent bacterial vaginosis. Curr. Gynecol. Oncol. 2011, 9, 245–252.

129. Larsson, P.G.; Stray-Pedersen, B.; Ryttig, K.R.; Larsen, S. Human lactobacilli as supplementation of clindamycin to patients with
bacterial vaginosis reduce the recurrence rate; a 6-month, double-blind, randomized, placebo-controlled study. BMC Women’s
Health 2008, 8, 3. [CrossRef]

130. Barbonetti, A.; Cinque, B.; Vassallo, M.R.; Mineo, S.; Francavilla, S.; Cifone, M.G.; Francavilla, F. Effect of vaginal probiotic
lactobacilli on in vitro-induced sperm lipid peroxidation and its impact on sperm motility and viability. Fertil. Steril. 2011, 95,
2485–2488. [CrossRef]

131. Mastromarino, P.; Hemalatha, R.; Barbonetti, A.; Cinque, B.; Cifone, M.G.; Tammaro, F.; Francavilla, F. Biological control of
vaginosis to improve reproductive health. Indian J. Med. Res. 2014, 140 (Suppl. 1), S91–S97.

132. Wang, J.; Si, W.; Du, Z.; Zhang, J.; Xue, M. Antioxidants in Animal Feed. Antioxidants 2022, 11, 1760. [CrossRef]
133. Homayouni, A.; Bastani, P.; Ziyadi, S.; Mohammad-Alizadeh-Charandabi, S.; Ghalibaf, M.; Mortazavian, A.M.; Mehrabany,

E.V. Effects of probiotics on the recurrence of bacterial vaginosis: A review. J. Low. Genit. Tract Dis. 2014, 18, 79–86. [CrossRef]
[PubMed]

134. Magrone, T.; Jirillo, E. The New Era of Nutraceuticals: Beneficial Effects of Polyphenols in Various Experimental and Clinical
Settings. Curr. Pharm. Des. 2018, 24, 5229–5231. [CrossRef]

https://doi.org/10.4103/ijmr.IJMR_1979_17
https://doi.org/10.1186/s40168-017-0387-y
https://www.ncbi.nlm.nih.gov/pubmed/29335005
https://doi.org/10.3889/oamjms.2018.406
https://doi.org/10.1039/D2FO00911K
https://doi.org/10.1038/nrgastro.2014.66
https://doi.org/10.1371/journal.pone.0270242
https://www.ncbi.nlm.nih.gov/pubmed/36584204
https://doi.org/10.1038/s41522-022-00295-y
https://doi.org/10.1111/aji.12445
https://www.ncbi.nlm.nih.gov/pubmed/26547516
https://doi.org/10.3920/BM2019.0081
https://www.ncbi.nlm.nih.gov/pubmed/32066254
https://doi.org/10.1111/iju.14636
https://doi.org/10.26355/eurrev_201801_14128
https://www.ncbi.nlm.nih.gov/pubmed/29364495
https://doi.org/10.1007/s00284-016-1085-x
https://www.ncbi.nlm.nih.gov/pubmed/27324341
https://doi.org/10.3389/fcimb.2022.963868
https://www.ncbi.nlm.nih.gov/pubmed/35967876
https://doi.org/10.1056/NEJMoa1915254
https://www.ncbi.nlm.nih.gov/pubmed/32402161
https://doi.org/10.2147/DDDT.S89214
https://www.ncbi.nlm.nih.gov/pubmed/26451088
https://doi.org/10.1186/s12905-015-0246-6
https://doi.org/10.1186/s12879-015-0971-3
https://doi.org/10.1186/1472-6874-8-3
https://doi.org/10.1016/j.fertnstert.2011.03.066
https://doi.org/10.3390/antiox11091760
https://doi.org/10.1097/LGT.0b013e31829156ec
https://www.ncbi.nlm.nih.gov/pubmed/24299970
https://doi.org/10.2174/138161282444190329154418


Life 2023, 13, 1531 16 of 16

135. Topi, S.; Bottalico, L.; Charitos, I.A.; Colella, M.; Di Domenico, M.; Palmirotta, R.; Santacroce, L. Biomolecular Mechanisms of
Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? Pathophysiology 2022, 29, 507–536.
[CrossRef]

136. Li, R.; Maimai, T.; Yao, H.; Liu, X.; He, Z.; Xiao, C.; Wang, Y.; Xie, G. Protective effects of polydatin on LPS-induced endometritis
in mice. Microb. Pathog. 2019, 137, 103720. [CrossRef] [PubMed]

137. Jøraholmen, M.W.; Škalko-Basnet, N.; Acharya, G.; Basnet, P. Resveratrol-loaded liposomes for topical treatment of the vaginal
inflammation and infections. Eur. J. Pharm. Sci. 2015, 79, 112–121. [CrossRef] [PubMed]

138. Caccavo, D.; Afeltra, A.; Pece, S.; Giuliani, G.; Freudenberg, M.; Galanos, C.; Jirillo, E. Lactoferrin-lipid A-lipopolysaccharide
interaction: Inhibition by anti-human lactoferrin monoclonal antibody AGM 10.14. Infect. Immun. 1999, 67, 4668–4672. [CrossRef]

139. Alexander, D.B.; Iigo, M.; Yamauchi, K.; Suzui, M.; Tsuda, H. Lactoferrin: An alternative view of its role in human biological
fluids. Biochem. Cell Biol. 2012, 90, 279–306. [CrossRef]

140. Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and
Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018, 9, 376. [CrossRef]
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