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Abstract: Although the autonomic nervous system has an evident impact on cardiac electrophysiol-
ogy and radiofrequency ablation (RFA) is the conventional technique for treating persistent atrial
fibrillation, the specific effects of RFA have been insufficiently studied to date. Here, we investigated
whether RFA affects neurohumoral transmitter levels and myocardial 123I-metaiodobenzylguanidine
(123I-MIBG) uptake. To perform this task, we compared two groups of patients with acquired valvular
heart disease: patients who had undergone surgical AF ablation and patients with sinus rhythm.
The decrease in norepinephrine (NE) level in the coronary sinus had a direct association with the
heart-to-mediastinum ratio (p = 0.02) and a negative correlation with 123I-MIBG uptake defects
(p = 0.01). The NE level decreased significantly after the main surgery, both in patients with AF
(p = 0.0098) and sinus rhythm (p = 0.0039). Furthermore, the intraoperative difference between
the norepinephrine levels in the ascending aorta and coronary sinus (∆NE) of –400 pg/mL was
determined as a cut-off value to evaluate RFA efficacy, as denervation failed in all patients with
∆NE < –400 pg/mL. Hence, ∆NE can be utilized to predict the efficacy of the “MAZE-IV” procedure
and to assess the risk of AF recurrence after RFA.

Keywords: persistent atrial fibrillation; autonomic nervous system; norepinephrine; radiofrequency
ablation

1. Introduction

As has been established over the years, the autonomic nervous system (ANS) plays a
significant role in modulating the cardiac electrophysiology and arrhythmogenesis through
its effect on cardiac physiology [1]. Cardiovascular disease may have an adverse prognostic
tendency if the ANS components are dysfunctional, which could be a prognostic factor.
The ANS has been the subject of numerous studies over the years which have contributed
to a better understanding of its anatomy and physiology. Additionally, studies have shown
the connection between ANS dysfunction and clinically significant arrhythmias, suggesting
that the ANS might be a therapeutic target in arrhythmology [1].

A significant discovery was made with regard to neurohumoral markers that were
found to be reflective of autonomic activity in the heart. Unfortunately, there is no ver-
satile method for studying the ANS, and current techniques in this field impose certain
requirements that are not always possible to meet. By identifying specific ANS markers
and triggers, the study of autonomic cardiac activity can become more efficient than many
other invasive methods. Patients with long-term persistent atrial fibrillation (AF) might
benefit most from this.

AF represents a typical and common complication of cardiac surgery in 30% of cases
of coronary artery bypass surgery, 40% of patients after valvular heart surgery and 50%
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of cases if these interventions are combined [2,3]. The conventional approach to the treat-
ment of AF in patients with mitral valve disease is a one-stage mitral valve correction and
radiofrequency procedure “MAZE” [4–7]. However, the effectiveness of such treatment
is limited and allows the recovery of the sinus rhythm in 70–80% of patients, often being
associated with structural, functional, and electrophysiological changes in the heart [8,9].
The risk of postoperative AF recurrence can reach 100% if there is a past medical history of
AF [10]. Postoperative AF is considered to be an independent predictor of many adverse
outcomes, including a two- to four-fold increased risk of stroke, bleeding, infection, renal
or respiratory failure, cardiac arrest, cerebral complications, and the need to implant a
permanent pacemaker. AF is associated with a two-fold higher case fatality rate in the
postoperative period. Although the exact pathogenesis of developing postoperative AF
requires further investigations, recent studies highlight the contribution of the interactions
between pre-existing reasons behind the AF as well as systemic inflammation [11–13].
Postoperative AF is associated with multiple risk factors, including advanced age and
severe comorbidities which are responsible for cardiac remodeling and vascular events.
The clinical management of AF includes both preventive and therapeutic approaches,
though their effectiveness is disputable. The postoperative period for patients with AF
that have been insufficiently treated with RFA is associated with a high risk of recur-
rence. Evidently, the need for a clear definition of the AF treatment endpoint is crucial for
preventing recurrence [14–16].

Normal cardiac electrophysiology is, to a significant extent, governed by the ANS. Pre-
and postganglionic sympathetic and parasympathetic fibers form a complex network and
synapses on extrinsic and intrinsic cardiac ganglia. Both sympathetic and parasympathetic
fibers directly innervate the cardiac myocytes. One clinically significant implication is that
the evaluation of the ANS modulation of the myocardium following RFA can be useful
in predicting the recurrence of AF, and other adverse cardiac events as well [17–19]. An
alteration in the autonomic tone of the heart may have adverse effects on the local cellular
electrophysiology of the heart, which can manifest clinically in a variety of ways, ranging
from a slowing of the heart rate to changes in the rate of heart contractions. The cardiac
ANS plays a pivotal role in the onset and maintenance of AF, though a number of complex
and disputed mechanisms exist.

The role of sympathovagal imbalance in the pathogenesis of arrhythmias is still a
serious and unresolved problem for practitioners and researchers. The development of
this direction has been propelled by Pappone and colleagues who showed a relationship
between the impact on the paraganglionic nerve plexi of the heart and AF recurrence after
catheter ablation [20]. Their destruction on the open heart was performed by Doll, in
2008 [21]. Anatomical ablation of the autonomic ganglionic plexi of the heart, proposed by
Pokushalov and colleagues [22], has been suggested as an effective option to treat AF, but
there are no methods for objectively evaluating the results of these interventions today.

It is therefore reasonable to speculate that denervation may be a common mechanism
underlying many of the therapeutic effects associated with various procedures for treating
AF. However, the effects of denervation on the long-term efficiency of AF surgical treatment
require further studies. As research on the relationships between autonomic tone and
cardiac dysrhythmias continues to evolve, there is increasing evidence that autonomic
ganglia play an essential role in the pathogenesis of AF.

To obtain information about the state of the autonomic innervation of the heart, the de-
termination of heart rate variability and measurements of epinephrine and norepinephrine
(NE) concentrations in blood plasma are widely used [23,24]. However, these methods
provide only indirect information about the predominance of the tone of the sympathetic
or parasympathetic parts of the ANS, and it is impossible to assess the rhythm variability
in patients with AF [25,26].

To date, the best way of carrying out the visual and quantitative assessment of sym-
pathetic innervation of the myocardium is the use of nuclear medicine methods such as
positron emission tomography (PET) of the heart with labeled catecholamines [27,28]. How-
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ever, even though PET offers an exceptionally high diagnostic capability, there are certain
limitations when it comes to its widespread use in clinical practice. Therefore, scintigraphy
with 123I-metaiodobenzylguanidine (123I-MIBG) has acquired the greatest popularity in
assessing the sympathetic activity of the myocardium today [29–33].

Given the lack of a “gold standard” assessment of the sympathetic innervation of the
heart in vivo, in the present study, myocardial scintigraphy with 123I-MIBG was compared
with the results of the quantitative measurements of metanephrine, normetanephrine, and
NE in plasma obtained intraoperatively from the coronary sinus and ascending aorta.

The aim of this study was to evaluate the consequences of RFA on neurohumoral
transmitter levels and 123I-MIBG uptake in patients with long-standing persistent AF.

2. Materials and Methods

The study was conducted according to the Good Clinical Practice guidelines and the
latest revision of the Declaration of Helsinki (2013). The study protocol was approved by the
Local Ethical Committee of the Research Institute for Complex Issues of Cardiovascular Dis-
eases (Kemerovo, Russia, protocol code 2021/11/03, date of approval: 3 November 2021)
and Cardiology Research Institute within Tomsk National Research Medical Centre (Tomsk,
Russia, protocol code TNRMC-134/1, date of approval: 23 November 2021). Written in-
formed consent was provided by all study participants after receiving a full explanation of
the study’s purposes. Comorbid conditions (arterial hypertension, chronic heart failure,
chronic obstructive pulmonary disease, asthma, chronic kidney disease, diabetes mellitus,
overweight, and obesity) were diagnosed and treated according to the corresponding guide-
lines of the respective research societies. Clinicopathological information was collected at
the time of hospital admission. In total, we enrolled 68 patients with mitral valve disease
recommended for surgical correction: those suffering from long-standing persistent AF
(n = 53) and those with sinus rhythm (SR, n = 15, Table 1).

Table 1. Main preoperative clinical and instrumental parameters of patients with AF (group I) and
SR (control group II), who underwent sympathetic nervous system examination (n = 68).

Parameter
Group I. AF: AHD

Treatment + RFA (n = 53)
Me (Q1; Q3)

Group II. Control Group
with SR (n = 15)

Me (Q1; Q3)
p-Value

Age (years) 59.5 (53; 64) 57.0 (53; 64) 0.91
Body mass index 31.1 (27.1; 34.3) 30.4 (26.4; 34.1) 0.21
Diabetes mellitus 5 (9.4%) 2 (13.3 %) 0.13

COPD 14 (26.4 %) 4 (26.6%) 0.41
Arterial hypertension 46 (87%) 14 (93 %) 0.39

Warfarin * 53 (100) – -
Amiodarone * 15 (28) – -
Beta-blockers * 44 (83.3) 8 (53.3) 0.03

Aspirin * 7 (13.3) 5 (33.3) 0.001
ACE inhibitors 27 (51) 15 (100) 0.02

Diuretics 50 (94.4) 4 (26.7) 0.004
Digoxin * 41 (77.7) – -

Calcium antagonists 12 (22.3) 5 (33.3) 0.02
LA diameter (mm) 52.0 (47; 55) 46.0 (40; 46) 0.002

LA volume (ml) 220.1 (170.3; 240.6) 131.2 (96.7; 142.2) 0.001
RV diameter (mm) 24.0 (21; 28) 22.0 (22; 24) 0.32

IVS (mm) 10.0 (9; 10) 9.0 (9; 10) 0.68
LVEDD (mm) 53.75 (51; 58) 53.0 (47; 56) 0.53
LVESD (mm) 33.5 (32; 39) 32.5 (29; 34) 0.19

LVEF (Simpson) (%) 66.0 (60; 68) 66.0 (65; 72) 0.31
LVEDV (mL) 132.5 (106; 194) 112.0 (104; 142) 0.63
LVESV (mL) 45.5 (35; 71) 49.0 (31; 50) 0.54
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Table 1. Cont.

Parameter
Group I. AF: AHD

Treatment + RFA (n = 53)
Me (Q1; Q3)

Group II. Control Group
with SR (n = 15)

Me (Q1; Q3)
p-Value

RVSP (mmHg) 44.0 (40; 50) 40.0 (38; 61) 0.93
EuroSCORE2, % 3.9 (2.9; 4.8) 3.2 (2.4; 4.5) 0.59

STS score 2.9 (2.3; 4.1) 3.6 (1.5; 5.5) 0.93
6 min walking test (m) 220.0 (200; 256) 322.0 (250; 356) 0.02

COPD—chronic obstructive pulmonary disease; ACE—angiotensin converting enzyme; LA—left atrium;
RV—right ventricle; IVS—interventricular septum; LVEDD—left ventricular end-diastolic diameter; LVESD—left
ventricular end-systolic diameter; LVEF—left ventricular ejection fraction; LVEDV—left ventricular end-diastolic
volume; LVESV—left ventricular end-systolic volume; RVSP—right ventricular systolic pressure. * The drugs
were canceled 7 days before the studies and surgery.

The criterion of inclusion was the preserved function of the sinus node (SN) deter-
mined by intraoperative electrophysiological examination (Figure 1). Among the criteria of
exclusion were comorbid conditions, pericardial adhesions, multivessel coronary artery
disease, and multiple organ failure. Primary endpoints were cardiovascular death and
major adverse cardiovascular events: myocardial infarction, stroke, and AF recurrence.
Secondary endpoints were pacemaker implantation and reduced atrial mechanical function.

Figure 1. The design of the study. Note: AHD—acquired heart diseases; RFA—radiofrequency
ablation; SR—sinus rhythm; SN—sinus node; EP—electrophysiological study; SND—sinus
node dysfunction.

The patients were given 7 days prior to surgery to discontinue medications that affect
the rhythm and heart conduction. During the intraoperative electrophysiological exam-
ination, we measured sinus node recovery time (SNRT), corrected sinus node recovery
time (CSNRT), and Wenckebach point. Patients with preserved SN function were enrolled
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and randomized into two groups using envelopes. In the first group of patients, RFA was
administered in combination with postganglionic plexus ablation based on the Doll (2008)
scheme, while in the second group, lesions were performed according to the MAZE-IV
scheme without the addition of postganglionic plexus ablation. In the case of normal
SN function, the procedure was performed using the MAZE-IV technique (penetrating
technique) to seal atrial appendages and additional postganglionic plexi ablation. Pa-
tients with SR who underwent surgery only due to valvular lesions comprised the control
group (n = 15).

Each patient underwent a standard set of clinical and laboratory tests, including com-
plete blood count (Sysmex XN-550, Kobe, Japan), biochemical profiling using an automated
biochemical analyzer (Konelab 60i, Thermo Fisher Scientific, Waltham, MA, USA), urinal-
ysis, X-ray examination (GE Healthcare TMX R+, General Electric Healthcare, Chicago,
IL, USA), echocardiography (Sonos 2500 Diagnostic Ultrasound System, Hewlett Packard,
Palo Alto, CA, USA), color duplex screening (Vivid 7 Dimension Ultrasound System,
General Electric Healthcare, Chicago, IL, USA), spirometry (Microlab Spirometer, Vyaire
Medical, Chicago, IL, USA), and coronary angiography (Innova 3100 Cardiac Angiog-
raphy System, General Electric Healthcare, Chicago, IL, USA) in accordance with the
guidelines [34]. Planar scintigraphy with 123I-metaiodbenzylguanidine (123I-MIBG) was
performed before and after the surgery. 123I-MIBG is an analogue of guanethidine adren-
ergic blocker which allows the visualization of sympathetic innervation of the heart and
assessment of myocardial adrenergic nerve activity [35]. During the myocardial scintig-
raphy, we assessed heart-to-mediastinum ratio, early and late radiopharmaceutical (RP)
washout, and RP uptake defect. Functional class of heart failure was defined by a 6 min
walking test.

Patients with persistent AF (group I) differed from patients with SR (group II) with
regard to left atrial (LA) diameter and results of 6 min walking test. Chronic rheumatic
heart disease was diagnosed in 50% of patients with persistent AF and in 44.4% of patients
with SR. Connective tissue dysplasia was found in 28 and 44.4% of cases, respectively.
Some patients from both groups required coronary artery bypass grafting (1–2 grafts).

Surgical treatment was performed in accordance with the recommendations for the
management of patients with valvular heart diseases (ESC/EACTS, 2017). The frequency
of mitral valve (MV) repair with annuloplasty rings in the groups was 50 and 55.5%, respec-
tively, and MV prosthetic valve replacement was performed in one-third of cases in both
groups. Several patients required multi-valvular interventions (for instance, single-stage
tricuspid valve repair was performed in 22–28% of cases), and 4 patients underwent simul-
taneous intervention on the aortic valve. In the case of paroxysmal AF, an antiarrhythmic
therapy was prescribed in group I.

Blood samples were collected intraoperatively from the ascending aorta and coronary
sinus prior to cardiopulmonary bypass and 10 min after removal of the clamp from the
aorta. The study was performed in the absence of any medications that could affect the
catecholamine levels in the samples. In the case of any catecholamine injections, patients
were excluded from the study. NE level in blood was assessed both before and after
RFA. For the quantitative determination of plasma NE level, we applied Noradrenalin
enzyme-linked immunosorbent assay kit (RE59261, IBL, Hamburg, Germany) according
to the manufacturer’s protocol. Colorimetric analysis was conducted using Multiskan
Sky microplate spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). In
order to avoid any external influence on the sympathetic tone of the heart during surgery,
sympathomimetic drugs were withdrawn before the main phase of the operation, during
and after the main stage before the sampling of blood from the ascending aorta and the
coronary sinus. All patients underwent 24 h Holter ECG monitoring before the surgery
and after removal of sutures before hospital discharge. A re-examination was performed
6 months after the operation.

Statistical analysis was performed using STATISTICA 13 software (TIBCO Software,
Palo Alto, CA, USA). For descriptive statistics, data were presented as median (Me),
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upper and lower quartiles (Uq and Lq, respectively). Depending on the data distribu-
tion, two independent groups were compared using Student’s t-test or Mann–Whitney
U test. To assess the significance of intragroup differences (measurements before and
after the exposure within one group), Wilcoxon matched pairs signed rank test was used.
p-values ≤ 0.05 were regarded as statistically significant. Discriminant analysis was used
to build a model for the assessment of the RFA efficacy based on neurohumoral factors.

3. Results

In patients with long-standing persistent AF, the median heart-to-mediastinum ratio
in the early and late phase of the study before the intervention did not differ from the
patients with SR (1.75 (1.59; 1.91) and 2.06 (1.7; 2.1), respectively, p = 0.1). The washout
rate did not show statistically significant differences either (24.5 (10.8; 41.1) % and 24.3
(12.3; 29.9) %, respectively, p = 0.15). The 123I-MIBG uptake defect before surgery was
comparable between the groups (13.0 (7.0; 24.0) % and 19.0 (9.5; 23.5%) %, respectively,
p = 0.59). At the pre-operative stage, the parameters of the sympathetic nervous system
tonus were similar across the groups. Four weeks after the surgery, patients underwent a
postoperative examination (Table 2).

Table 2. Postoperative clinicopathological parameters of patients with AF (group I) and SR (control
group II) who underwent sympathetic nervous system examination (n = 68).

Parameter
Group I. AF: AHD

Treatment + RFA (n = 53)
Me (Q1; Q3)

Group II. Control
Group with SR (n = 15)

Me (Q1; Q3)
p-Value

LA diameter before surgery
(mm) 45.0 (44; 49) 39.0 (25; 41) 0.005

RV diameter before surgery
(mm) 23.5 (20; 27) 20.0 (20; 22) 0.13

IVS before surgery (mm) 10.0 (9; 10) 9.0 (9; 10) 0.52
LVEDD before surgery (mm) 49.0 (47; 54) 46.0 (44; 48) 0.12
LVESD before surgery (mm) 33.0 (30; 37) 30.0 (26; 35) 0.18
LVEDV before surgery (mL) 119.5 (90; 127) 87.0 (72; 98) 0.24
LVESV before surgery (mL) 40.5 (34; 53) 31.0 (27; 37) 0.03

LVEF (Simpson biplane)
before surgery (%) 60.5 (58; 66) 67.0 (64; 70) 0.08

RVSP before surgery
(mmHg) 35.0 (30; 40) 35.0 (28; 37) 0.52

CPB time (min) 120.0 (110; 161) 120.0 (113; 140) 0.57
ACC time (min) 70.0 (57; 98) 92.0 (79; 110) 0.34

6 min walking test after
surgery (m) 406.5 (380; 435.5) 412.0 (290; 450) 0.68

LA—left atrium; RV—right ventricle; IVS—interventricular septum; LVEDD—left ventricular end-diastolic
diameter; LVESD—left ventricular end-systolic diameter; LVEF—left ventricular ejection fraction; LVEDV—left
ventricular end-diastolic volume; LVESV—left ventricular end-systolic volume; RVSP—right ventricular systolic
pressure; CPB—cardiopulmonary bypass; ACC—aortic cross-clamp.

The efficacy of AF RFA was evaluated using postoperative 123I-MIBG scintigraphy with
the concurrent measurement of metanephrine, normetanephrine, and NE in the blood with-
drawn from the ascending aorta and coronary sinus. In patients with atrial RF fragmentation
(group I), the heart-to-mediastinum ratio after intervention in the late phase of the study
was significantly lower compared to the patients with SR: (1.5 (1.4; 1.6) and 1.8 (1.56; 1.83),
respectively, p = 0.02), whilst the uptake defect was significantly higher (25.0 (24.0; 35.0) % and
15.0 (12.0; 20.0) %, respectively, p = 0.01). A statistically significant (p = 0.01) decrease in the
NE level in patients with RFA was found in the blood collected from the coronary sinus after
the main stage of the surgery as compared to the preoperative level. In contrast, no significant
difference (p = 0.2) in the NE level was found in the control group.

Further analysis demonstrated a significant intergroup difference (p = 0.004) in the
postoperative NE level (Figure 2). A decrease in the heart-to-mediastinum ratio directly
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correlated with the reduction in NE level in the coronary sinus of patients with RFA
(group I) compared to the control group with SR, whilst an increased RP uptake defect
inversely correlated with the reduced NE level in the coronary sinus. The differences
between the subgroups with the “MAZE-IV” procedure in the heart-to-mediastinum ra-
tio (Figure 3), the RP washout rate (Figure 4) and the RF uptake defect (Figure 5) were
statistically insignificant.

Figure 2. NE level in CS (pg/mL) after the main stage of surgery.

Figure 3. Heart-to-mediastinum ratio in the late phase of the study in the group with SR and AF.
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Figure 4. RP washout rate.

Figure 5. RP uptake defect.

With the aim of building a model for the proper assessment of RFA efficacy based on
neurohumoral factors, we applied a discriminant analysis and calculated the Wilks’ lambda,
a statistic which evaluates the discriminatory ability of the function (i.e., the contribution of
each independent variable into the model). The significance of the intraoperative difference
between the levels of NE, metanephrine, and normetanephrine in the ascending aorta and
in the coronary sinus (∆NE, ∆NM, and ∆NNM, respectively) was measured by the F-value.
If the F-value exceeded the critical value (1.23), the variable was kept in the model. In the
case of ∆NE, the F-value was 13.20 and was retained in the model as its p-value was 0.001,
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in contrast to ∆NM and ∆NNM where the F-value also slightly exceeded 1.23 (1.41 and
1.34, respectively) but the p-value did not reach 0.05 (0.24 and 0.25, respectively). Wilks’
lambda was 0.56, with p = 0.0037, indicating the adequacy of the created model (Table 3).

Table 3. Assessment of the adequacy of the RF denervation efficacy model based on the Wilks’
Lambda criterion.

Parameter

Wilks’ Lambda: 0.56315 approx. F (3.23) = 5.9471.
p < 0.0037

Wilks’
Lambda

Partial
Lambda

F-Remove
(1.23) p-Value Toler. 1-Toler.

(R-sq.)

NE level gradient (Ao/CS, ∆NE, pg/mL) 0.89 0.64 13.20 0.001 0.99 0.01
Metanephrine level gradient (Ao/CS, ∆NM, pg/mL) 0.59 0.94 1.41 0.24 0.99 0.006

Normetanephrine level gradient (Ao/CS, ∆NNM, pg/mL) 0.59 0.94 1.34 0.25 0.99 0.005

∆NE was therefore considered as a statistically significant factor. The calculation of
∆NE for each patient was performed as follows:

∆NE = NEAA −NECS, (1)

where NE is for norepinephrine, AA is for ascending aorta, and CS is for coronary sinus.
As the percentage of correct assignments (i.e., the predictions of favorable or adverse

outcome) was 88.9%, we concluded the model had high discriminative power in terms of
its sensitivity/specificity (Table 4).

Table 4. Classification matrix.

Group The Percentage of Correct
Assignments

G_1:1
p = 0.7037

G_2:2
p = 0.2963

G_1:1 94.7 50 3
G_2:2 75.0 3 12
Total 88.9 53 15

Upon the calculation of the coefficients for the canonical linear discriminant function
and plotting of ∆NE values across the RFA outcomes, we found that all patients with
∆NE < −400 pg/mL suffered from AF paroxysms in the early postoperative period (in-
dicative of the perfect sensitivity of this cut-off) whereas, at higher ∆NE values, only one
case of AF paroxysm was detected (≈5% of such patients, suggestive of good specificity).
Hence, we propose a ∆NE of –0.400 pg/mL as a cut-off reflecting RFA efficacy (Figure 6).

Figure 6. Distribution of the intraoperative difference between the levels of NE in the ascending aorta
and in the coronary sinus (∆NE), plotted against canonical linear discriminant function coefficient,
across patients with and without AF paroxysm after RFA.
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As described above, we detected a reduced NE level and the accumulation of
123I-MIBG in all patients who underwent RFA of postganglionic nerve plexi, and these
parameters were associated with the effectiveness of the AF surgical treatment.

4. Discussion

AF is a frequent heart rhythm disorder, the etiology of which is still not fully
understood [36–40], although it is generally accepted that sympathovagal imbalance can
lead to paroxysmal supraventricular arrhythmia [36] and paroxysmal AF [41]. Therefore,
local denervation of the heart can be an efficient treatment modality when applied to
patients with long-standing persistent AF [42–45].

The effect of the ANS sympathetic component on cardiac electrophysiology is com-
plex and depends on myocardial function. The predominance of sympathetic activity
in the intact heart leads to a shortening of the cardiac action potential duration and to a
decrease in the repolarization dispersion. In the injured myocardium, sympathetic activity
leads to an increase in the repolarization dispersion and to the early afterdepolarization
generation [1,46] providing a proarrhythmogenic effect. Further, studies based on the anal-
ysis of heart rate variability have shown that AF paroxysm can be the result of the combined
activation of the sympathetic and parasympathetic components [47–50]. Sympathetic activ-
ity is the cause of increased calcium transit, whereas an increase in the parasympathetic
tonus leads to the shortening of the atrial effective refractory period. The difference between
the calcium transit and the AP duration (normally interdependent) augments Na+/Ca++

pump activity, which is responsible for the generation of early afterdepolarization and
trigger activity [1,47].

The cardiac ANS comprises the extrinsic and intrinsic innervation of the heart. The
postganglionic neurons of the heart may still function normally despite active central
regulatory mechanisms. Studies by Choi and colleagues demonstrated a connection be-
tween the external and internal mechanisms of sympathetic heart tonus activation. Though
activation of extracardiac ANS contributed to the onset of most AF paroxysms, in some
cases (11%, as estimated by Choi and colleagues) the internal nervous activity of the heart
preceded the external one and led to the development of AF paroxysms [41]. In addition,
the heart’s internal sympathetic activity can activate the external components of the ANS,
causing negative consequences. This mechanism is the basis of AF and it is implemented
by sympathovagal imbalance [41]. In this sense, modulating other ANS elements is highly
likely to control heart rate.

Among the most common approaches for studying ANS is the analysis of heart
rate variability, although it has several limitations. First, this method reflects only the
sympathovagal balance between the ANS components but not their activity. Second, this
analysis requires an intact SN that mediates an adequate cardiac response to ANS activity,
whereas a notable proportion of patients with persistent AF and heart failure have comorbid
SN dysfunction. This imposes restrictions on using heart rate variability for studying the
ANS tonus and this is not suitable for some patient categories [1]. An objective assessment
of the ANS requires quantitative methods such as 123I-MIBG scintigraphy, yet they still
lack clear diagnostic criteria [24]. Another important limitation of 123I-MIBG is that its
current use is limited to specialized clinics and research centers due to the specificity of this
isotope. Other methods are not sufficiently specific to identify cardiac autonomous activity,
or they take an excessive amount of time, which restricts their application. Thus, there is
no versatile method to measure the ANS activity of the heart [23].

This study shows that neurohumoral markers, such as NE, detectable by cheap and
broadly employed enzyme-linked immunosorbent assay, can serve as a quantitative mea-
sure of the effectiveness of RFA in long-term persistent AF. Importantly, low concentrations
of NE and its short decay period permit its measurement only in the absence of its entry
into the blood from other sources.

The difference in the NE level in the blood collected from the aorta and the coronary
sinus after the main stage of the surgery (∆NE) is an informative factor in assessing
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the effectiveness of autonomic denervation of the heart, as ∆NE < −400 pg/mL can be
considered as a reliable marker of unsuccessful denervation. As the effectiveness of AF
surgical treatment was confirmed by 24 h Holter ECG monitoring, we then developed a
mathematical model to evaluate the quality of atrial RF denervation based on the Wilks’
lambda, which makes possible the prediction of AF recurrence in the postoperative period.
These data correlated with the scintigraphic and clinical data, allowing us to state that the
completeness of heart autonomic denervation directly correlates with the effectiveness of
the MAZE-IV RF procedure.

Considering a number of factors influencing the recurrence of postoperative AF, a
decrease in the neurohumoral activity of the ANS enables the SR to be maintained and
reduces the risk of postoperative complications, such as a reduction in left ventricular
ejection fraction and systemic thromboembolism. The development of a tool to predict
arrhythmia-associated complications has been the cornerstone of this study. An important
result is the comparison of scintigraphic and laboratory methods for studying the autonomic
activity of the heart, which will enable further research for new criteria and technologies.

The limitations of this study include the relatively small number of patients, the need
to cancel the medications affecting ANS activity, the ability to take blood samples only in
an “open” heart, and the limited options for administering sympathomimetics during the
surgery. Although the results of the study showed the importance of determining the NE
level in the assessment of autonomic atrial denervation, further studies are necessary to
obtain more data.

5. Conclusions

Neurohumoral markers of the ANS in the postoperative period may indicate the
efficiency of the RFA and MAZE-IV RF procedure, as the intraoperative gradient between
the levels of NE in the ascending aorta and coronary sinus (∆NE) of −400 pg/mL discrimi-
nates well between a successful and an unsuccessful RFA. Hence, we propose ∆NE as a
promising tool for assessing the atrial denervation quality, although replication studies are
clearly needed.
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