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Abstract: In cancer genomics research, gene expressions provide clues to gene regulations implicating
patients’ risk of survival. Gene expressions, however, fluctuate due to noises arising internally and
externally, making their use to infer gene associations, hence regulation mechanisms, problematic.
Here, we develop a new regression approach to model gene association networks while considering
uncertain biological noises. In a series of simulation experiments accounting for varying levels of
biological noises, the new method was shown to be robust and perform better than conventional
regression methods, as judged by a number of statistical measures on unbiasedness, consistency and
accuracy. Application to infer gene associations in germinal-center B cells led to the discovery of a
three-by-two regulatory motif gene expression and a three-gene prognostic signature for diffuse large
B-cell lymphoma.

Keywords: cancer prognostic genes; gene association network; diffuse large B-cell lymphoma;
biological noises

1. Introduction

The network modeling of biological systems can capture many of their essential
characteristics [1,2]. In such modeling, biological processes are often depicted as a simple
network graph where nodes represent molecules and edges that connect nodes represent
their interactions or associations [3]. Although seemingly simplistic, mathematical and
numerical simulations of prototype biological networks have served to provide insight
into unknown structures or relationships of gene associations and regulations (e.g., [4]).
A number of methods exploiting different algorithms have been developed to construct
gene association networks (GANs), including graphical Gaussian models [5], Bayesian
networks [6,7], and models of other approaches (see [8] for a comprehensive review).

Importance of Modeling Gene Association Networks with Biological Noises

One key issue for most of these GAN construction studies is that they assume gene
expressions follow a known and well-defined probability distribution function, often a
normal distribution function, i.e., a Gaussian probability function. This assumption may
significantly depart from actuality, however, as gene expression is known to be influenced
by non-Gaussian stochastic noises [9,10]. How the uncertainties in gene expressions and
their noises are handled can have a significant impact on the resultant GAN and hence
its predicted biological behaviors. Such uncertainties, called biological noises, can arise
from, for example, stochastic oscillations in gene expressions [11], which can, in general, be
categorized into either intrinsic or extrinsic [12]. Intrinsic noises may come from various
sources, including individual events of transcription and translation, rates of biochemical
reaction, or species concentrations [12,13], while extrinsic noises may be induced by external
factors such as pathogens and other foreign compounds such as pharmaceuticals and
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vaccines [14]. Because the combined effects of these noises are often quite complicated to
model or analyze, many investigations do not consider them or simply assume that their
effects are small and, therefore, can be ignored [15,16], even though models can yield non-
significant statistical results [17] or wrong predictions [16] if these inherent complexities
are not addressed.

Using differential equations to model GANs is a well-developed approach that can
tolerate perturbations of noises [18,19]. However, one limitation of this approach is its
requirement of time series data, which excludes direct applications to many useful non-
temporal datasets, although special handling can be developed as in the example of an
analytical procedure based on steady-state treatments [20]. Additionally, the main chal-
lenge of working with differential equations is that there are no closed-form solutions for
them [21]. Finally, there is a tendency for the approach of differential equations to incur
high computational costs, even for a small network with less than half a dozen nodes [18].

Another approach to model GANs is regression-based. However, most of the regression-
based studies either do not account for the effects of intrinsic and extrinsic noises or lump
them together and model them using a normal distribution function (see, e.g., [6,7,22]). For
example, using a least squares (LS)-based regression approach, an attempt to study the
impact of errors or variations arising from measuring processes on the identification of
a GAN was presented by Fujita and coworkers [23], in which experimental observations
and random errors were necessarily assumed normally distributed for robust parameter
estimations. Another pitfall of Fujita et al.’s approach is that biological noises for predictor
genes were neglected in their model setup, not to mention that LS-based methods are
known to be unstable when data are highly correlated, i.e., ill-conditioned or having
multi-collinearity [24].

The aforementioned problems motivated us to use a distribution-free regression
method to consider biological uncertainties, i.e., unknown distributions of gene expressions
and their noises, in GAN modeling. As we showed below, this method, called AWTE,
which is based on a new statistical method of consistent estimation developed by one of
us [17], has several advantages. First, it can achieve outstanding statistical properties in
handling noises, Gaussian or non-Gaussian. Second, there is no need to solve objective
functions in estimating the association parameters, and therefore the computational cost is
considerably cheaper than methods that require the use of an optimization algorithm. Third,
the method can cope with non-temporal observations and thus is suitable for applications
to many expression datasets where time series data are not available. Although all of the
regression methods mentioned in this article can, in theory, be distribution-free in dealing
with data uncertainties, the conventional methods cannot be directly applied to model a
GAN with manifold biological noises in such a manner, and, as the results of our numerical
simulations show, they are not robust and would perform poorly when uncertainties are
substantial. The robustness of the present method was also shown by its better ability
than conventional regression methods to infer a GAN of germinal center B-cell genes from
transcriptomes of lymphoma tumors that could reproduce experimental observations.

This study aimed at developing a general bioinformatics process that can determine
potential disease-causing gene regulations using a new, noise-tolerating regression-based
approach to gene expression data. We illustrated this process in Figure A1 (Appendix B).

2. Materials and Methods
2.1. A Framework for Regression-Based Modeling of GAN

Let us suppose that the research objective is to figure out how q target genes Y1, Y2, . . . , Yq
are associated with p predictor genes X1, X2, . . . , Xp, and n independent experiments (e.g.,
microarrays) are conducted for this purpose, in which for the i-th experiment, the observed
expression levels of genes Yj and Xk are yij and xik, respectively, but for convenience, we
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will drop the subscript I here. A regression model for the GAN of q simultaneous equations
can then be expressed as [23]:

y1 = β11x1 + β12x2 + · · ·+ β1pxp + εy1
y2 = β21x1 + β22x2 + · · ·+ β2pxp + εy2

...
yq = βq1x1 + βq2x2 + · · ·+ βqpxp + εyq

(1)

where the error terms, εy1, εy2, . . . , εyq, as well as the expression levels of genes Xs and Ys,
are random variables (i.e., non-constants).

We used the architecture of (1) for GAN construction mainly for two reasons. First,
even though distribution-free modeling under the regression framework has been reported,
we would like to develop a new approach with fewer assumptions. Second, unlike other
approaches, such as Bayesian models, our approach could use a standard p-value cutoff of
0.05 to infer an association under the architecture of (1). This is attractive, especially when
prior knowledge concerning the gene’s regulation role in GAN is lacking.

2.2. Conventional Strategies for Estimating the Association Parameters

Generally speaking, Equation (1) can be a distribution-free regression model of GAN
if we do not specify a probability density function for the expression and error terms,
but in previous studies, including the work of [23], a normal distribution function was
used to model gene expressions and measuring noises. Note also that although [25] had
shown that large errors or outliers of expression data do not need to be modeled by a
Gaussian distribution function in regression-based inferring of gene regulatory networks,
their method nonetheless required all the errors and outliers to be modeled as symmetrically
distributed residuals, which are unrealistic for real-world non-Gaussian noises. For the i-th
observation (experiment), a regression model of the j-th equation of Equation (1) can be
rewritten as follows:

yij = β j1xi1 + β j2xi2 + · · ·+ βjpxip + εyij (2)

If we do not know the specific probability density functions for the observed ex-
pressions and error terms, there are, in general, three conventional LS-based strategies to
estimate the association parameters of β in Equation (2). The first one is the ordinary LS
estimation (LSE) strategy, for which the association can be detected by minimizing the
following objective function Qj0 based on the sum of squares of the error terms εyij’s [26]

Qj0

(
β j1, · · · , βjp

)
= ∑n

i = 1

(
yij −∑p

k = 1 βjkxik

)2
(3)

Assuming that these error terms are independently and identically distributed with
zero mean and finite variance, LSE has some well-behaved statistical properties, including
unbiasedness and minimal variance, as summarized by the Gauss–Markov theorem [26].

The second one is the L1-norm penalized strategy, called least absolute shrinkage and
selection operator, or LASSO [27], for which the association of Equation (2) can be obtained
by minimizing Qj1, using an L1 penalty on top of Equation (3)

Qj1

(
λ j1, β j1, · · · , βjp

)
= Qj0

(
β j1, · · · , βjp

)
+ λ j1

p

∑
k = 1

∣∣∣βjk

∣∣∣
where λj1 is the tuning (weight) parameter in the penalty term, L1, of Qj1.
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The third one is the L2-norm penalized strategy, called ridge regression estimation, or
RRE [28], for which the association can be obtained by minimizing the following objective
function Qj2, using an L2 penalty on top of Equation (3)

Qj2

(
λ j2, β j1, · · · , βjp

)
= Qj0

(
β j1, · · · , βjp

)
+ λ j2

p

∑
k = 1

β2
jk

where λj2 is the tuning (weight) parameter in the penalty term, L2, of Qj2.
Generally speaking, RRE is used to combat multi-collinearity owing to the shrinkage

of inflation estimation variances arising from highly correlated gene expression data, while
LASSO is used to exclude zero coefficients in large-scale regression-based GAN prediction
through the adjustment of shrinkage parameters in the penalty term. More on penalized
LS strategies have been discussed by [24,29].

2.3. An Alternative Parameter Estimation Method

In addition to these LS-based methods (LSE, RRE, and LASSO), an alternative,
distribution-free estimation in regression models is the method of grouping estimators.
Wald [30] proposed a special kind of grouping estimator called the Wald-type estimator
(WTE) to tackle measuring noises (variations arising from measuring processes) in simple
linear regression. Wald’s method divides the data into two groups according to predictor
X: those above and below the observation median, respectively. The association parameters
can then be estimated simply by computing the gradients of four means (those of the
observed X and Y values, respectively, in the two divided groups). WTE has received little
attention in the literature because it is inefficient as compared to LSE [31] and inconsistent
with respect to measuring noises [32]. In addition, an assumption of independence be-
tween predictor variables is needed in multiple linear regression models, causing its poor
performance in highly correlated data [17]. For more about WTE and methods of grouping,
readers are referred to [31,33].

Recently, a generalized version of WTE called an adjusted Wald-type estimator (AWTE)
has been developed to tackle Berkson-type uncertainties (i.e., noises in measurement
but not errors caused by measuring process) and collinearity problems [17]. This non-
parametric approach has several merits. First, for the multi-collinearity problem, AWTE is
statistically consistent and asymptotically unbiased (overcoming the drawbacks of LSE,
RRE and LASSO). Second, for the uncertainties in measurement error in conjunction with
collinearities, whereas LSE may cause completely erroneous conclusions [34], AWTE can
solve both problems simultaneously. It should be noted that, as Wu and Fang [17] pointed
out, Berkson-type uncertainties are fundamentally different from the measuring noises
discussed in [23,30] and are also different from the outliers treated in [25]: Namely, Berkson-
type uncertainties can arise from biological noises while the other types are products of
measuring processes. The application of AWTE to GAN construction will be formally
described later.

2.4. Modeling Biological Noises and Correlated Expressions

Contributions from extrinsic and intrinsic noises in biological processes and corre-
lated expressions may lead to biased regression modeling and incorrect predictions for a
GAN [15,16]. To avoid such biases and to recover true associations, we consider the effects
of both intrinsic and extrinsic noises in the framework of a linear regression system.

Let us begin with the consideration of intrinsic noises for not only the target gene Yj
but also the predictor gene Xk in Equation (2). As pointed out by Fujita and coworkers [23],
the error term, εyij, in the regression model can be seen as intrinsic noise in the expression of
the target gene, yij. However, the intrinsic noises of predictor genes, defined as εxik’s below,
are irrespective of measuring devices, although they also appear in measurements [35]. In
other words, biological noises, which are Berkson-type uncertainties, can affect both the
true and the observed expressions of target genes, while measuring noises such as those
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discussed in [23] affect only the observed expressions [36]. Therefore, if we would like
to explicitly model intrinsic biological noise εxik in predictor gene expression xik, we can
employ a Berkson-type uncertainty model [17] and rewrite Equation (2) as follows:

yij = ∑p

k = 1
βjk(xik + εxik) + εyij. (4)

Next, to model extrinsic noises, it is suggested by [37] that a total noise should be
identified, which can be the sum of intrinsic and extrinsic noises, and that these two types
of noises should be presented separately to distinguish the contributions of their different
origins. Thus, to account for noises of both intrinsic and extrinsic origins simultaneously in
the regression system, we can rewrite Equation (4) as follows:

yij = ∑p
k = 1 βjk(xik + εxik + vxik) + vyij + εyij (5)

where the total noises in the expression of predictor gene Xk and target gene Yj are εxik +
vxik and εyij + vyij, respectively, in which vxik and vyij are extrinsic noises and εxik and εyij
are intrinsic noises. Notice that the total noise for predictor gene Xk may not influence
target gene Yj if the association of these two genes is negligible, i.e., if the regression
coefficient (βjk) is very close to zero. In contrast, the total noise for target gene Yj can cause
its expression to fluctuate significantly whether or not the interactions between predictor
and target genes are negligible. As a result, combining all noises into a single term in the
modeling is problematic if the complexities of uncertainties are overly simplified.

Finally, to deal with the potential presence of collinearity, i.e., highly correlated gene
expression data, we can assume that a predictor gene Xl (l < p) is linearly dependent on
another predictor gene Xp (see [38] for a similar assumption about linear dependence
between two genes); that is,

xi1 = ui1 + r1xip,
xi2 = ui2 + r2xip,

...
xip−1 = uip−1 + rp−1xip.

(6)

Equation (6) intuitively divides gene expression xil (l < p) into two additive sources: the
former source, uil, is a unique component for the predictor gene itself (i.e., independent of
other genes) and the later source, xip, is a common interaction component among p predictor
genes and rl is their correlation parameter. Note that the framework of Equation (6) allows
for ease of interpreting the structure of correlated observations and has been commonly
used in the literature to address collinear configuration in regression analysis [17,39].

In summary, if highly correlated expression data and intracellular molecular noises
are significant, WTE can be unstable, and conventional regression strategies (LSE, RRE, or
LASSO) for deducing the values of association parameters β’s may be greatly biased. This
is because specifying the exact means and variances of the total noise contributed from
manifold origins is difficult, and as a result, the assumptions of the Gauss–Markov theorem
do not hold. Furthermore, it is possible to over-adjust the penalty terms in Qj1 (for LASSO)
or Qj2 (for RRE) for ill-conditioned problems due to the requirement of information on
regression coefficients when estimating weight parameters.

2.5. A Robust Distribution-Free Regression Method for Modeling GAN Using AWTE

To consider the effects of biological noises on inferring a GAN, we can rewrite
Equation (1) for the i-th independent experiment according to Equation (5)
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yi1 =
p
∑

k = 1
β1k
(
xik + εxik + vxik

)
+ vyi1 + εyi1

yi2 =
p
∑

k = 1
β2k
(
xik + εxik + vxik

)
+ vyi2 + εyi2

...

yiq =
p
∑

k = 1
βqk
(

xik + εxik + vxik
)
+ vyiq + εyiq

(7)

In addition, to deal with the influence of highly correlated data in regression models,
the regressors can be constrained on Equation (6). To account for the complexity that may
arise from stochastic noises of manifold origins, such as those described as non-Gaussian
noises, we employed AWTE to obtain the association parameters β’s in Equation (7). The
whole analytical procedure of the proposed distribution-free method, also referred to as
AWTE, can be summarized by three primary steps.

Step 1. Determine the common interaction component (i.e., the second source of the additive
combination, xip) in Equation (6) among p predictor genes according to their observed
expression levels; it can be made by

max
l<p

ρ2(xp, xl
)
> max

j 6=p
max
k 6=j,p

ρ2(xj, xk
)

where ρ is the Pearson correlation coefficient and xk is the expression of gene Xk.

Step 2. Estimate all the correlation parameters r1, r2, . . . , rp−1 in Equation (6), which can be
achieved by

r̂l =
∑n

i = 1 xil

(
I
[

xip> M
(

xp

)]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip> M
(

xp

)]
− 1

2

)
where l = 1, . . . , p−1, I denotes the indicator function, i.e., I[A] = 1 if A is true, and 0
otherwise, xk is an n × 1 vector with its i-th value equal to xik for all k ≤ p, and M(xk) is the
median of all values in vector xk (i.e., the median of x1k, x2k, . . . , xnk).

Step 3. Obtain the association parameter βjk in Equation (7) under the constraint of
Equation (6), by using

β̂jk =
∑n

i = 1

(
yij − τjkxip

)(
I
[

xik > r̂kxip+M
(

xk − r̂kxp

)]
− 1

2

)
∑n

i = 1

(
xik − r̂kxip

)(
I
[

xik > r̂kxip+M
(

xk − r̂kxp

)]
− 1

2

) . (8)

Equation (8) is the so-called AWTE, where r̂p is zero and τjk is given by

τjk =

{
0 k 6= p

∑
p−1
s = 1 r̂s β̂js k = p

.

Note that, if we take all the values of r̂k to be zero, Equation (8) reduces to WTE.
A few remarks need to be made regarding the present approach. First, it has been

pointed out by [17] that AWTE (Equation (8)) is a two-stage estimation method: estimating
the whole set of regression coefficients except for the case of k = p first, then all the other
regression coefficients by calculating τjp’s. In this way, AWTE can be calculated directly
without using iterative or optimization algorithms. Second, the computational cost of
AWTE is O(p2) if q = 1 [17], and hence that of Equation (8) under Equation (6) is O(max[p2,
pq]). In addition, as demonstrated in [17], by using this approach, we have theoretical
guarantees for the robustness of the predicted GAN (see Appendix A for the theorem of
robustness and its proof).
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3. Results

In order to characterize the influences of expression noises on the performance of
conventional LS-based regression methods (i.e., LSE, RRE and LASSO) and the present
method (AWTE), we conducted a series of numerical simulations, in which levels of noises
and sample sizes were varied to investigate the robustness of the networks constructed by
these different methods.

3.1. Numerical Simulation Settings

Three common and standardized measures, power of detection (PD), false discovery
rate (FDR) and inferential errors (INER), as suggested and defined in [6], were employed.
Briefly summarizing, let B be the p × q parameter matrix of β in Equation (7). The three
standardized measures are defined as follows: PD is the proportion of true associations
(edges) in B detected; FDR is the proportion of predicted associations (edges) in B that
are false detections; INER is the sum of all the deviations between estimated and true
regression coefficients in B, where an edge between genes Yj and Xk is regarded as detected
if the absolute value of the estimate of association parameter βjk is greater than a cut-off
value τ. We refer to [6] for detailed descriptions of these measures.

In these simulation experiments, we considered a system of ten predictor genes and
five target genes (i.e., p = 10, q = 5) and a large set of observation samples, n ≥ 400. An
association parameter βjk will be assigned a non-zero value chosen randomly from a
uniformly distributed interval of [−1, −0.5] and [0.5, 1] with probability π, or set to zero
otherwise with probability 1−π, where π can be regarded as the proportion of network
edges that connect between X and Y genes. To avoid the situation in which all association
parameters are zero, we set the regression coefficients of common interaction components,
i.e., βjp’s for all j ≤ q in Equation (6), to be 0.9999. In addition, we assumed that in the
same equation uil (l < p) and xip in the additive combination of gene expression xil follow a
chi-square distribution with a degree of freedom 2, and that random noises εxik’s follow
a chi-square distribution with a degree of freedom σ2 (σ being the level of noise) and
random error terms εyij’s follow a normal distribution with zero mean and 2σ2 variance.
Note that the assumption of normal distribution for εyij’s is commonly employed in other
studies [6,23,40], and if we had used a non-Gaussian distribution for them, we would
have obtained even larger errors for the conventional methods. Note also that although
we used chi-square distributed intrinsic noises for predictor genes (εxik’s) to synthesize
gene expressions, the use of other types of non-Gaussian noises would not affect the
conclusions of this study, because the robustness of our method has theoretical proof for
noises of unknown probability density functions (see Appendix A) and this was buttressed
in simulations using two other types of non-Gaussian noises (Appendix B Figure A2).

For simplicity, the common interaction component among p predictor genes was
assumed to be known because it can be identified from Step 1 of the AWTE procedure. To
mimic the influences of the many sorts of extrinsic noises, we furthermore assumed that the
extrinsic noises vyij and vxik in Equation (7) were replaced by non-linear functions fY(vyij)
and fX(vxik), respectively, where we let fY(v) = v2 + 2sin(v) and fX(v) = cos(v), with vyij’s and
vxik’s sharing the same probability density function of εxik. Note that in our method, the
distributions of observed expressions and noises, hence the non-linear functions fY and fX,
need not be known, but they need to be specified in a certain form in order to generate the
synthetic data needed for the simulations.

3.2. Method Comparisons in Numerical Simulations

Based on the settings and the frameworks described in Section 3.1 and Equations (6) and (7)
in Section 2, we numerically generated gene expression data and used them for a series
of 1000 repeated simulation runs with prescribed parameter values representing different
levels of noises and sample sizes. From these simulations, measures of PD (power of
detection), FDR (false discovery rate) and INER (inferential error) were computed in the
receiver operating characteristic (ROC) curve analysis in which an optimal cutoff point for
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best performance was determined. We evaluated the resulting predicted GANs using these
standard statistical measures in Figures 1–3 where rl = 1.5 (i.e., Pearson correlation coeffi-
cient between genes Xl and Xp was set to be greater than 0.8, which indicates a condition
of high correlation; see Equation (6)) and π = 0.4 (the ratio of network connectivities that
are truly associated; see Section 3.1) were fixed to examine the effects of different levels of
noises (indicated by σ2) and sample sizes. These allowed us to evaluate the performance
and robustness of different methods under conditions of high collinearities.

As expected and shown by Figures 1 and 2, higher levels of noise led to larger values
of INER and FDR for all the four methods investigated. However, compared to three
conventional regression methods, LASSO [27], RRE [28] and LSE [26], our method (AWTE)
was significantly less sensitive to increasing levels of noises for both INER (Figure 1) and
FDR (Figure 2), especially as the sample size increased. Since PD, the proportion of correctly
inferred network edges for all non-zero association parameters (β), can be high even when
FDR is also high, the two need to be evaluated together. A combined measure, the square
root of FDR2 + (1 − PD)2, was therefore used, and the results are shown in Figure 3. As
can be seen, when the sample size was small, AWTE performed somewhat worse than
the three conventional methods when the noise level was low, but as the sample size
increased, AWTE gradually gained an advantage and then significantly outperformed the
conventional methods when the noise level was high. Notably, the GAN was inferred
within 20 s on a general-purpose PC equipped with Intel CPU i7-4790 and 8 GB of RAM for
a total of 1000 simulation runs using AWTE; similar timings were obtained with RRE and
LSE, but LASSO took over 300 min to complete the same task.
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Figure 1. Results of INER at various levels of noises and sample sizes for four different
regression-based methods. In each histogram, 1000 repeated simulation runs were conducted
for each method, with the INER performance (X-axis) color-coded yellow for AWTE, purple for
LASSO, orange for RRE, and blue for LSE. Data with increasing levels of noise are indicated by
increasing values of σ2 shown to the left of simulation run counts (Y-axis).
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Figure 2. Results of PD and FDR at various levels of noise and sample sizes for four different
regression-based methods. In each scatter plot, 1000 repeated simulation runs were conducted for
each method, with the results of PD (Y-axis) and FDR (X-axis) indicated by yellow circles for AWTE,
purple pluses for LASSO, orange triangles for RRE, and blue squares for LSE. Data with increasing
levels of noise are indicated by increasing values of σ2 shown to the left of the Y-axis, where an
optimal cut-off point was selected via ROC curve analysis to predict an association.
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Figure 3. Results of FDR/PD-combined performance at various levels of noise and sample sizes
for four different regression-based methods. In each box plot, the median values of the square root
of FDR2 + (1 − PD)2 were compared for the combined performance. Within each plot, the results for
AWTE (AW), LASSO (LA), RRE (RR), and LSE (LS) are shown from left to right. Data with increasing
levels of noise are indicated by increasing values of σ2 shown to the left of the Y-axis, where an
optimal cut-off point was selected via ROC curve analysis to predict an association.

To gain further insight into the theoretical behaviors of the proposed approach, simula-
tions using a broader range of sample sizes and different scales of simultaneous expression
equations (q = 5, 10, 100, 1000) were conducted and analyzed. A typical result is shown
in Figure 4 (also see Appendix B Figure A2), where a low level of noise (σ2 = 1) was
applied, and the number of predictor genes, X, was set to be 10 (p = 10). As can be seen
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from Figure 4A, estimation deviations, as indicated by INER, decreased as the sample size
increased. Furthermore, as shown in Figure 4B, although INER increased with an increased
number (q) of target genes (Figure 4A), the average estimation deviation of β, i.e., INER/pq,
remained nearly constant at any given sample size for all the numbers of target genes tested
and decreased as the sample size increased. These results confirm the Theorem A1 (see
Appendix A) and demonstrate the robustness of AWTE. These results also indicate that
a desirable outcome (e.g., with PD > 0.95 and FDR < 0.05) can be expected using AWTE
when a sufficiently large number of observations (e.g., sample size n > 3000) are available.
Importantly, all these statistical behaviors remained true when a standard p-value cutoff
(0.05) was used to predict an association (Appendix B Figure A3), although the results
for PD were somewhat worse than those shown in Figure 4 where a threshold value for
the association parameters was selected to produce the best ROC performance. This is an
important point to make because it demonstrates the potential of AWTE to reliably predict
gene associations from gene expression data in the absence of literature knowledge on
those associations.
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Figure 4. Performance of AWTE at various target gene numbers (q) as a function of sample size
based on ROC curve analysis. In each performance evaluation, 1000 repeated simulation runs were
conducted (using p = 10 and a small level of noise σ2 = 1), where an optimal cut-off point was selected
via ROC curve analysis to predict an association. (A) Results for the natural logarithm of INER
(left), PD (middle) and FDR (right). (B) Results for INER/pq, the average estimation deviation of the
association parameters, β’s.
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3.3. Method Comparisons Using an Actual Lymphoma Dataset

To evaluate the potential of the proposed method for practical applications, we tested
it on a known network of TF (transcription factor) genes and the genes they regulate in the
germinal-center regulatory program of B cells. As reviewed in [41], dysregulation of this
network is a cause of many types of lymphomas. In this case, a study using actual gene
expression data of lymphoma, we would like to find out to what extent the experimentally
documented associations of this GAN of germinal center B-cell genes can be predicted by
AWTE, in comparison to conventional methods.

We retrieved the gene expression data of diffuse large B-cell lymphoma (DLBCL)
contributed by [42] from Gene Expression Omnibus (GEO, [43]). This dataset (GEO: GSE60)
contained data for five (BCL6, BACH2, SPIB, IRF8, and OCT2) of the seven TF genes
(modeled as predictor genes) and all the ten target genes (p21, MYC, P53, BCL2, NFKB1,
IRF4, Blimp1, AID, p27, and ATR) of the germinal center regulation network described in
Figure 1 of [41]. The data of the total sample size (N = 133) from GSE60 for both normal
cells (N = 31) and tumor cells (N = 102) containing both GCB (germinal center B-cell) and
ABC (activated B-cell) subtypes were retrieved and analyzed.

The AWTE-produced association parameters for the network (a 5 × 10 matrix) of this
dataset are presented in Table A1 (Appendix B), and the ROC performances for AWTE,
LASSO, RRE, and LSE are shown in Figure 5. The ROC performances were determined by
treating the experimentally observed associations (dash-boxed in Table A1) as real and all
the rest as nonexistent—ignoring the fact that absence of observation does not necessarily
equate to the absence of association. As can be seen in Figure 5, AWTE, having the
largest area under the ROC curve (AUC), significantly outperformed the three conventional
methods, which did not perform better than random guesses (the diagonal line in the
ROC plot). Interestingly, of the several associations predicted using AWTE with statistical
significance (p-value < 0.05; bold-typed in Table A2) but have not yet been verified by
human data, three (asterisked in Table A1) can find support from mouse studies: SPIB-
AID [44], BACH2-AID [45], and IRF8-IRF4 [46]. In summary, a gene trio motif of gene
regulation could be clearly identified in Table A1 based on the statistical significance of the
gene associations deduced: namely, SPIB, BACH2, and OCT2 are regulators of oncogenes
IRF4 and AID.
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Figure 5. ROC curve analysis for four different regression-based methods for the case study of
germinal center B cell gene associations. The ROC curves made by each of the four regression-based
methods were plotted, yielding an AUC value of 0.66 for AWTE, 0.50 for LASSO, 0.50 for RRE, and
0.51 for LSE.
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The results obtained with models of three conventional regression methods were
presented in Tables A3–A5. Generally speaking, the patterns of their GANs were quite
similar to ours, but notable differences existed. For example, both IRF4 and AID were down-
regulated by BACH2 in the AWTE-inferred GAN, but only AID was in the LS-inferred
GAN. In addition, whereas the down-regulation of IRF4 by BCL6 was evident in both
GANs, the up-regulation of AID by BCL6 was significant only in the LS-inferred GAN.
In combination, these results appear to reflect the experimental observation of the tumor
suppressor role of BACH2 [47] and the dual regulation role of BCL6 [41].

4. Discussion

The LS strategy, which is mathematically equivalent to the maximum likelihood
estimation, is known to perform well for systems with Gaussian noises, i.e., noises that
are characterized by normal distributions [26]. However, when noises are non-Gaussian,
LS-based methods can be unsatisfactory. For example, as can be seen in Figure 1, when the
sample size is as large as 3200, conventional methods can be unstable under conditions
of non-Gaussian noises, with LSE and RRE having a wide range of INER even when the
level of noise is not high (e.g., σ2 = 1). In addition, as can be seen from Figure 3 at sample
size = 3200, LASSO performed better (lower median in the box plot) than LSE and RRE in
the case of σ2 > 1 but worse in the case of σ2 ≤ 1, which suggests that in this example LASSO
failed the test of robustness. Taken together, we can conclude that, as did others [15,48],
a predicted gene network might be non-functional (e.g., with high INER and high FDR
values) or even incorrect if the effects of intrinsic or extrinsic noises are ignored or overly
simplified to reduce analysis complexities. Indeed, the expressions of eight of the fifteen
genes analyzed in Table A1 for lymphoma did not pass the normality test (Appendix B
Figure A4), which could be a reason for the poor ROC results of the LS-based methods for
predicting the B-cell GAN (Figure 5).

To assess the potential use of the gene trio regulation motif for practical applications,
we conducted a subtype analysis in DLBCL GCB and ABC using data from GSE60. As may
be seen in Figure A5A, the regulations of the motif, as suggested in GCB patients’ gene
expression data, are consistent with the overall trend of our model (Table A1). However,
in Figure A5B), the down-regulating function of BACH2 is nearly non-existent, while the
up-regulating function of SPIB and OCT2 to the two oncogenes in the ABC subtype is
stronger compared to the GCB subtype. Although we do not know specific mechanisms of
how these TF genes can help differentiate the subtypes, these observations may suggest that
over-expression of SPIB and OCT2, as well as malfunction of BACH2, could be probable
causes leading to higher IRF4/AID expressions and resulting in different clinical outcomes
for patients with different subtypes.

In the present work, we did not consider measuring noises because their modeling may
require additional experimental data and/or analysis procedures, as well as a distribution-
dependent approach (e.g., [23]). It is a problem not within the scope of the present study
but will be a subject of our future research.

There are a few other limitations of our method in its current form. Firstly, although a
wider range of design specifications can be used to construct GANs because AWTE can
model uncertain noises with fewer constraints, our method may not perform as well as
conventional LS-based methods if the number of observations is not sufficiently large,
as Figures 1–3 indicate. However, array-based experiments and other high-throughput
technologies to produce very large expression datasets have become increasingly avail-
able in recent years, as in studies using TCPA (The Cancer Proteome Atlas, [49]; sample
size > 3000), TCGA (The Cancer Genome Atlas, [50]; sample size > 800) or UK biobank
([51]; sample size of 500,000 around), this limitation of sample size may soon become a
non-issue in many applications.

Secondly, if in the model the number of predictor genes, p, is larger than that of experi-
ments, n, overfitting may occur, which is a major statistical limitation of linear regression
analysis [24]. To circumvent this problem, automatic variable selection techniques (e.g.,
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stepwise, forward, or backward selections) can be potentially helpful to screen for favorite
predictor genes so as to consider only a smaller number of them (i.e., n > p) in applying the
proposed approach. Or, as demonstrated by the case study of lymphoma in the present
work, knowledge and information from the literature, despite being far from complete
and often not straightforward, can be harnessed for the new method to make insightful
discoveries on gene regulations.

Thirdly, we did not consider time series data mainly because regression modeling for
time series observations often requires distribution-dependent procedures (see, e.g., [52])
or a distribution-free procedure as in the work of [53], for which, however, theoretical
justifications are still lacking to prove that a generalized LS-based approach can address
well the manifold uncertainties associated with the predictors of interest. Further studies
are required to fully address this statistical issue.

Fourthly, our model was derived from data from an older array platform, which may
cause biases in the analysis and hence reduce the accuracy of the results. The predictive
value of the gene trio motif has also not been fully investigated, although in a preliminary
analysis we found that the trio can be a prognostic signature to distinguish survival risks
of lymphoma patients (Figure A6). Further validation with newer data of the model and
the gene trio motif in cancer gene regulation is ongoing.

Finally, our method in the present work was applied to only a handful of variables
(genes). In principle, one could consider all TFs as predictor genes to regulate all other
genes and build a whole-genome TF-centered GAN. However, it remains to be investigated
if the existing data are sufficient to overcome overfitting for such an undertaking. A strategy
such as principal component analysis to shrink the dimension of these TFs while keeping
all the data in the analysis may be necessary.
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Appendix A

Theoretical property and its proof of robustness concerning statistical consistency and
unbiasedness for AWTE are summarized as follows.

Theorem A1. For the distribution-free regression approach with respect to predicting the GAN in
Equation (7), suppose that it is constrained on Equation (6), and that, in Equation (6), we can specify
the common interaction component among p predictor genes based on their observed expression
levels, if the whole design specifications (D1)–(D5), described below, are satisfied, then estimations
of the association parameters in Equation (8), i.e., the regression coefficients, are consistent and
(approximately) unbiased statistically.

(D1) The intrinsic noise of yj (i.e., εy1j, εy2j, . . . , εynj), the intrinsic noise of xk (i.e., εx1k,
εx2k, . . . , εxnk), the extrinsic noise of yj (i.e., vy1j, vy2j, . . . , vynj), and the extrinsic noise of
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xk (i.e., vx1k, vx2k, . . . , vxnk), in regression model (7), for all positive integers j and k, are
all independently and identically sampled random variables. Furthermore, their fourth
moments are finite; that is,

max
j≤q

{∫
ε4gyj(ε)dε

}
+ max

k≤p

{∫
ε4gxk(ε)dε

}
< ∞ and

max
j≤q

{∫
v4hyj(v)dv

}
+ max

k≤p

{∫
v4hxk(v)dv

}
< ∞

where gyj and gxk are unknown probability density functions of the intrinsic noises of yj and
xk, respectively, and hyj and hxk are unknown probability density functions of the extrinsic
noises of yj and xk, respectively.

(D2) The expressions of unique component for predictor gene Xl (i.e., u1l, u2l, . . . , unl for
l < p) and those of common interaction component (i.e., x1p, x2p, . . . , xnp) in Equation (6)
are all independently and identically sampled random variables. Furthermore, their fourth
moments are finite; that is,

max
l<p

{∫
u4 ful(u)du

}
+
∫

x4 fxp(x)dx < ∞

where ful and fxp are unknown probability density functions of uil and xip, respectively.

(D3) The observed gene expressions x1p, x2p, . . . , xnp and the expressions of unique compo-
nent u1l, u2l, . . . , unl for predictor gene Xl in Equation (6), for all positive integers l < p, are
independent of intrinsic and extrinsic noises.
(D4) The expressions of unique component u1t, u2t, . . . , unt for predictor gene Xt are
independent of those of all the other unique component u1l, u2l, . . . , unl and common
interaction component x1p, x2p, . . . , xnp in Equation (6), for all t not equal to l.

(D5)
n
∑

i = 1

(
xik−cxip

)(
I
[

xik> cxip+M
(

xk−cxp

)]
− 1

2

)
> 0, for all real number c except for

the case of c = 1 and k = p.

Proof of Theorem A1. Below, for the convenience of describing the mathematical proofs,
we shall define a few nomenclatures. Let |.| denote the absolute value of a real number (or
a random variable) and p(A) denote the probability of an event (or a set) A.

First, we will prove the statistical consistency of Equation (8); that is, for an arbitrary
positive number ε, we need to show

lim
n→∞

p
(

max
j,k

∣∣∣β̂jk − βjk

∣∣∣> ε

)
= 0. (A1)

Let RUt, REXt, RVXt, REYj and RVYj be defined as follows:

RUt =
∑n

i = 1 uit

(
I
[

xip−M(xp)>0
]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip−M(xp)>0
]
− 1

2

) ,

REXt =
∑n

i = 1 εxit

(
I
[

xip−M(xp)>0
]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip−M(xp)>0
]
− 1

2

) ,

RVXt =
∑n

i = 1 vxit

(
I
[

xip−M(xp)>0
]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip−M(xp)>0
]
− 1

2

) ,

REYj =
∑n

i = 1 εyij

(
I
[

xip−M(xp)>0
]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip−M(xp)>0
]
− 1

2

) ,

RVYj =
∑n

i = 1 vyij

(
I
[

xip−M(xp)>0
]
− 1

2

)
∑n

i = 1 xip

(
I
[

xip−M(xp)>0
]
− 1

2

) .
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Observe that

max
k

∣∣∣β̂jk − βjk

∣∣∣ ≤ ∑l<p

∣∣∣β̂jl − βjl

∣∣∣+ ∣∣∣τjp −∑s<p rsβjs

∣∣∣+ ∣∣∣∑t<p
(

RUt + REXt + RVXt
)

βjt

∣∣∣
+
∣∣∣RVYj + REYj

∣∣∣
≤ ∑l<p

∣∣∣β̂jl − βjl

∣∣∣(1+∣∣r̂l

∣∣)+ ∑s<p

∣∣∣βjs

∣∣∣|r̂s − rs|+ ∑t<p

∣∣∣βjt

∣∣∣∣∣RUt + REXt + RVXt
∣∣

+
∣∣∣RVYj

∣∣∣ + ∣∣∣REYj

∣∣∣
This implies that

p
(

max
k

∣∣∣β̂jk − βjk

∣∣∣ > ε
q

)
≤ ∑

l<p
p

(∣∣∣β̂jl − βjl

∣∣∣ > ε(
1+max

s
r∗s
)
(3p−1)q

)

+ ∑
s<p

p

|r̂s − rs| > ε(
max

l

∣∣∣βjl

∣∣∣)(3p−1)q


+ ∑

t<p
p

∣∣RUt + REXt + RVXt
∣∣ > ε(

max
l

∣∣∣βjl

∣∣∣)(3p−1)q


+p
(∣∣∣REYj

∣∣∣ > ε
(3p−1)q

)
+ p

(∣∣∣RVYj

∣∣∣ > ε
(3p−1)q

)
(A2)

where r∗s is the maximal value of |r̂s| for all sample size n. According to the assumption of
independent and identical sampling made in design specifications D1–D4, it immediately
follows from Lemma-(i) and the similar arguments of (A.2) and (A.3) in [17] that, for
arbitrary positive numbers λm, m = 1, 2, . . . , 8,

lim
n→∞

p
(∣∣∣β̂jl − βjl

∣∣∣ > λ 1

)
= lim

n→∞
p(|r̂s − rs| > λ 2)= 0 (A3)

and that
lim

n→∞
p
(∣∣∣REYj

∣∣∣ > λ 3

)
= lim

n→∞
p
(∣∣∣RVYj

∣∣∣ > λ 4

)
= 0 (A4)

and that

lim
n→∞

p(|RUt| > λ 5) = lim
n→∞

p(|REXt| > λ 6) = lim
n→∞

p(|RVXt| > λ 7)= 0

which yields
lim

n→∞
p(|RUt + REXt + RVXt| > λ 8)= 0. (A5)

Observe that

p
(

max
j,k

∣∣∣β̂jk − βjk

∣∣∣> ε

)
≤ ∑

j≤q
p
(

max
k

∣∣∣β̂jk − βjk

∣∣∣ > ε

q

)
.

Hence, based on (A2)–(A5), and let ε* = ε/(3pq − q), we have

lim
n→∞

p
(

max
j,k

∣∣∣β̂jk − βjk

∣∣∣> ε

)
≤ ∑

j≤q
lim

n→∞
p
(

max
k

∣∣∣β̂jk − βjk

∣∣∣ > ε
q

)
≤ ∑

j≤q
∑

l<p
lim

n→∞
p

(∣∣∣β̂jl − βjl

∣∣∣ > ε∗(
1+max

s
r∗s
)
)

+q ∑
s<p

lim
n→∞

p

|r̂s − rs| >
ε∗

max
j, l

∣∣∣βjl

∣∣∣


+q ∑
t<p

lim
n→∞

p

∣∣RUt + REXt + RVXt
∣∣ > ε∗

max
j, l

∣∣∣βjl

∣∣∣


+ ∑
j≤q

{
lim

n→∞
p
(∣∣∣REYj

∣∣∣ > ε∗
)
+ lim

n→∞
p
(∣∣∣RVYj

∣∣∣ > ε∗
)}

≤ 0
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which concludes that (A1) is true. Thus, we have completed the first part of proof of the
Theorem A1, i.e., Equation (8) is a statistically consistent estimation for all the regression
coefficients in Equation (6).

As for the second part of the proof, we will prove approximate unbiasedness of
Equation (8); that is, we need to show

lim
n→∞

Emax
j,k

∣∣∣β̂jk − βjk

∣∣∣= 0. (A6)

where E(X) denotes the expectation of a random variable X. Observe that

0 ≤ max
k

∣∣∣β̂jk − βjk

∣∣∣ ≤ ∑
l<p

∣∣∣β̂jl − βjl

∣∣∣(1+∣∣r∗l ∣∣)+ ∑
s<p

max
l

∣∣∣βjl

∣∣∣|r̂s − rs|

+ ∑
t<p

max
l

∣∣∣βjl

∣∣∣∣∣RUt + REXt + RVXt
∣∣+∣∣∣RVYj

∣∣∣ + ∣∣∣REYj

∣∣∣ (A7)

If we can show that

lim
n→∞

E
∣∣∣β̂jl − βjl

∣∣∣ = lim
n→∞

E|r̂s − rs|= 0 (A8)

and that

lim
n→∞

E|RUt + REXt + RVXt| = lim
n→∞

E
∣∣∣RVYj

∣∣∣ = lim
n→∞

E
∣∣∣REYj

∣∣∣= 0, (A9)

the proof of the Theorem A1 will be complete, i.e., (A6) is true, because, based on (A7)–(A9),

lim
n→∞

Emax
j,k

∣∣∣β̂jk − βjk

∣∣∣ ≤ lim
n→∞

∑j≤q

{
∑l<p

(
1+
∣∣r∗l ∣∣)E∣∣∣β̂jl − βjl

∣∣∣+ max
l

∣∣∣βjl

∣∣∣∑s<p E|r̂s − rs|

+ max
l

∣∣∣βjl

∣∣∣∑t<p E
∣∣RUt + REXt + RVXt

∣∣+E
∣∣∣RVYj

∣∣∣ +E
∣∣∣REYj

∣∣∣}
≤
(

1+max
s
|r∗s |
)

∑j≤q

{
∑l<p lim

n→∞
E
∣∣∣β̂jl − βjl

∣∣∣+ lim
n→∞

E
∣∣∣RVYj

∣∣∣ + lim
n→∞

E
∣∣∣REYj

∣∣∣}
+ qmax

j,k

∣∣∣βjk

∣∣∣{∑s<p lim
n→∞

E|r̂s − rs|+ ∑t<p lim
n→∞

E
∣∣RUt + REXt + RVXt

∣∣}
≤ 0.

The remaining part of the proof now is to show that (A8) and (A9) hold. We will first
show that (A9) is true. According to the assumption of independent and identical sampling
in design specifications D1, D3, and D5, and to Lemma-(iv) and the analogous arguments
of proof of (A.6) in [17], there must exist a random variable DVY, which is greater than
|RVYj | such that the expectation of DVY is finite (smaller than infinity). Following (A4)
and the theorem of dominated convergence (see, for example, [54]), we have

lim
n→∞

E
∣∣∣RVYj

∣∣∣= 0.

Similarly, we have

lim
n→∞

E
∣∣∣REYj

∣∣∣ = lim
n→∞

E|RUt| = lim
n→∞

E|REXt| = lim
n→∞

E|RVXt|= 0,

which concludes that (A9) holds. Analogously, we come to the conclusion that (A8) also
holds via repeating similar arguments of proof for (A9).

As above, we have completed the proof of Theorem A1. �
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Figure A1. Flow chart for discovering disease-causing gene regulation motif using noise-
tolerating GAN approach. GEP: Gene Expression Profile.
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Figure A2. The performance of AWTE as a function of target gene number q, using different
types of non-Gaussian noise. In each performance evaluation, 1000 repeated simulation runs were
conducted using 10 predictor genes (p = 10) and a small noise level of σ2 = 1, and non-Gaussian
noises generated by (A) gamma, and (B) log-normal, probability distribution function.
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Figure A3. The performance of AWTE as a function of sample size and varying number (q)
of target genes, with associations inferred by statistical test of significance. In this evaluation,
1000 repeated simulation runs were conducted using 10 predictor genes (p = 10) and a small level of
noise σ2 = 1, and a standard p-value cutoff (0.05) was used to infer an association. Because computing
all the p-values is time consuming, the simulations were conducted only for q ≤ 20.
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Figure A4. Results of Anderson–Darling normality test for the expressions of each of the 15 B-cell
genes (Table A1) examined among the 133 samples of the GSE60 lymphoma dataset. Histograms
in pink are the genes exhibiting a statistically significant deviation from normal distribution
(p-value < 0.05), and in blue are those not. Standard normal distribution is drawn by red curve
in each histogram.
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Figure A5. Scatter plots of gene expression levels and their linear trends for the proposed gene
trio motif in GSE60 DLBCL (A) GCB subtype (N = 35) and (B) ABC subtype (N = 35). In each
subtype, scatter plot for each pair in the gene trio motif was drawn. Linear trends for regulating roles
in the gene trio motif were also analyzed using simple linear regressions (3-by-2 table, right hand
side), where negative (positive) slope indicates down- (up-) regulations and a flat slope (close to zero)
indicates limited regulations.
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Figure A6. Survival analysis using gene expressions of gene trio, SPIB, BACH2 and OCT2, as a
prognostic signature. DLBCL dataset was retrieved from TCGA [50]. Risk groups were stratified at
median of risk scores calculated via Cox modeling.



Life 2023, 13, 1331 20 of 23

Table A1. The association parameters of the GAN inferred by AWTE from a DLBCL gene expression
dataset (GSE60).

p21 MYC p53 BCL2 NFKB1 IRF4 Blimp1 AID p27 ATR

BCL6 0.059 −0.267 0.158 −0.686 0.108 −0.667 −0.022 0.053 −0.263 −0.049

SPIB −0.110 0.235 −0.236 0.093 0.018 0.677 0.026 0.650 * −0.042 −0.122

BACH2 −0.108 −0.052 0.048 0.168 −0.303 −0.255 −0.296 −0.563 * 0.132 0.158

IRF8 −0.234 −0.233 −0.050 0.101 −0.249 −0.329 * −0.189 −0.226 0.003 0.068

OCT2 −0.134 0.055 0.001 0.361 −0.113 0.554 0.163 0.532 −0.017 −0.005

This table is a representation of the GAN derived by AWTE for the 5 genes (BCL6, SPIB, BACH2, IRF8, and
OCT2) that regulate 10 genes (p21, MYC, etc.) in the germinal center B cell, with the numerical values being
the association parameters determined. Dotted boxes are twenty associations (network edges) reported in the
literature; the 8 associations in addition to the 12 shown in Figure 1 of [41] are: SPIB-IRF4 [55], BACH2-BCL2 [47],
OCT2-MYC [56], OCT2-BCL2 [57], OCT2-NFKB1 [56], OCT2-IRF4 [56], OCT2-Blimp1 [58], and OCT2-AID [59].
Those inferred by ROC curve analysis to yield the best AUC (Figure 5; 0.26 being the cut-off) are underlined.
Those with t-test under the null hypothesis β = 0 being significant (p-value < 0.05) are boldfaced (see Table A2
below for the p-values). The three asterisked associations have support from mouse studies: SPIB-AID [44],
BACH2-AID [45], and IRF8-IRF4 [46].

Table A2. Statistical test results (p-values) for the association parameters of the GAN inferred by
AWTE from a DLBCL gene expression dataset (GSE60).

p21 MYC p53 BCL2 NFKB1 IRF4 Blimp1 AID p27 ATR

BCL6 0.733 0.227 0.242 1.0 × 10−6 0.261 1.4 × 10−4 0.820 0.736 0.003 0.521
SPIB 0.467 0.222 0.047 0.427 0.828 1.2 × 10−5 0.759 6.0 × 10−6 0.575 0.069

BACH2 0.355 0.723 0.595 0.062 5.9 × 10−6 0.027 8.9 × 10−6 4.4 × 10−7 0.024 0.002
IRF8 0.096 0.192 0.644 0.351 0.002 0.018 0.015 0.078 0.971 0.268

OCT2 0.424 0.795 0.997 0.006 0.224 0.001 0.079 6.7 × 10−4 0.834 0.944

Those with t-test under the null hypothesis β = 0 being significant (p-value < 0.05) are boldfaced.

Table A3. The association parameters of the GAN inferred by LSE (using GSE60).

p21 MYC p53 BCL2 NFKB1 IRF4 Blimp1 AID p27 ATR

BCL6 0.041 −0.181 0.060 −0.586 0.099 −0.372 −0.017 0.299 −0.286 −0.048
SPIB 0.221 0.711 −0.311 0.039 −0.116 0.509 −0.107 0.615 0.211 0.099

BACH2 −0.171 −0.040 0.055 0.113 −0.245 −0.078 −0.298 −0.358 0.116 0.134
IRF8 −0.079 −0.364 0.057 0.163 −0.094 −0.371 −0.045 −0.225 0.002 0.047

OCT2 −0.443 −0.689 0.323 0.259 0.025 0.205 0.250 0.119 −0.260 −0.206

Those with t-test under the null hypothesis β = 0 being significant (p-value < 0.05) are boldfaced.

Table A4. The association parameters of the GAN inferred by RRE (using GSE60).

p21 MYC p53 BCL2 NFKB1 IRF4 Blimp1 AID p27 ATR

BCL6 0.029 −0.170 0.051 −0.536 0.071 −0.321 −0.018 0.285 −0.267 −0.039
SPIB 0.172 0.646 −0.248 0.034 −0.077 0.431 −0.076 0.581 0.186 0.069

BACH2 −0.187 −0.072 0.081 0.110 −0.207 −0.104 −0.266 −0.359 0.100 0.108
IRF8 −0.064 −0.330 0.036 0.152 −0.094 −0.310 −0.053 −0.199 0.008 0.049

OCT2 −0.390 −0.654 0.282 0.243 0.006 0.194 0.218 0.120 −0.245 −0.174

Those with t-test under the null hypothesis β = 0 being significant (p-value < 0.05) are boldfaced.
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Table A5. The association parameters of the GAN inferred by LASSO (using GSE60).

p21 MYC p53 BCL2 NFKB1 IRF4 Blimp1 AID p27 ATR

BCL6 0.022 −0.122 0.039 −0.514 0.067 −0.307 −0.010 0.228 −0.236 −0.032
SPIB 0.156 0.541 −0.242 0.024 −0.079 0.440 −0.074 0.544 0.157 0.073

BACH2 −0.166 −0.070 0.062 0.094 −0.208 −0.073 −0.254 −0.316 0.083 0.109
IRF8 −0.047 −0.266 0.035 0.137 −0.077 −0.306 −0.035 −0.155 0.001 0.038

OCT2 −0.381 −0.600 0.281 0.236 0.014 0.163 0.197 0.084 −0.218 −0.176

Those with t-test under the null hypothesis β = 0 being significant (p-value < 0.05) are boldfaced.

Table A6. GAN method comparisons among four different distribution-free regression approaches.

GAN Method
Comparison *

Close Form for
Estimating Equation

Collinear Impact
Adjustment

Noise/Heterogeneity
Tolerating

Large Scale Predictor
Gene Selection

LSE Yes No No No
RRE Yes Yes No No

LASSO No Yes No Yes
AWTE Yes Yes Yes No

* Using regression methods for comparison of GAN construction in the case of non-time series gene expression
data. Gaussian graphical models and Bayesian models, though not distribution-free, generally have similar
patterns as LASSO.
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