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Abstract: Vaccines trigger an immunological response that includes B and T cells, with B cells
producing antibodies. SARS-CoV-2 immunity weakens over time after vaccination. Discovering
key changes in antigen-reactive antibodies over time after vaccination could help improve vaccine
efficiency. In this study, we collected data on blood antibody levels in a cohort of healthcare workers
vaccinated for COVID-19 and obtained 73 antigens in samples from four groups according to the
duration after vaccination, including 104 unvaccinated healthcare workers, 534 healthcare workers
within 60 days after vaccination, 594 healthcare workers between 60 and 180 days after vaccination,
and 141 healthcare workers over 180 days after vaccination. Our work was a reanalysis of the data
originally collected at Irvine University. This data was obtained in Orange County, California, USA,
with the collection process commencing in December 2020. British variant (B.1.1.7), South African
variant (B.1.351), and Brazilian/Japanese variant (P.1) were the most prevalent strains during the
sampling period. An efficient machine learning based framework containing four feature selection
methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte
Carlo feature selection, and maximum relevance minimum redundancy) and four classification
algorithms (decision tree, k-nearest neighbor, random forest, and support vector machine) was
designed to select essential antibodies against specific antigens. Several efficient classifiers with
a weighted F1 value around 0.75 were constructed. The antigen microarray used for identifying
antibody levels in the coronavirus features ten distinct SARS-CoV-2 antigens, comprising various
segments of both nucleocapsid protein (NP) and spike protein (S). This study revealed that S1 + S2,
S1.mFcTag, S1.HisTag, S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc were most highly
ranked among all features, where S1 and S2 are the subunits of Spike, and the suffixes represent
the tagging information of different recombinant proteins. Meanwhile, the classification rules
were obtained from the optimal decision tree to explain quantitatively the roles of antigens in
the classification. This study identified antibodies associated with decreased clinical immunity
based on populations with different time spans after vaccination. These antibodies have important
implications for maintaining long-term immunity to SARS-CoV-2.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus
strain causing Coronavirus Disease 2019 (COVID-19) [1]. On 11 March 2020, COVID-19 was
finally classified as a pandemic by the World Health Organization (WHO) [2]. More than
6.3 million people have died from COVID-19 globally, according to the WHO, and more
than 500 million cases have been confirmed. Additionally, more than 11 billion doses of
vaccine have been distributed [3]. Fever, sore throat, dry cough, and pneumonia symptoms
are among the clinical manifestations of COVID-19 [4]. During the span of this study,
the Omicron variant was prevalent. The Omicron variant, which evolved from the Alpha
variant, has increased infectivity compared to earlier variants [5]. Increased infectiousness
and antibody evasion have been linked to the mutations in the SARS-CoV-2 spike protein [6].

Scientists have developed COVID-19 vaccines to combat the pandemic. To date, some
types of vaccines against SARS-CoV-2 have been developed and widely used worldwide,
such as the RNA-based type, non-replicating viral vector type, and protein-based type [7].
BNT16b2 (Pfizer—New York, NY, USA and BioNTech—Mainz, Germany), mRNA-1273
(Moderna—Cambridge, MA, USA), Ad26.COV2.S (Johnson & Johnson—New Brunswick,
NJ, USA), CIGB-66 Abdala (Cuban Genetic Engineering and Biotechnology Center—Havana,
Cuba), and other common vaccines require one to three doses, depending on the type [7–10].
BNT162b2 contains mRNA encoding a full-length stable S glycoprotein that elicits dose-
dependent SARS-CoV-2 neutralizing antibody titers [11]. Two doses of BNT162B2 exhibit
approximately 95% protection against severe illness [9,12–15]. As of early 2023, all vaccines
have efficacy in reducing COVID-19 severe cases and death while their efficiency in control-
ling viral infection and mild symptoms is not very satisfactory [9,10,16,17]. Vaccine coverage
must be extended to all countries while maintaining and improving public health control
mechanisms to control COVID-19 morbidity and mortality worldwide.

However, the efficacy of the BNT162b2 mRNA vaccine against SARS-CoV-2 decreases
over time [11,18]. In addition, there have been reports of vaccine-induced protection waning
progressively due to the emergence of new variants [19,20]. Whether the decline in vaccine
protection is linked to a decrease in virus resistance remains unclear. Vaccines trigger
a complicated immunological response that includes B and T cells, with B cells producing
antibodies [18,21,22]. Spike (S), membrane (M), nucleocapsid (N), and envelope (E) are the
four structural proteins encoded by SARS-CoV-2 [23–25]. Most of the antibodies generated
by vaccination are directed against the S protein, specifically the receptor-binding domain
(RBD) [7,26]. A recent study of antibody alterations following two doses of inactivated
COVID-19 vaccine, separated into three groups based on immunization duration, revealed
that the levels of antibodies (anti-Spike IgG) decrease with time [27]. While existing studies
have begun to chart the territory of antibody profiles post-COVID-19 vaccination [28–31],
the detailed interplay between antibody and vaccination remains incompletely revealed.
More comprehensive research is urgently needed to pinpoint the most critical antibodies
that neutralize the virus effectively and determine their duration in the human body. This
knowledge is paramount for enhancing vaccine strategies, potentially developing superior
treatments, and guiding public health policies regarding booster shots and containment
measures, ultimately fortifying our fight against the pandemic.

In the current study, we investigated the influence of vaccines on antibody synthesis
and monitored changes in antibody levels in the body over time following vaccination.
Data on blood antibody levels in a cohort of volunteers vaccinated for COVID-19 vaccines
were sourced from the Gene Expression Omnibus (GEO). The GEO data used for our
analyses were originally measured using antigen microarrays [32]. The volunteers were
examined for their reaction before receiving the mRNA vaccine (Pfizer or Moderna), shortly
after receiving the first and second doses, and up to 6 months later. Vaccine-induced
antibodies are mainly directed against the S1 and RBD domains of the S protein and
to a lesser extent against the S2 domain. Antibody levels were increasing significantly
2 months after vaccination and begin to decline after 6 months. Seventy-three antigens and
1373 volunteer records were involved in the study of Hosseinian et al. [32]. In the present
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study, 1373 samples were classified into four groups according to the time of vaccination:
before vaccination, within 60 days of vaccination, 60–180 days after vaccination, and over
180 days after vaccination. Multiple machine learning methods were integrated to identify
key antigen-reactive antibodies that changed after COVID-19 vaccination over time and
to establish quantitative rules for accurate prediction. Several essential antigen-reactive
antibodies and classification rules were obtained, some of which were extensively analyzed.
The results of this study could serve as a basis for developing effective vaccines with
long-lasting protection and elucidating the defense mechanisms of COVID-19 vaccines.

2. Materials and Methods
2.1. Data and Preprocessing

Individualized antibody reactivity levels for SARS-CoV-2 antigens induced by mRNA
vaccines were quantified using a coronavirus antigen microarray (CoVAM) following the
procedure described by Hosseinian et al. [32]. Data were sourced from the GEO database
using accession number GSE199668. The samples were divided into four classes according
to the time of vaccination: 104 unvaccinated healthcare workers, 534 healthcare workers
within 60 days after vaccination, 594 healthcare workers between 60 and 180 days after
vaccination, and 141 healthcare workers over 180 days after vaccination [32]. In terms of
features, the CoVAM contained 10 SARS-CoV-2 antigens, including nucleocapsid protein
(NP) and several varying fragments of the S protein, as well as 4 SARS, 3 MERS, 12 Common
CoV, 8 influenza, and 36 other antigens. In terms of feature naming, the virus name was
placed at the beginning to distinguish between the different sources of antibodies, followed
by the protein name, and the specific tag name followed after the protein name. The
feature names and their descriptions are provided in Table S1. The normalized fluorescence
intensity was used to characterize the expression levels of antigen-reactive antibodies
in blood. The above features and four classes comprised the classification problem. By
investigating the problem, essential features can be obtained.

2.2. Feature Selection Methods

Several features were adopted to represent samples. Some of them were important to
classify samples into different classes, whereas others were not. In machine learning, the
important features can be extracted by feature selection methods. To date, many such methods
have been proposed. It is a challenge to select the correct one to process a given dataset.
Generally, one single method can only output a part of the essential features as each method has
its limitations. In this study, we adopted four feature selection methods: least absolute shrinkage
and selection operator (LASSO) [33,34], light gradient boosting machine (LighGBM) [35],
Monte Carlo feature selection (MCFS) [36] and maximum relevance minimum redundancy
(mRMR) [37]. These methods were designed following different principles, meaning that they
can overview the given dataset from different aspects. Thus, more essential features can be
obtained by applying them to the same dataset. Their brief descriptions are as follows.

Least Absolute Shrinkage and Selection Operator. The LASSO is a statistical method
used for regularization and feature selection [33,34]. This method reduces the regression
coefficients of the redundant features to zero. The feature selection phase occurs after
the reduction, where non-zero-valued features are sorted by the absolute value of their
coefficients. This study used the LASSO program implemented in Scikit-learn [38], which
was run with default parameters.

Light Gradient Boosting Machine. The LightGBM is a free and open-source distributed
gradient boosting framework for machine learning that was created by Microsoft [35]. It
performs regression and classification by transforming weak decision tree (DT) classifiers
into strong learners. In addition to regression and classification, this method ranks features
according to their importance, measured by the number of times they are picked up for building
DTs. A high ranking is given to features that are used frequently. LightGBM was implemented
through a Python module, which can be obtained at https://lightgbm.readthedocs.io/en/
latest/ (accessed on 10 May 2020). This program was also performed under default parameters.

https://lightgbm.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/
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Monte Carlo Feature Selection. The MCFS is a useful tool for selecting informative
features according to their relative importance in building DTs [36,39–41]. Subsets of
features are randomly constructed many times. For each subset, some samples are randomly
selected for training, and the others are used for testing. For instance, a DT is built based
on two out of three of the samples that are randomly selected, and the rest is used for
testing, which is also repeated many times. The relative importance (RI) of each feature
can then be estimated by considering the number of times they are used to construct the
DTs, the information gain of the features, and the weighted accuracy of the DTs. Finally,
features can be sorted according to their RI scores. The MCFS program adopted in this
study was retrieved from http://www.ipipan.eu/staff/m.draminski/mcfs.html (accessed
on 4 June 2019). Additionally, it was executed using default parameters.

Maximum Relevance Minimum Redundancy. The mRMR is a classic and powerful
feature selection method [37]. It measures the importance of features according to two
aspects: (1) relevance to class variable, (2) redundancy to other features. The relevance and
redundancy are all measured by mutual information (MI). Similar to the above methods,
mRMR also generates a feature list to indicate the importance of features. At first, the list
is empty. Then, a loop procedure is executed. In each round, one feature with maximum
relevance to class variable and minimum redundancy to features in the current list is
selected from all remaining features, which is appended to the current list. The loop
procedure stops until all features have been put into the list. The mRMR program used
in this study was obtained from http://home.penglab.com/proj/mRMR/ (accessed on
2 May 2018) and it was executed with the default settings.

The above four feature selection methods were applied to the dataset mentioned in
Section 2.1, resulting in four feature lists, which were termed as LASSO, LightGBM, MCFS
and mRMR feature lists.

2.3. Incremental Feature Selection

Although the feature selection methods can sort features in lists, it still retains a gap
for extracting essential features. It is not easy to determine how many top features should
be selected. In view of this, incremental feature selection (IFS) was employed in this
study [42]. It can find out the optimal number of features for building the classifiers with
best performance [43–45]. In the present study, one step interval was applied to each given
list in the IFS method. Under this setting, a series of feature subsets were constructed in
the following manner. The first subset contained the first feature in the list, the second one
contained the top two features, and so on. A classifier was built for each feature subset
based on one classification algorithm and samples encoded by features in this subset. All
classifiers were tested by tenfold cross-validation [46]. According to the evaluation results,
the classifier providing the highest performance was selected. It was termed as the optimal
classifier and the optimal feature set was defined as the corresponding feature subset.

2.4. Synthetic Minority Oversampling Technique

As mentioned in Section 2.1, there are significant differences in the size of the four
classes. The classifier built on such datasets may generate bias. This should be tackled by
using some advanced computational methods. Here, we selected the synthetic minority
oversampling technique (SMOTE) [47–49]. The idea of this method is to generate synthetic
samples for each minority class, thereby balancing the dataset. In detail, it randomly
chooses a sample from one minority class and determines its k nearest neighbors in the
same class. One of its neighbors is randomly selected and a synthetic sample is generated
by the linear combination of the sample and its chosen neighbor. This newly generated
sample is put into the minority class, thereby enlarging its size. This procedure can be
performed several rounds until the minority class contains the same number of samples as
the majority class. Herein, we used the SMOTE tool from https://github.com/scikit-learn-
contrib/imbalanced-learn (accessed on 24 March 2020) with default parameters.

http://www.ipipan.eu/staff/m.draminski/mcfs.html
http://home.penglab.com/proj/mRMR/
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
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2.5. Classification Algorithms

In the IFS method, one classification algorithm should be employed for building
classifiers. This study adopted four classification algorithms: DT [50], K-nearest neighbor
(KNN) [51], support vector machine (SVM) [52], and random forest (RF) [53]. These algo-
rithms have wide applications in tackling various medical and biological problems [54–60].
DT uses a tree-like model to build classifiers, which can be extended by maximizing Gini
index or information gain in each tree node [50]. The KNN algorithm finds the nearest
neighbors of a new sample and categorizes the new sample into one that is shared by
most of its nearest neighbors [51]. The SVM can map samples into a high-dimensional
space and finds a hyperplane that distinctly classifies samples in different classes. The test
samples are then mapped into the same space and the category to which they belong are
predicted based on which side of the hyperplane they fall [52]. A RF consists of a large
number of individual DTs that operate as an ensemble [53]. Each decision tree in an RF
generates class predictions on a test sample, and the class with the most votes is taken as
the prediction result.

2.6. Performance Assessment

The weighted F1 is a widely used measurement in multi-class classification, which
was selected as the key measurement to assess the performance of the classifier. For the
calculation of the measurement, the F1-measure in each class should be calculated in
advance. It is defined as the harmonic mean of the other two measurements: recall and
precision, where recall is the proportion of correctly predicted positive samples among all
positive samples, precision is the proportion of correctly predicted positive samples among
all predicted positive samples. The weighted F1 is the weighted average of all F1-measure
values on different classes, where the weight for one class is defined as the proportion of
samples in this class.

In addition, other measurements were also employed to give a full display of the
performance of classifiers. The first one was Macro F1, which is another way to integrate
the F1-measure values of different classes, which is defined as the mean of all F1-measure
values. The second one was prediction accuracy (ACC) which is the most classic measure-
ment to assess the performance of classifiers. It is defined as the ratio of the number of
correctly predicted samples and the overall sample number. However, when the dataset is
imbalanced, ACC is not accurate enough. Matthew correlation coefficients (MCC) [61] is
a more balanced measurement than ACC. Two matrices are used to calculate MCC. One
is to store the true class of each sample and the other one is to store the predicted class of
each sample. MCC assesses the relationship between these two matrices.

2.7. Extraction of Essential Features for Each Class

Based on the IFS method, some essential features can be obtained. However, it is not
clear which class they are highly related to. In view of this, we reconstructed a dataset for
each class and applied the above feature selection methods to it. For one class, one dataset
was generated, in which samples in this class were considered as positive samples and other
samples were regarded as negative samples. Then, LASSO, LightGBM, MCFS, and mRMR
were adopted to investigate this dataset, resulting in four feature lists. From each list, the
top 20 features were picked, thereby obtaining four feature subsets. By investigating the
overlap of these feature subsets, some essential features that occurred in multiple subsets
can be obtained, which were deemed to be highly related to the given class.

3. Results

In this study, a dataset on the antibody reactivity levels for SARS-CoV-2 antigens
induced by mRNA vaccines was investigated. The overall computational framework is
illustrated in Figure 1. The results in each step are presented in this section.
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Figure 1. Flow chart of the entire analytical process. The 73 antigens in samples from four classes
were ranked in terms of feature importance by four feature selection algorithms, including LASSO,
LightGBM, mRMR, and MCFS. Such procedure generated four feature lists, which were fed into the
IFS method. Efficient classifiers were set up, which used the optimal feature subset from each list. At
the same time, classification rules were also built. Obtained optimal feature subsets were investigated
to obtain antigens recurring in multiple subsets. Lastly, a biological analysis was performed on the
above-obtained antigens and classification rules.

3.1. Results of Feature Selection Methods

According to the framework, four feature selection methods were used to rank the
73 antigens based on the degree to which they contributed to the classification. These lists
are provided in Table S2. For easy descriptions, they were called LASSO, LightGBM, MCFS
and mRMR feature lists.
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3.2. IFS Results and Feature Intersection

As mentioned above, four feature lists were obtained. Each list was put into the
IFS method one by one. DT, KNN, RF, and SVM were adopted in the IFS method. The
performance of each classification algorithm under some top features in each list is listed in
Table S3. Using the weighted F1 as the major measurement, we compared the performance
of the classifiers using the same classification algorithm and feature list. Several IFS curves
were generated by plotting the weighted F1 on the y-axis and the number of features on
the x-axis, as shown in Figures 2 and 3.
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For the LASSO feature list, Figure 2A shows the IFS curves based on four classification
algorithms. When the top 47, 73, 21 and 73 features in each list were used, the DT, KNN,
RF and SVM can yield the highest weighted F1 values of 0.702, 0.711, 0.735 and 0.733,
respectively. Accordingly, the optimal DT, KNN, RF and SVM classifiers can be built with
the corresponding top features. Their detailed performance, including ACC, MCC, macro
F1 and weighted F1, is provided in Table 1. Evidently, the optimal RF classifier was better
than the other three optimal classifiers.
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Table 1. Performance of optimal classifiers on different classification algorithms and feature lists.

Feature
List

Classification
Algorithm

Number of
Features ACC MCC Macro

F1
Weighted

F1

LASSO
feature list

DT 47 0.704 0.554 0.744 0.702
KNN 73 0.716 0.574 0.776 0.711

RF 21 0.741 0.622 0.787 0.735
SVM 73 0.737 0.603 0.796 0.733

LightGBM
feature list

DT 40 0.720 0.573 0.762 0.717
KNN 18 0.747 0.618 0.802 0.744

RF 31 0.752 0.649 0.796 0.742
SVM 35 0.761 0.640 0.806 0.758

MCFS
feature list

DT 17 0.729 0.589 0.771 0.727
KNN 20 0.742 0.611 0.799 0.739

RF 23 0.756 0.649 0.801 0.747
SVM 41 0.768 0.652 0.811 0.765

mRMR
feature list

DT 14 0.730 0.594 0.763 0.728
KNN 24 0.741 0.612 0.797 0.737

RF 26 0.754 0.646 0.797 0.745
SVM 30 0.762 0.643 0.805 0.758

For the LightGBM feature list, the obtained four curves are illustrated in Figure 2B.
From this figure, four optimal classifiers can be obtained, which adopted the top 40, 18,
31 and 35 features in the list. They generated the weighted F1 values of 0.717, 0.744, 0.742
and 0.758. Table 1 also lists the performance of these optimal classifiers. Clearly, the optimal
SVM classifier was a little better than the other three optimal classifiers.

For the MCFS feature list, the IFS results on this list were summarized as four IFS
curves, as shown in Figure 3A. It can be observed that the optimal DT/KNN/RF/SVM
classifier adopted the top 17/20/23/41 features in this list. The detailed performance of
these optimal classifiers is provided in Table 1. Evidently, the optimal SVM classifier was
the best among four optimal classifiers, which produced a weighted F1 of 0.765.

As for the last mRMR feature list, Figure 3B displays the IFS curves on four classifi-
cation algorithms. The highest weighted F1 values for the classification algorithms were
0.728 (DT), 0.737 (KNN), 0.745 (RF) and 0.758 (SVM), respectively. This performance was
obtained by using the top 14, 24, 26 and 30 features in the corresponding feature list. Thus,
the optimal DT, KNN, RF and SVM classifiers can be set up using these features. Table 1
lists their detailed performance. The optimal SVM classifier yielded better performance
than the other three optimal classifiers.

According to the above results, we can find the best classifiers of four feature lists. In
detail, the best classifier in the LASSO feature list was the optimal RF classifier, whereas
it was the optimal SVM classifier in the other three lists. We picked up the optimal
feature subsets for further investigation. A Venn diagram was plotted for these subsets, as
illustrated in Figure 4. The intersection results of these optimal feature subsets are available
in Table S4. The antigens appearing in several feature subsets suggest that they were
identified as important by multiple feature selection methods. They can play important
roles in differentiating healthcare workers at different time spans after vaccination. The
biological significance of some antigens (features) will be discussed in Section 4.



Life 2023, 13, 1304 10 of 20
Life 2023, 13, 1304 10 of 22 
 

 

 
Figure 4. Venn diagrams of the optimal feature subsets extracted from the LASSO, LightGBM, 
MCFS, and mRMR feature lists. The overlapping circles indicated antigens that were included in 
multiple optimal feature subsets. 

3.3. Essential Features for Each Class 
The essential features obtained above may not be highly related to one class. To ex-

tract the essential features for each class, four datasets corresponding to the four classes 
were constructed, as described in Section 2.7. Then, LASSO, LightGBM, MCFS and mRMR 
were applied to each dataset. Four feature lists were obtained. The top 20 features were 
selected for taking the intersection. A Venn diagram was drawn for each class, as illus-
trated in Figure 5. The specific antigen names are listed in Table S5. For the first class, 
namely, unvaccinated healthcare workers, antigens such as SARS.CoV.2.S1.RBD.mFc and 
SARS.CoV.S1.HisTag were identified by all four feature selection methods. For the second 
class, namely, healthcare workers within 60 days after vaccination, 
SARS.CoV.2.S1.mFcTag and HuIgM.0.30 were deemed to be important by all feature se-
lection methods. For the third class, namely, healthcare workers between 60–180 days af-
ter vaccination, three features (SARS.CoV.2.S1.mFcTag, HuIgM.0.30, and 
SARS.CoV.2.S1.RBD.mFc) were identified to be essential. For the fourth class, namely, 
healthcare workers over 180 days after vaccination, MERS.CoV.S1.RBD.367.606.rFcTag, 
Flu.B_Mal/.HA1, and a-HuIgG_0.03 were screened out by all methods. The discussion on 
the importance and functionality of some features will be provided in detail in Section 4. 
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3.3. Essential Features for Each Class

The essential features obtained above may not be highly related to one class. To extract
the essential features for each class, four datasets corresponding to the four classes were
constructed, as described in Section 2.7. Then, LASSO, LightGBM, MCFS and mRMR
were applied to each dataset. Four feature lists were obtained. The top 20 features were
selected for taking the intersection. A Venn diagram was drawn for each class, as illus-
trated in Figure 5. The specific antigen names are listed in Table S5. For the first class,
namely, unvaccinated healthcare workers, antigens such as SARS.CoV.2.S1.RBD.mFc and
SARS.CoV.S1.HisTag were identified by all four feature selection methods. For the second
class, namely, healthcare workers within 60 days after vaccination, SARS.CoV.2.S1.mFcTag
and HuIgM.0.30 were deemed to be important by all feature selection methods. For the
third class, namely, healthcare workers between 60–180 days after vaccination, three fea-
tures (SARS.CoV.2.S1.mFcTag, HuIgM.0.30, and SARS.CoV.2.S1.RBD.mFc) were identified
to be essential. For the fourth class, namely, healthcare workers over 180 days after vac-
cination, MERS.CoV.S1.RBD.367.606.rFcTag, Flu.B_Mal/.HA1, and a-HuIgG_0.03 were
screened out by all methods. The discussion on the importance and functionality of some
features will be provided in detail in Section 4.
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3.4. Classification Rules

It can be observed from Table 1 that the optimal DT classifier was generally inferior
to the other three optimal classifiers on the same feature list. However, the DT classifier
has a great merit that was not shared by the other three classifiers. It can provide a group
of classification rules, which made the classification procedures completely open. The
optimal DT classifiers on four feature lists adopted the top 47, 40, 17 and 14, respectively,
features in the corresponding lists. All healthcare workers were represented by the above
features, respectively. Four trees were built by DT, from which four rule groups were
established. These rules are provided in Table S6; 190, 183, 202, and 226 classification rules,
respectively, were contained in four groups. Each rule is composed of antigen features and
their associated fluorescence intensity values, which explains how the feature’s high or low
fluorescence intensity influences the capacity to identify the classes of samples. A detailed
discussion of some quantitative rules can be found in Section 4.

4. Discussion

We identified a set of antigen-reactive antibodies as potential features that could reveal
the effect of COVID-19 vaccines on anti-viral immune activation and reflect changes in
antibody levels in the body over time after vaccination by using data on serum antibody
levels in volunteers after receiving COVID-19 vaccines. This confirms the potential of such
features to contribute to the development of effective vaccines with long-lasting protection.
The serum antibody data we analyzed were detected by a coronavirus antigen microarray
(CoVAM). The microarray approach has been extensively applied in SARS-CoV-2 research
due to its excellent sensitivity and specificity [62–64]. Recently, this method was frequently
employed for measuring antibody levels following mRNA vaccination [30,65]. Recent
publications have found that some identified features, as well as the relevant quantification
rules, are linked to vaccine-induced anti-viral immune activation and duration.

4.1. Key Features for Identifying the Effect of COVID-19 Vaccines on Antibody Production

Using these computational methods, we discovered a set of unique viral antigens-
reactive antibodies selected by at least three methods. The antigens we analyzed are from
epidemic coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV, common cold
coronaviruses, and multiple subtypes of influenza. S1, S2, and RBD are components of
SARS-CoV-2’s spike protein, which it uses to infect cells. Moreover, ‘tags’ were attached to
these proteins to make them easier to study. For example, ‘mFcTag’ is a piece from a mouse
antibody, and ‘HisTag’ is a chain of specific building blocks, both used for tracking and
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purifying the protein. These top-specific antibodies are closely related to the components
of various COVID-19 vaccines, suggesting the protective effect of these vaccines. In the
present study, we analyzed 13 specific antibodies, listed in Table 2. In this section, we
compared the changes in significant viral antigen-reactive antibodies in the serum of
vaccinated and unvaccinated individuals. We also discussed the plausibility and cross-
immunization of important antibodies (including non-SARS-CoV-2 antibodies) induced by
COVID-19 vaccines.

Table 2. Top antigens identified by computational methods (The symbol ‘4’ indicates that the antigen
was identified by the corresponding method).

Target Antigens LASSO LightGBM MCFS mRMR

SARS.CoV.2.S1.mFcTag 4 4 4 4

MERS.CoV.S1.RBD.367.606.rFcTag 4 4 4 4

SARS.CoV.2.Spike.RBD.His.Bac 4 4 4 4

SARS.CoV.S1.HisTag 4 4 4 4

SARS.CoV.2.S1.RBD.mFc 4 4 4 4

SARS.CoV.2.S1 + S2 4 4 4 4

SARS.CoV.2.S2 4 4 4

hCoV.HKU1.NP 4 4 4

SARS.CoV.2.Spike.RBD.rFc 4 4 4

SARS.CoV.2.S1 4 4 4

SARS.CoV.2.S1.HisTag 4 4 4

SARS.CoV.S1.RBD.HisTag 4 4 4

hCoV.229E.S1 4 4 4

The top eight features identified were from SARS-CoV-2: S1 + S2, S1.mFcTag, S1.HisTag,
S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc. The compositions of COVID-19
vaccines are listed in a recent paper comparing these vaccines [7]. The S protein of
SARS-CoV-2 was chosen as a promising target by the majority of COVID-19 vaccines
because blocking the interaction between the RBD of echinocandin and human angiotensin-
converting enzyme 2 (ACE2) is effective in preventing infection [66,67]. In addition, the
RBD is part of the S protein’s S1 subunit [68,69]. Suthar et al. highlighted that the S pro-
tein of SARS-CoV-2, particularly RBD, stimulates the production of neutralizing antibody
NAbs [70]. Similarly, an animal study revealed that RBD-specific IgG accounts for half of
the antibody responses induced by S proteins. As a result, given that popular COVID-19
vaccines such as BNT162B1 encode the S protein of SARS-CoV-2, they can stimulate the
production of S protein (including S1 and S2 subunits) and RBD-specific antibodies.

SARS.CoV.S1.HisTag and SARS.CoV.S1.RBD.HisTag are top features from SARS-CoV.
SARS-CoV and SARS-CoV-2, both belonging to β-B coronavirus, and share 79% of their
gene sequences [71,72], and the S protein shares 76% of its amino acid identity [73]. SARS-
CoV-2 and SARS-CoV share the same host cell receptor ACE2 and are structurally similar;
thus, they may exhibit some degree of cross-immunity [67]. These data suggest the ef-
fectiveness of SARS-CoV-reactive antibodies against SARS-CoV-2. These results were
further confirmed by Wec et al., who isolated several antibodies from a SARS survivor
that neutralized coronaviruses such as SARS-CoV-2 [74]. Min et al. identified several
monoclonal antibodies against SARS-CoV S protein or RBD that are cross-immunoreactive
with SARS-CoV-2 [26], which agrees with our predicted features.

MERS.CoV.S1.RBD.367.606.rFcTag from MERS-CoV was the next feature identified.
MERS-CoV also belongs to β coronavirus and shares a 50% sequence similarity to SARS-
CoV-2 [71], a coronavirus with a high lethality rate. The S protein of MERS-CoV and the
RBD in it share some similarities to SARS-CoV-2, suggesting that the cross-immunity of the
RBD-specific antibody to the S protein of MERS-CoV against SARS-CoV-2 is less than that
of the SARS-CoV-specific antibody, but still exists.



Life 2023, 13, 1304 13 of 20

The last two identified features, hCoV.HKU1.NP and hCoV.229E.S1, are antigens
from β coronavirus hCoV-HKU1 and α coronavirus hCoV-229E, respectively. Cross-
immunization with SAR-CoV-2 is possible due to their close relationship. HCoVs are
composed of proteins called spike (S), membrane (M), envelope (E), and nucleocapsid
(N) [75]. In addition to the S protein, the N protein is an important antibody target [70,76],
implying that hCoV.HKU1.NP-specific antibodies contribute to SARS-CoV-2 prevention.
Although hCOV-228E is less closely related to SARS-CoV-2 than the other coronaviruses we
mentioned above, the potential preventive effect of its specific antibodies against COVID-19
cannot be ruled out. However, given that hCoV-HKU1 and hCoV-229E are common coron-
aviruses, the detection of these antibodies in the sera of volunteers may be attributed to
their previous infection.

Research on pan-coronavirus vaccines has attracted increasing attention to prevent
novel SAR-CoV-2 variants. Some studies reported that conserved regions on the inner
surface of the RBD are potential targets for pan-coronavirus vaccines [77]. New studies of
mRNA vaccines against a variety of the more common coronaviruses are underway [78]. In
summary, the positive serum test for non-SARS-CoV-2 antigens could be due to the ability of
certain antibodies induced by COVID-19 vaccines to act on other coronaviruses. Therefore,
the non-SARS-CoV-2 antigens we mentioned above can be seen as useful features.

4.2. Features Related to Time since Vaccination for Determining the Duration of Specific Antibodies
after COVID-19 Vaccination

The essential antigen-reactive antibodies were identified using computational methods
and divided into four classes based on vaccination time. The top features from each subclass
were selected for discussion. Figure 6 shows the values of these top features in each of the
four classes to visualize the changes in the antibodies that target specific antigens over time.
Unlike the previous section, this section focuses on the changes in important antibodies at
different periods after vaccination according to subclasses, including unvaccinated cases.
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The S protein of SARS-CoV-2 is currently the antigen targeted by a majority of
COVID-19 vaccines [7,11,16,27,79]. The top features we identified are contained in the S
protein of SARS-CoV-2, and antibodies against them all change significantly over time
after vaccination.

As shown in Figure 6A, the first identified feature was SARS.CoV.2.S1 + S2. Based on
the overall structure of the S protein of SARS-CoV-2 [80], the specificity of the SARS.CoV.2.S1
+ S2-reactive antibodies was the lowest among the four selected features. As shown in
Figure 6B–D, the second, third, and last identified features were SARS.CoV.2.S1.mFcTag,
SARS.CoV.2.S2, and SARS.CoV.2.Spike.RBD.His.Bac, respectively.

According to the changes in the value of each feature in class 1 (unvaccinated health-
care workers), SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2 showed elevated levels, whereas
SARS.CoV.2.S1.mFcTag and SARS.CoV.2.Spike.RBD.His.Bac were almost undetectable in
serum. Thus, antibodies against the S2 subunit of the S protein were produced earlier
after immunization and resulted in relevant specific protection. However, volunteers
infected with SARS-CoV-2 before COVID-19 vaccination may also increase the levels of
SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2.

Comparison of the levels of the four features in class 2 (healthcare workers within
60 days after vaccination) revealed that SARS.CoV.2.S1.mFcTag showed the most significant
increase, and the values were relatively concentrated within a month after vaccination. The
values of SARS.CoV.2.S2 increased less significantly and were less consistent than those
of SARS.CoV.2.S1.mFcTag. A study of healthcare workers found a 14-day boost in serum
anti-S antibodies, followed by a significant drop in anti-S antibody levels until 42 days
after vaccination [81]. Therefore, the levels of other antigens contained within the S protein
of SARS-CoV-2 can also elevate antibodies against them within 42 days after vaccination,
which agrees with the results of the present study.

Based on the trend from class 2 (healthcare workers within 60 days after vaccina-
tion) to class 4 (healthcare workers over 180 days after vaccination), the values of all
features showed varying degrees of decline after 60 days. Among them, the values of
SARS.CoV.2.Spike.RBD.His.Bac and SARS.CoV.2.S1.mFcTag declined slower than those of
the other features and stimulated some stable antibodies that existed for a longer period.
By contrast, the levels of SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2 decreased more rapidly,
suggesting that the S2 subunit is less ideal as an antibody target than the S1 subunit and
RBD after COVID-19 vaccination. Similarly, previous studies reported that the antibodies
identified in the serum following immunization are predominantly anti-S or anti-RBD
antibodies [9,10,14] which appears to support this hypothesis.

The levels of features in class 4 (healthcare workers over 180 days after vaccination)
were maintained at high levels, except for SARS.CoV.2.S, which was lower. This result
indicates that the features found after COVID-19 immunization can persist for more than
6 months (180 days). The immunogenicity of mRNA-1273 lasts for at least 3 months [82],
whereas that of BNT162b2 lasts for at least 2 months [12]. The varied compositions based
on the type of vaccines can lead to variation in the duration of specific antibody presence.
However, the four features identified imply that the S-protein and RBD-specific antibodies
are present in the serum for long periods in general.

4.3. Rules for Quantitative Time after COVID-19 Vaccination and Antibody Levels

In addition to the qualitative features, a set of quantitative rules for accurate classifica-
tion at the time after COVID-19 vaccination were established. All criteria were linked to
specific antibody levels, and they were selected using at least two sorting methods. Some
top features have been validated as having the ability to classify samples. In the present
study, we selected the most typical rules for each time group for further discussion. Table 3
lists all of the rules, followed by a comprehensive analysis.
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Table 3. Representative Rules.

Rules Criteria Predicted Class (Days after Vaccination)

Rule 0 SARS.CoV.2.S1.mFcTag ≤ 5354.39

Unvaccinated healthcare workers
−383.87 < SARS.CoV.2.S1.HisTag

−414.30 < SARS.CoV.2.S1.RBD.mFc ≤ 3773.83

414.54 < hCoV.OC43.HE

Rule 1 SARS.CoV.2.S1.mFcTag ≤ 54,010.17

Healthcare workers within 60 days after vaccination37,653.75 < SARS.CoV.2.S2

48,882.58 < SARS.CoV.2.S1 + S2

Rule 2 5354.39 < SARS.CoV.2.S1.mFcTag

Healthcare workers between 60 and 180 days after vaccination3773.83 < SARS.CoV.2.S1.RBD.mFc ≤ 33,656.48

400.30 < SARS.CoV.S1.HisTag ≤ 15,087.42

Rule 3 5354.39 < SARS.CoV.2.S1.mFcTag ≤ 34,194.92
Healthcare workers over 180 days after vaccination

3773.83 < SARS.CoV.2.S1.RBD.mFc

Rule 0 applies four criteria to identify unvaccinated samples. The thresholds for
SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.HisTag are outlined in Table 3. The low levels
of anti-S1 antibodies suggested by these values are consistent with the lack of vaccination.
Studies indicate that even a single vaccine dose can trigger a robust anti-S1/2 antibody
response in SARS-CoV-2-infected individuals [83], and that antibody responses are not
immediate following a single vaccine dose [13], validating the accuracy of these criteria.
The third criterion, SARS.CoV.2.S1.RBD.mFc, should be within the range set out in Table 1,
typically low in unvaccinated individuals. Vaccination raises anti-RBD IgG levels in the
body [84], so this range helps to distinguish vaccinated individuals. The final criterion
is hCoV.OC43.HE, an antigen from a common coronavirus that causes similar symptoms
to the common cold, whose threshold is listed in Table 3. If its serum level is above the
threshold specified in Table 1, it suggests prior exposure to hCoV.OC43, or possibly transient
vaccine-induced cross-reactive antibodies to other HCoVs [85]. Over time, vaccinations
prompt the production of more precisely targeted antibodies [18], which further aids in
excluding vaccinated individuals.

Rule 1 incorporates three criteria for identifying individuals 0 to 60 days post-vaccination.
The first criterion is SARS.CoV.2.S1.mFcTag, which should not exceed the limit outlined
in Table 3. High levels of anti-S/RBD antibodies are typically observed 8 weeks after
mRNA-1273 or BNT162b2 vaccination [14], and given that most vaccines generate antibody
responses against S proteins, including the S1 subunit, an increase in anti-S1 antibodies is
expected post-vaccination. However, due to the finite antibody production by vaccines [86],
a maximum value is set within this period [9]. The second and third criteria refer to
SARS.CoV.2.S2 and SARS.CoV.2.S1 + S2. Their serum levels should exceed the thresholds
specified in Table 3. As the S1 and S2 subunits are included in the S protein, changes
in the level of S1 + S2 specific antibodies should have a strong correlation with anti-S
antibodies. A recent study has reported that the levels of anti-S antibodies in serum
significantly increase 14 days after vaccination [81], supporting the high thresholds for
SARS.CoV.2.S1 + S2 in this rule. Anti-S2 antibody levels also increase significantly post-
vaccination [87], although their reactivity is generally lower than that of anti-S1 and anti-
RBD responses [13]. These results confirm that the high value of SARS.CoV.2.S2 facilitates
the differentiation while the lowest value of SARS.CoV.2.S2 in Rule 1 can be lower than
that of SARS.CoV.2.S1 + S2.

Rule 2 utilizes three criteria to identify individuals 60–180 days post-vaccination. The
first two criteria, SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc, should have serum
levels above the threshold set in Table 3, and between the range specified for SARS.CoV.2.S1.-
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RBD.mFc. The vaccine’s protective capability is associated with antibody count, and research
indicates that COVID-19 vaccine efficacy decreases from 1 to 6 months post-vaccination [19],
suggesting a corresponding decline in antigen-reactive antibodies. Although no study
has yet confirmed the range levels outlined in our rule, it is reasonable to predict that
SARS.CoV.2.S1.mFcTag levels would be lower than in Rule 1, while SARS.CoV.2.S1.RBD.mFc
levels would be higher than in Rule 0. The final criterion, SARS.CoV.S1.HisTag, stands out
from the first two as it pertains to an antigen from SARS-CoV, not SARS-CoV-2. Given the
substantial sequence similarity between SARS-CoV and SARS-CoV-2 [88], the existence of
cross-reactive non-specific epitopes led us to include SARS.CoV.S1.HisTag as a criterion in
Rule 2. Lv et al. reported that some SARS-CoV-2-infected individuals can create cross-reactive
antibodies that bind to the RBD of SARS-CoV [89], implying that the COVID-19 vaccination
can stimulate similar cross-reactive antibodies in individuals.

The final rule (Rule 3), for people who have been vaccinated for more than 180 days,
sets thresholds for SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc as set out in
Table 3. These values are similar to Rule 2, probably because the vaccine-induced pro-
duction of these antibodies drops to its lowest level after 180 days [90,91]. In contrast to
Rule 2, this rule sets a cap on SARS.CoV.2.S1.mFcTag levels, indicating an overall decrease.
This helps rule out those vaccinated for COVID-19 within the past 180 days. Similarly,
higher predicted SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc levels in this rule
indicate the vaccine stimulates lasting anti-S1/RBD antibodies, effectively distinguishing
unvaccinated individuals.

4.4. Limitations of this Study

There are some limitations in this study. First, several machine learning algorithms,
including feature selection and classification algorithms, were adopted. The selection of
essential antigens relied highly on the performance of the classification algorithms. It is
known that an efficient classifier may not adopt two similar features. If these two features
were all essential antigens, one would be omitted, i.e., some essential antigens may not be
detected by our machine learning based framework. Second, a major limitation of microarray
is the limited antibody coverage, which means only specific antibodies can be measured
according to the predefined set of antigens on the array surface. Further study is required
to take more COVID-19-related antibodies into consideration. Finally, the main purpose of
this study was to discover essential antigens that were highly related to the classification
of healthcare workers or one class, rather than to develop a machine learning classifier.
Therefore, no test/train split was conducted on the dataset, and so accuracy metrics reported
here should be considered as unvalidated in either an independent or test set.

5. Conclusions

Combining data on serum antibody levels in volunteers after COVID-19 vaccination
and advanced machine learning methods, a set of antigen-reactive antibodies were ex-
tracted, which could reveal the effect of the vaccine on antiviral immune activation and
reflect changes in antibody levels in the body over time after vaccination. In the computa-
tional framework, four efficient feature selecting algorithms, namely, LASSO, LightGBM,
MCFS, and mRMR, were used to rank the features according to their contributions to the
classification. Then, through the IFS method, the optimal features for four classification
algorithms (DT, KNN, RF, SVM) in each feature list were confirmed. Subsequently, the
overlapping features were identified by taking the intersection of the optimal feature sub-
sets corresponding to the four feature selection algorithms, such as SARS.CoV.2.S1.mFcTag,
SARS.CoV.2.Spike.RBD.His.Bac, and SARS.CoV.2.S1 + S2. Meanwhile, we determined
the specific features that were highly related to one class. In addition, classification rules
were constructed, which can quantitatively explain the important roles of features in the
classification. Our findings have the potential to improve vaccine efficacy assessment and
enable personalized vaccination strategies, ultimately contributing to more effective public
health measures against COVID-19 and similar viral outbreaks.
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