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Abstract: Tensins are focal adhesion proteins that regulate various biological processes, such as
mechanical sensing, cell adhesion, migration, invasion, and proliferation, through their multiple
binding activities that transduce critical signals across the plasma membrane. When these molecular
interactions and/or mediated signaling are disrupted, cellular activities and tissue functions are
compromised, leading to disease development. Here, we focus on the significance of the tensin family
in renal function and diseases. The expression pattern of each tensin in the kidney, their roles in
chronic kidney diseases, renal cell carcinoma, and their potentials as prognostic markers and/or
therapeutic targets are discussed in this review.
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1. Introduction

Tensins are cytoplasmic phosphoproteins localized to focal adhesions (FAs) that are
transmembrane junctions between the extracellular matrix (ECM) and intracellular cy-
toskeletal networks, mainly through integrin transmembrane receptors and various FA
proteins. FAs serve as structural complexes mediating bidirectional communications across
the cell membrane [1]. Tensins provide one such type of molecular linkage by interacting
with the cytoplasmatic tails of ß integrins and actin filaments via their phosphotyrosine-
binding (PTB) domains and actin-binding domains (ABDs), respectively [2,3]. Besides
their structural roles, tensins transduce numerous signaling pathways, such as the AMPK,
Rho GTPase, Mek/Erk, Src/Fak, and PI3K/Akt/mTOR pathways. These and other path-
ways contribute to tensins’ regulatory roles in cell adhesion, migration, invasion, polarity,
proliferation, and mechanical sensing [4–9].

There are four members in the mammalian tensin family, namely tensin-1 (TNS1),
tensin-2 (TNS2), tensin-3 (TNS3), and C-terminal tensin-like (CTEN, also known as tensin-4,
TNS4) (Figure 1). TNS1, TNS2, and TNS3 are larger proteins of 170–220 kDa and share
similar domain structures, comprising the protein tyrosine phosphatase (PTP), C2, Src
homology 2 (SH2), PTB, ABD, and focal-adhesion-binding (FAB) domains [10–12]. CTEN
is a smaller protein of ~80 kDa and harbors the SH2-PTB tandem domain and the FAB-C
domain, similar to other tensins [13]. These protein structures suggest that tensins may
share similar binding/biological activities, while each features its specialized function.
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Figure 1. Domain structures of human tensins. Tensin-1 (TNS1), tensin-2 (TNS2), and tensin-3 
(TNS3) have similar domain structures, including the PTP, C2, SH2, PTB, ABD, and FAB domains. 
There are two independent FAB regions: FAB-N domains contain the PTP and C2 domains at the N-
terminal region and FAB-C overlaps with the SH2 and PTB domains at the C-terminus. ABD I, which 
interacts directly with actin filaments, is located at the N-terminus and overlaps with FAB-N. ABD 
II binds to the barbed end of the actin filaments. The protein kinase C conserved region 1 domain 
(C1 domain) is found in TNS2 with an uncertain function. CTEN harbors the SH2-PTB tandem do-
main and contains the FAB-C domain. Although CTEN also features a second FAB domain in its 
N-terminal region, its amino acid sequence is different from those of FAB-N in other 
tensins [14]. Moreover, there is a nuclear export sequence (NES) localized within this 
unique FAB site of CTEN and a nuclear localization sequence (NLS) within CTEN’s PTB 
domain [14]. 

The potential associations of tensins with human diseases were reported using anal-
ysis of genome-wide association studies. These studies showed that variants in TNS1 were 
associated with high risks of mitral valve prolapse, chronic obstructive pulmonary dis-
ease, and asthma with hay fever phenotype [15–18]. Abnormalities in heart valves were 
confirmed in animal models, including atrioventricular valve regurgitation in Tns1-knock-
down zebrafish and enlarged posterior mitral leaflets in Tns1-knockout (KO) mice [15]. 
The association between tensins and cancers have been evaluated, mainly through expres-
sion profiling, in numerous studies [19–31]. Among them, upregulation of CTEN was re-
ported to be associated with poor prognosis in patients with colorectal cancer, lung ade-
nocarcinoma, breast cancer, gastric cancer, hepatocellular carcinoma, and melanoma [22–
30,32,33]. Nonetheless, the impacts of tensin expressions on cancer prognosis are not al-
ways consistent. For example, upregulated TNS1 levels increased the risk of mortality in 
patients with colorectal cancer but were associated with better survival in patients with 
lung adenocarcinoma [9,34–36]. These findings suggest that the impacts of tensins on the 
prognosis of malignancy depend on the types of tensins and cancers. 

The first sign showing the association between tensins and kidney diseases was from 
the study of Tns1-KO mice [37]. Mice lacking TNS1 developed chronic kidney disease 
(CKD) with cystic formation. The genetic study demonstrated that Tns2 was the disease-
causing gene in the ICR-derived glomerulonephritis (ICGN) mouse line with a hereditary 
nephrotic syndrome (NS) [38] and their symptoms were dedicated by mouse genetic back-
grounds [39]. The relevance of these mouse studies with human diseases is supported by 
the downregulation of TNS1 levels in human patients with polycystic kidney disease, as 

Figure 1. Domain structures of human tensins. Tensin-1 (TNS1), tensin-2 (TNS2), and tensin-3 (TNS3)
have similar domain structures, including the PTP, C2, SH2, PTB, ABD, and FAB domains. There are
two independent FAB regions: FAB-N domains contain the PTP and C2 domains at the N-terminal
region and FAB-C overlaps with the SH2 and PTB domains at the C-terminus. ABD I, which interacts
directly with actin filaments, is located at the N-terminus and overlaps with FAB-N. ABD II binds to
the barbed end of the actin filaments. The protein kinase C conserved region 1 domain (C1 domain)
is found in TNS2 with an uncertain function. CTEN harbors the SH2-PTB tandem domain and
contains the FAB-C domain. Although CTEN also features a second FAB domain in its N-terminal
region, its amino acid sequence is different from those of FAB-N in other tensins [14]. Moreover,
there is a nuclear export sequence (NES) localized within this unique FAB site of CTEN and a nuclear
localization sequence (NLS) within CTEN’s PTB domain [14].

The potential associations of tensins with human diseases were reported using analysis
of genome-wide association studies. These studies showed that variants in TNS1 were asso-
ciated with high risks of mitral valve prolapse, chronic obstructive pulmonary disease, and
asthma with hay fever phenotype [15–18]. Abnormalities in heart valves were confirmed in
animal models, including atrioventricular valve regurgitation in Tns1-knockdown zebrafish
and enlarged posterior mitral leaflets in Tns1-knockout (KO) mice [15]. The association
between tensins and cancers have been evaluated, mainly through expression profiling, in
numerous studies [19–31]. Among them, upregulation of CTEN was reported to be associ-
ated with poor prognosis in patients with colorectal cancer, lung adenocarcinoma, breast
cancer, gastric cancer, hepatocellular carcinoma, and melanoma [22–30,32,33]. Nonetheless,
the impacts of tensin expressions on cancer prognosis are not always consistent. For example,
upregulated TNS1 levels increased the risk of mortality in patients with colorectal cancer
but were associated with better survival in patients with lung adenocarcinoma [9,34–36].
These findings suggest that the impacts of tensins on the prognosis of malignancy depend
on the types of tensins and cancers.

The first sign showing the association between tensins and kidney diseases was from
the study of Tns1-KO mice [37]. Mice lacking TNS1 developed chronic kidney disease
(CKD) with cystic formation. The genetic study demonstrated that Tns2 was the disease-
causing gene in the ICR-derived glomerulonephritis (ICGN) mouse line with a hereditary
nephrotic syndrome (NS) [38] and their symptoms were dedicated by mouse genetic
backgrounds [39]. The relevance of these mouse studies with human diseases is supported
by the downregulation of TNS1 levels in human patients with polycystic kidney disease,
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as well as the identification of TNS2 mutations in NS patients [40,41]. Considering the
potential of tensins as candidates for precision medicine, a comprehensive review of tensins
in kidney function and diseases is highly warranted. In the current review, we present
an overview of tensin expressions in the kidney and provide current evidence supporting
the association between each tensin and CKD and kidney cancer, as well as the clinical
implications of these findings.

2. Tensin Expressions in the Kidney

TNS1-3 mRNAs are readily detected in human kidneys by Northern blotting, whereas
CTEN signaling is extremely weak [10–13]. This expression pattern is further confirmed
using isolated glomeruli and non-glomeruli for reverse transcription-polymerase chain
reaction assays showing that TNS1 transcripts are more abundant in renal tissues, except
glomeruli, whereas TNS3 shows an opposite pattern [42]. Meanwhile, TNS2 mRNA
levels are similar between glomeruli and non-glomeruli in the kidney, and CTEN is not
detectable [42]. At the protein level, TNS1 is most concentrated at the proximal and distal
tubules in the cortex region, as well as Bowman’s capsules and mesangial cells in glomeruli
by immunohistochemistry staining [37,42,43]. Immunohistochemistry staining shows that
TNS2 proteins are expressed at the podocytes, mesangial cells, tubules, collecting ducts,
and renal pelvis epithelia, whereas TNS3 proteins are present at the podocytes, tubules,
collecting ducts, and renal pelvis epithelia [42]. By immunoelectron microscopy, anti-TNS1-
labelled gold particles were detected periodically along the basolateral membranes of
tubular epithelial cells and the membranes of endothelial cells. Interestingly, both small and
large clusters of gold particles are observed, suggesting at least two types of TNS1-positive
focal adhesion complexes in kidney epithelial cells [37]. The expression patterns of tensins
provide hints regarding their potential roles in the kidney.

3. Tensins in Chronic Kidney Diseases
3.1. TNS1

The involvement of TNS1 in kidney function was first observed in Tns1-KO mice [37].
These mutant mice are completely developed, and their kidneys are clinically and histolog-
ically normal for few months. Nonetheless, signs of renal tubular dilatations, interstitial
infiltrates, and fibrosis are observed around 3 months of age (Figure 2). The renal condition
progressively deteriorates, and mice usually die within 16 months. Proteinuria is only
detected near the end stage of life. Cysts are only found in the kidneys and not in other
organs. The renal phenotype observed in Tns1-KO mice has been suggested as one of the
animal models of cystic kidney disease showing genetic recessive inheritance and renal
defect onset at adulthood [44]. These features are quite different from autosomal dominant
polycystic kidney disease (ADPKD), which is caused by one copy of the affected gene, and
autosomal recessive polycystic kidney disease (ARPKD), which usually shows severe symp-
toms during infanthood or childhood. Nonetheless, a recent study revealed that the protein
expression of TNS1 was significantly decreased in human ADPKD tissue than in normal
kidney tissue, indicating the potential role of TNS1 in the development of cysts in patients
with ADPKD [40]. Accumulating studies have suggested that, in spite of differences in the
causal gene, age of onset, disease severity, and cyst distribution of various cystic kidney
diseases, cyst formation appears to commonly arise from dysregulated cell growth or death,
increased secretion into the tubular lumen, aberrant cell–matrix or cell–cell interaction loss
of cellular polarity, or cilium dysfunction [45]. Therefore, analyses of mutant mice with
cystic kidneys, such as Tns1-KO mice, contributes to a deeper understanding of and better
treatments for a variety of cystic kidney diseases.
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Figure 2. Tns1-KO mice develop features of cystic kidney disease. Tns1-KO kidneys isolated from 
3-month-old (A,B) or 10-month-old (C,D) mice were processed for H&E staining (A,B), Sirius Red 
staining (D), or general morphology (C), showing dilated tubules (black arrows), interstitial infil-
tration (arrowhead), fibrosis (blue arrows), and cystic kidneys. Representative images of Tns1 WT 
(E) or KO (F) MDCK in 3D Matrigel culture for 5 days and stained for actin. 

When kidney epithelial cells, such as Madin–Darby canine kidney (MDCK) cells, are 
grown in a three-dimensional (3D) extracellular-matrix (ECM) environment, the sus-
pended cells migrate, proliferate, polarize, and expand to form hollow, fluid-filled spher-
ical monolayers, which are usually called cysts or spheres. When these spheres are incu-
bated with hepatocyte growth factor, a subset of cells from the monolayer wall protrudes 
into the ECM and further develops into a tube. This in vitro 3D model recapitulates many 
features of in vivo renal tubules and provides a powerful system to study the development 
and molecular mechanisms in a way that readily allows experimental manipulation under 
relatively physiological conditions. Three general principles are required for cells to form 
a lumen in 3D culture: cell–cell and cell–matrix recognition; establishment of apical–basal 
polarity; and lumen expansion. Many critical steps and molecules have been established 
using this MDCK 3D system [46–48]. With this in mind, a Tns1-KO MDCK 3D cell-culture 
system was established to investigate molecular mechanisms related to cystic formation 
[8]. Instead of forming cysts with a single lumen as in wild-type (WT) MDCK cells, Tns1-
KO cysts contain multiple lumens (Figure 2) [8]. Further analyses show that Tns1-KO cells 

Figure 2. Tns1-KO mice develop features of cystic kidney disease. Tns1-KO kidneys isolated from
3-month-old (A,B) or 10-month-old (C,D) mice were processed for H&E staining (A,B), Sirius Red
staining (D), or general morphology (C), showing dilated tubules (black arrows), interstitial infiltra-
tion (arrowhead), fibrosis (blue arrows), and cystic kidneys. Representative images of Tns1 WT (E) or
KO (F) MDCK in 3D Matrigel culture for 5 days and stained for actin.

When kidney epithelial cells, such as Madin–Darby canine kidney (MDCK) cells, are
grown in a three-dimensional (3D) extracellular-matrix (ECM) environment, the suspended
cells migrate, proliferate, polarize, and expand to form hollow, fluid-filled spherical mono-
layers, which are usually called cysts or spheres. When these spheres are incubated with
hepatocyte growth factor, a subset of cells from the monolayer wall protrudes into the
ECM and further develops into a tube. This in vitro 3D model recapitulates many features
of in vivo renal tubules and provides a powerful system to study the development and
molecular mechanisms in a way that readily allows experimental manipulation under
relatively physiological conditions. Three general principles are required for cells to form a
lumen in 3D culture: cell–cell and cell–matrix recognition; establishment of apical–basal
polarity; and lumen expansion. Many critical steps and molecules have been established
using this MDCK 3D system [46–48]. With this in mind, a Tns1-KO MDCK 3D cell-culture
system was established to investigate molecular mechanisms related to cystic formation [8].
Instead of forming cysts with a single lumen as in wild-type (WT) MDCK cells, Tns1-KO
cysts contain multiple lumens (Figure 2) [8]. Further analyses show that Tns1-KO cells are
capable of establishing apical–basal polarity and the cell–cell junction, and they form the
apical membrane initiation site (AMIS); however, AMIS in Tns1-KO cells develop much
faster than WT cells and cannot ensure only one AMIS is formed in each cyst [8]. At the
molecular level, Mek/Erk activities are upregulated in Tns1-KO 3D cells and Mek-inhibitor
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treatments significantly convert multiple lumens to a single lumen. In agreement with the
in vitro findings, Mek/Erk activities are markedly increased in the Tns1-KO over the WT
mouse kidneys. Treated with a Mek inhibitor such as trametinib, pMek and pErk levels are
reduced, and signs of interstitial infiltrates, fibrosis, and dilated tubules are significantly im-
proved in Tns1-KO mouse kidneys [8]. This study provides a potential therapeutic strategy
using Mek inhibitors for cystic kidney diseases. Furthermore, TNS1 proteins phase-separate
to biomolecular condensates, a type of membrane-less organelle, in MDCK cells [49]. The
presence of TNS1 condensates is dependent on the cell cycle, and TNS1 condensates contain
particular focal adhesion proteins and signaling molecules, such as pT308Akt. These results
suggest that TNS1 condensates are involved in the disassembly of FAs, the storage of core
FA components, and the formation of signaling intermediates. However, the impact of
TNS1 condensates on renal function and disease requires further nvestigation.

Although no human cystic kidney patient associated with TNS1 mutations has been
reported so far, the likelihood is very high based on the finding that Tns1-KO mice are able
to produce offspring, develop renal defects progressively, and have half the normal life
expectancy. It is highly possible that a subgroup of human patients with cystic kidney dis-
eases is associated with TNS1 aberrant expressions and/or mutations. These patients may
also be associated with abnormal mitral valves and wound-healing processes as observed
in Tns1-KO mice [15], as well as chronic obstructive pulmonary disease, which TNS1 has
been identified as a high-risk gene for through genome-wide association studies [15,16,50].

3.2. TNS2

The first evidence of the kidney relevance of TNS2 came from genetic analysis of ICGN
mice, a spontaneous mutant strain with a hereditary NS displaying glomerulosclerosis,
vascular sclerosis, and tubulointerstitial fibrosis histologically, as well as proteinuria and
anemia clinically [51]. These mice often die within 26 weeks of age [52]. NS is a common
cause of human CKD that may result in end-stage renal disease requiring dialysis or renal
transplantation. At the molecular level, excessive accumulation of ECM components,
including laminin, collagen, and fibronectin [53], decreased matrix metalloproteinase
activity [54], and abnormal expressions of integrins in glomeruli [55] were found in ICGN
kidneys. Through quantitative trait locus analysis using albuminuria as a tracking symptom
of NS, the main cause of gene was mapped to a region on mouse chromosome 15. Direct
sequencing of the coding regions of candidate genes within the mapped area identified
a deletion of eight nucleotides in exon 18 of the ICGN Tns2 gene [38]. This deletion
not only causes a frameshift leading to early termination, but also results in a decreased
transcript level and lack of TNS2 protein expression in ICGN mice [38]. Intriguingly, when
these mutant mice were backcrossed to either C57BL6 [39] or sv129 strains [56], the Tns2
mutant mice showed no sign of NS or any renal defects. On the other hand, Tns2 mutant
mice in FVB or DBA [57–60] display s thickened glomerular basement membrane, the
effacement of podocyte foot processes, mesangial proliferation, dilated tubules, casted cysts,
interstitial inflammation, and massive proteinuria, as expected (Figure 3). These findings
indicate that NS phenotypes caused by lack of TNS2 are dictated by genetic modifiers.
Through quantitative trait locus, congenic, and genome-wide linkage analyses, a proximal
region on chromosome 2 associated with tubulointerstitial fibrosis, a distal region on
chromosome 2, and a region on chromosome 10 associated with podocyte damage induced
by Tns2 mutations were identified [61,62]. The identities of these phenotypic resistant
modifiers remain to be revealed. The generation of Tns2 mutant FVB mice expressing a
truncated TNS2 lacking its SH2 and PTB domains not only provides direct proof of the
absolute requirement of TNS2, but also demonstrates the essential roles of SH2 and PTB
domains in maintaining podocyte integrity and function [58]. The study suggests that
impaired mechanical adjustment to biomechanical stress due to TNS2 deficiency contributes
to podocytopathy and NS in mice [63]. In contrast, mutant mice only expressing inactive
mutant TNS2 C231S PTPase maintain normal renal structure and function [64], indicating
that the PTPase activity of TNS2 is not required for renal function maintenance.
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Figure 3. Tns2-KO FVB mice develop features of glomerulonephritis. Kidneys isolated from
9-week-old (A) or 6-week-old (B,C) Tns2-KO FBV mice, generated in the laboratory using Tns2-KO
embryonic stem cells from the Knockout Mouse Programme (www.mousephenotype.org, accessed
on 10 October 2015), were processed and stained with H&E, showing mesangial proliferation (black
arrows), segmental glomerulosclerosis (arrowhead), tubular dilatation (asterisk), cast (blue dot), and
interstitial infiltration (red arrow). These defects are mouse-strain-dependent and are not developed
in the kidneys of Tns2-KO C57BL6 mice, even at 2 years of age (D).

Interestingly, it has been reported that TNS2 regulates podocyte hypertrophy through
mTORC1 activation [6], which is known to impair podocyte function in diabetic nephropa-
thy [65]. It is reported that upregulated TNS2 dephosphorylates pY-nephrin and disrupts
the pY-nephrin/PI3K complex via TNS2’s PTPase activity. In turn, it promotes the pY-
IRS1/PI3K complex that activates the mTORC1 pathway [6], and mTORC1 hyperactivation
leads to podocyte hypertrophy. Overexpression of TNS2, but not the C231S mutant, in
podocytes increases cell sizes and albumin leakage in permeability assays. Similarly, mice
injected with adenovirus carrying Tns2, but not the C231S mutant, into the kidneys show
higher levels of pY-mTORC1, show reduced levels of pY-nephrin, and develop signs of NS,
including albuminuria and podocyte injury [6]. These studies indicate that overexpression
of TNS2 in the kidney also induces NS and that the PTPase activity of TNS2 is essential.
Nonetheless, as mentioned earlier, a recent report showed that mutant mice only expressing
the TNS2 C231S mutant were normal without NS [6]. The role of TNS2’s PTPase activity in
renal structure and function requires further clarification.

The direct link of TNS2 to human nephrotic syndrome came from the identification of
TNS2 mutations in four families with partially treatment-sensitive NS [41]. These patients
contain homozygous or compound heterozygous missense mutations of TNS2 (also called
nephrotic syndrome type 19, NPHS19), strongly suggesting recessive TNS2 mutations as a
novel cause of NS [41].

3.3. TNS3

The connection between TNS3 and non-cancer kidney diseases is yet to be explored.
The only report slightly related to this found that a chromosomal translocation resulting in
TNS3-EXOC6B fusion genes might be the cause of a developmentally delayed newborn
child who suffered from neutropenia and pulmonary infections and had only one kid-
ney [66]. However, with growing cases showing EXOC6B translocations in developmentally
delayed patients, EXOC6B is more likely to be the major cause of defects [67].

www.mousephenotype.org
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3.4. CTEN/Tensin-4

During renal tubulogenesis, several stages are established based on morphological
changes in a 2.5-dimensional culturing system [68]. These stages include multicellular
apical protrusion, extension, tubule initiation, and tubule elongation. CTEN was identified
as one of top upregulated genes in the extension stage. Downregulation of CTEN decreases
the formation of extensions and tubules, whereas CTEN overexpression promotes cell
invasion. However, overexpression of the CTEN SH2-inactive mutant blocks the process at
the extension stage and accumulates a higher level of active Stat3, indicating a critical role of
the CTEN-Stat3 axis in renal tubulogenesis. The relevance of CTEN in kidney development
and function remains to be investigated in animal models.

CTEN has been predicted to function as a dominant negative inhibitor of TNS1-3 based
on its shorter protein sequence that only shares critical SH2 and PTB domains with other
tensins. Surprisingly, our recent mouse studies showed that expression of CTEN in Tns1-KO
mice almost fully rescue all renal phenotypes caused by the lack of TNS1 [69], indicating
that CTEN is in fact a smaller version of tensin and that SH2 and PTB domains carry the
essential functions of the tensin family in kidney development/function. Because the SH2
and PTB domains of TNS2 are required for preventing NS development in FVB mice [58], it
will be interesting to test whether CTEN-KI can also rescue Tns2-KO kidney phenotypes.

Although CTEN expression eases Tns1-KO phenotypes, it cannot fully replace TNS1.
Compared with CTEN-KI mice, there are still mild defects and a slightly shorter lifespan
in Tns1-KO/CTEN-KI mice [69]. Both TNS1 and CTEN contain a focal adhesion targeting
site in their N-terminal regions, albeit no sequence similarity between them. On the other
hand, CTEN, instead of TNS1, accumulates at keratin intermediate filaments in response
to mechanical forces [70] and is able to shuttle to the nucleus [14]. These differences may
contribute to the incomplete rescue by CTEN in Tns1-KO mice.

4. Chronic-Kidney-Disease-Related Pathways or Biomarkers

CKD is defined as a decrease in renal function (glomerular filtration rate < 60 mL/min
per 1.73 m2) or kidney damage, evidenced by pathological abnormalities or markers that
last for more than 3 months [71]. The characteristics of CKD include nephron loss, reduced
renal regenerative capacity, microvascular damage, metabolic changes, oxidative stress,
and inflammation, ultimately resulting in fibrosis and ECM accumulation [72]. Of these,
metabolic changes such as lipotoxicity and oxidative stress are believed to be the major
driving forces for the loss of nephrons, while injured renal resident cells and recruited
inflammatory cells promote further inflammation, which activate myofibroblasts and result
in fibrosis and ECM accumulation [73]. The major signaling mechanisms involved in the
process of CKD include NLRP3 inflammasome, MAPK, PI3K/Akt, and RAAS signaling
in lipotoxicity; mTORC, MAPK, PKB, and NF-κB signaling in oxidative stress; NF-κB,
NLRP3 inflammasome, JAK-STAT, Toll-like receptor, and cGAS-STING in inflammation;
and TGF-β, Wnt, RAAS, and Notch signaling in myofibroblast activation and ECM accu-
mulation [73].

As mentioned earlier and elsewhere [9,74], tensins regulate a variety of signaling path-
ways. Some are directly involved in CKD, such as the Mek/Erk and PI3K/Akt/mTORC1
signaling pathways [6,8], indicating that tensins could be involved in lipotoxicity, oxida-
tive stress, and apoptosis during the process of CKD. Other tensin-mediated pathways in
response to the ECM, including AMPK, Rho GTPase, and Src/FAK may also contribute
to the development of fibrosis and the ECM accumulation of CKD [9,74]. The presence of
TNS1 biomolecular condensates in kidney cells further raises the potential impact of TNS
condensates in renal function and CKD formation [8,49].

In addition to tensins, several potential biomarkers for early CKD detection or progno-
sis have been reported. These include serum B2M, BTP, and klotho, as well as urinary BTP
and klotho for renal function and prognosis [75].
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5. Tensins in Renal Cell Carcinoma

Tensins mediate numerous signaling pathways, as well as cytoskeleton remodeling,
which are critical for cell adhesion, migration, polarity, and proliferation/apoptosis [9,74].
Dysregulation of these important activities contributes to tumorigenesis. In fact, in-
volvements of tensins, especially TNS1 and CTEN, in various cancers have been re-
ported [9,31,33,74]. Tensins are known to act as mechano-sensors and receive cues from
changes in ECM rigidity and activate intracellular signaling pathways that promote the
differentiation of fibroblasts into tumor-associated fibroblasts, as well as cell malignant
transformation. For example, in response to increased ECM rigidity, the SH2 domain
of TNS1 binds to tyrosine-phosphorylated Hic-5 and elicits a mechano-transduction that
leads to the activation of the Rho/ROCK signaling pathway and fiber formation in tumor-
associated fibroblasts, which in turn increases ECM stiffness and promotes tumor cell
proliferation, invasion, and metastasis [76]. It has been reported that upregulated TNS1
accelerates colorectal cancer cellular metastasis [77]. On the other hand, TNS1 promotes
p53 expression, thereby inhibiting the proliferation, migration, and invasion of lung ade-
nocarcinoma cells [78]. Therefore, the impacts of abnormal expression of tensins are
cancer-type-dependent, as shown in numerous reports [9,31,33,74]. However, studies of
tensins in human renal cell carcinoma (RCC) are very limited. These include all four tensin
RNAs that are downregulated in RCC [9,79], and promoter hypermethylation contributes
to downregulation of TNS3 in RCC [80].

Although there are several potential biomarkers for renal cell carcinoma diagnosis
or prognosis, such as Cathepsin D and peptide panel [81], no validated RCC prognostic
biomarker is currently used in clinical patient care. To test whether expressions of tensins
are relevant to the prognosis of patients with RCC, the cumulative survival rate of pa-
tients with CCC (N = 530) and PCC (N = 288), using databases collected from KMPlot
(kmplot.com, accessed on 15 July 2022), were analyzed according to tensin status (Figure 4).
Among four tensins, high CTEN, low TNS1, and low TNS3 are highly associated with poor
survival of CCC. High TNS2 has a trend in better survival of CCC, yet it is associated with
poor survival in PCC. There is no statistically significant association between TNS1, TNS3,
and TNS4 and survival in patients with PCC. These pilot analyses suggest that tensins
could be potential prognostic biomarkers for PCC and CCC, respectively, and certainly
warrant extensive investigations.
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the comparison between the two groups. High CTEN (HR = 1.63, p = 0.0023), low TNS1 (HR = 0.38,
p < 0.001), and low TNS3 (HR = 0.45, p < 0.001) increase the risk of mortality significantly in patients with
CCC. High TNS2 is significantly associated with poor survival in those with PCC (HR = 2, p = 0.026).
The association between TNS1, TNS3, and TNS4 and survival in patients with PCC is not significant.
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6. Conclusions

Emerging evidence has demonstrated the critical roles of tensins, especially TNS1 and
TNS2, in maintaining normal renal function. Deficiencies in TNS1 or TNS2 result in CKD
displaying cystic kidneys or NS, respectively. Recent results have begun to reveal molecular
pathways associated with the pathogeneses of these defects, including the Mek/Erk axis in
Tns1-KO mice and the PI3K/Akt/mTORC1 pathway in Tns2 mutant mice. The expression
pattens and survival analyses of tensins in patients with RCC suggest they have promising
values as prognostic markers and even direct targets for RCC. Tns1- and Tns2-KO cells
and mice are excellent systems for drug testing. For instance, Trametinib, a Mek inhibitor,
reduces the renal disease burden in Tns1-KO mice [8] and dihydro-CDDO-trifluoroethyl
amide, a bardoxolone methyl analog, suppresses tubular epithelial cell injury, chronic
inflammation, and fibrosis, but not glomerular defects in ICGN mice with Tns2 muta-
tion [82]. These findings and tools provide great insights into tensins’ clinical importance
and applications in the kidney. Nonetheless, more questions remain to be addressed. For
example, the PTPase activity of TNS2 is essential for the suggested PI3K/Akt/mTORC1
pathogenic pathway, yet TNS2 C231S mutant mice with inactive PTPase are normal without
NS. What additional or alternative mechanisms, such as AMPK, Rho GTPase, and Src/Fak,
are involved in CKD caused by TNS1 and TNS2 mutations/deficiencies? Do aberrant
TNS1 expression/mutations lead to cystic kidney diseases in humans? What mouse genetic
modifiers of Tns2 are there and are they also present in the human population? What are the
expressions and roles of tensins in human kidney diseases, such as diabetic nephropathy,
IgA nephropathy, or lupus nephritis? What are the roles of tensins in the progression of
CKD? The signaling mechanisms underlying the disease process of renal cell carcinoma
mediated by tensins remain elusive and warrant further investigation. These are a few of
many areas that require additional efforts in order to further our knowledge on tensins and,
more importantly, human health by preventing and/or slowing down the development of
renal diseases.
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