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Abstract: Myocardial ischemia is a pathophysiological state characterized by inadequate perfusion
of the myocardium, resulting in an imbalance between myocardial oxygen demand and supply.
It is most commonly caused by coronary artery disease, in which atherosclerotic plaques lead to
luminal narrowing and reduced blood flow to the heart. Myocardial ischemia can manifest as angina
pectoris or silent myocardial ischemia and can progress to myocardial infarction or heart failure
if left untreated. Diagnosis of myocardial ischemia typically involves a combination of clinical
evaluation, electrocardiography and imaging studies. Electrocardiographic parameters, as assessed
by 24 h Holter ECG monitoring, can predict the occurrence of major adverse cardiovascular events in
patients with myocardial ischemia, independent of other risk factors. The T-waves in patients with
myocardial ischemia have prognostic value for predicting major adverse cardiovascular events, and
their electrophysiological heterogeneity can be visualized using various techniques. Combining the
electrocardiographic findings with the assessment of myocardial substrate may offer a better picture
of the factors that can contribute to cardiovascular death.

Keywords: myocardial infarction; 24 h Holter ECG; T-wave

1. Introduction

Myocardial ischemia is a pathological condition described by a reduction in blood flow
and oxygen supply to the myocardium, resulting in cellular damage and dysfunction [1,2].
Myocardial infarction (MI) is a form of acute coronary syndrome that features a sustained
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decrease in blood supply to an area of the myocardium, leading to ischemia, necrosis and
cellular death [3–5].

MI is a prevalent condition that affects millions of people worldwide, responsible
for 16% of all deaths globally [2,4]. The risk of myocardial infarction increases with age,
and men are more likely to experience the condition than women. Various factors, such
as smoking, obesity, hyperlipidemia, or hypertension, can increase the risk of myocardial
infarction [5,6]. Early identification and treatment of myocardial infarction are crucial
for improving outcomes and reducing mortality, as thrombotic occlusion of a coronary
artery typically underlies the condition [5,7]. The degree of myocardial damage, treatment
effectiveness, and the presence of comorbidities determine prognosis after myocardial
infarction [6,7]. While the incidence of new arrhythmias in myocardial infarction is un-
known, left ventricular ejection fraction has been the primary criterion for recommending
implantable cardioverter defibrillators to prevent sudden cardiac death [8]. However, there
is a need for additional methods to stratify the risk of sudden cardiac death [8,9]. Variability
in repolarization characteristics, specifically T-wave morphologies, has been linked to a
higher risk of major adverse cardiovascular events during myocardial ischemia. Therefore,
extensive research has been conducted in this area [10–12].

Thus, we proposed conducting a review of various publications that describe the
observed T-wave patterns captured during 24 h Holter ECG monitoring in patients with
myocardial ischemia and the risk of developing a major adverse cardiovascular event
(MACE), as well as what future perspectives are.

We conducted a thorough search on PubMed and Google Scholar for articles pub-
lished between 1993 and August 2022 and created a database by using specific keywords:
“myocardial ischemia”, “Holter ECG”, “T-wave”, “repolarization”, “T-wave alternans”,
“T-wave patterns”, “myocardial infarction”, “acute coronary syndrome”, “major adverse
cardiovascular events”, “stroke”, “cardiac magnetic resonance imaging”, “electroanatomic
mapping”, “artificial intelligence” and all combinations of them. The findings comprised
257 papers, including various types of research, such as original papers, reports, prospective
studies, systematic reviews, retrospective studies, meta-analyses and case reports, which
examined T-wave patterns and their relevance to risk stratification in myocardial infarction.
We conducted a comprehensive analysis of relevant articles to obtain data and present a
detailed overview of the various aspects of the T-wave aspects observed on 24 h Holter
ECG monitoring in patients with myocardial infarction who had been followed-up for
several years. In our study, we employed exclusion criteria to ensure the integrity of our
analysis. Specifically, we omitted papers that lacked patient follow-up, were incomplete or
inconclusive, or were pilot studies. Additionally, we excluded reviews that substantially
overlapped with our existing findings.

Overview of Myocardial Infarction and Major Adverse Cardiovascular Events

MI is a clinical condition that results from a prolonged blockage of blood supply to the
heart, causing necrosis of the myocardium [1–4]. Atherosclerotic plaque rupture is the most
common cause of MI [2,3,5]. MI contributes significantly to global mortality and morbidity,
with approximately 7.8 million fatalities reported annually. The clinical presentation of MI
varies but typically includes chest pain, difficulty breathing, diaphoresis, dizziness and
vomiting [2,13]. The diagnosis of MI is established through clinical symptoms, electrocar-
diographic changes and biomarker elevations [4,5,13]. Early diagnosis and treatment are
crucial for reducing myocardial damage and improving outcomes [13]. Prognosis after MI
depends on the degree of myocardial damage, the presence of comorbidities and different
noninvasive ECG aspects that reflect aberrations in depolarization or repolarization, as well
as an imbalance in automatic function, which may serve as predictors of an unfavorable
outcome [7,14–16]. The Holter ECG monitoring recording is a vital diagnostic tool for
identifying MI patients who may be susceptible to sudden cardiac death [17].

In cardiovascular research, MACE are commonly used as an endpoint, which consists
of both mortality and morbidity among patients who have suffered a myocardial infarc-
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tion [18,19]. MACE can be defined as a composite endpoint encompassing non-fatal stroke,
cardiovascular mortality, non-fatal myocardial infarction, hospitalization due to AHF, ven-
tricular arrhythmia, sudden cardiac death (SCD), or coronary revascularization [18,20–28].
SCD is a major public health concern and is defined as a natural death caused by cardiac
disease within 24 h of symptom onset or within one hour of symptom onset at the latest in
an individual without any underlying medical conditions [29–31]. The Holter ECG system
can enhance healthcare outcomes due to its greatly improved diagnosis and follow-up for
various cardiovascular diseases [32]. Electrocardiographic parameters based on 24 h Holter
ECG monitoring have been documented to be independent risk predictors of the progres-
sion of myocardial infarction and total mortality [32–38]. Combining electrocardiographic
stratification with an assessment of myocardial substrate may provide a closer look at the
factors that can contribute to death [2,39–42].

2. The T-Wave Morphology Documented on the 24 h Holter ECG Recording

The T-wave is an important aspect of the ECG that represents ventricular repolar-
ization, with a standard orientation pattern characterized by inversion in lead aVR and
upward deflection in other leads [29,43,44]. T-wave morphology on the 12-lead ECG is
prognostic for MACE in myocardial infarction, but excessive electrophysiological hetero-
geneity in the heart can contribute to arrhythmogenesis and SCD [45–47]. The use of
Holter ECG monitoring can reveal this heterogeneity through various methods of T-wave
analysis [45,47,48]. As such, it is crucial to evaluate ventricular repolarization anomalies to
identify myocardial infarction patients at higher risk of cardiac mortality due to SCD [46].

2.1. T-Wave Alternans

Cardiac electrical alternans is characterized by alternating changes in the ECG wave-
form morphology every second cardiac cycle and is typically represented by T-wave
alternans (TWA). TWA has been linked to increased susceptibility to SCD in a variety of
cardiac pathologies and is considered a valuable risk marker for stratifying the risk of malig-
nant arrhythmia and SCD in patients with structural heart disease [49,50]. Its non-invasive
nature makes it a promising tool for this purpose [29,41,51]. TWA has been correlated
with dispersion of repolarization and is characterized by beat-to-beat fluctuations in the
amplitude, morphology, or duration of the T-wave [29,51–53] (Figure 1). The prognostic
performance of TWA findings is variable, ranging from highly effective to nearly null,
depending on the clinical population and protocol employed [54,55]. TWA analysis of 24 h
Holter ECG records provides unique information for arrhythmia risk stratification [56,57].
The pathophysiological mechanism underlying TWA remains incompletely understood,
but recent studies have demonstrated a correlation between repolarization alternans and
concurrent alterations in intracellular calcium levels [49,58–63]. TWA reflects temporal
and spatial heterogeneity of repolarization and serves as a measure of electrical instability,
which can be utilized for quantification [64,65].
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Several studies showed different results for the prediction of MACE in TWA-positive
patients [60,66,67].

De Ferrari et al. conducted a meta-analysis in which they incorporated a sample size
of nearly 1500 patients and demonstrated that individuals with anomalous TWA exhibit
a risk that is three times greater in comparison to those with regular TWA. However, the
authors focused on patients with chronic heart failure [60].

The etiology of an acute myocardial pathology is an important aspect because it can
influence the results of the TWA recording. The extend of TWA may vary as a result of
myocardial disfunction following an acute myocardial infarction [43,66,68]. Arisha et al.
demonstrated that over the course of a six-month follow-up period, patients who exhib-
ited positive TWA had an incidence rate of MACE that amounted to 5% [53]. Moreover,
Yuan et al. conducted a follow-up study that lasted a minimum of six months in order
to document the incidence of MACE among the participants. The statistical analyses
conducted in this study did not establish a correlation between alterations in ventricular
repolarization, specifically TWA, and the incidence of MACE [25]. However, Ashraf and
colleagues performed a statistical analysis that revealed that there was no significant differ-
ence in the mean value of TWA and the proportion of patients with positive TWA between
those with ischemic and non-ischemic cardiomyopathy. Thus, it can be inferred that the
emergence of T-wave alternans in patients with cardiomyopathy and its propensity to give
rise to ventricular arrhythmias is not linked to ischemia, since it is comparably evident
among individuals with non-ischemic cardiomyopathy [60]. In another investigation, in
was observed that over the course of a follow-up period that lasted 1.1 ± 0.6 years, 27 out
of the total 295 participants passed away due to cardiac-related reasons. The analysis of
TWA resulted in significant hazard ratios in both the subgroups of patients with ischemic
and non-ischemic conditions [64].

Another important aspect is the time when the TWA is measured since the acute
event, especially in patients with MI. Garcia conducted TWA testing on patients who
had experienced an acute MI at least 14 days prior. The results showed that 17% of
the tests were positive, 75% were negative and 9% were indeterminate. The study also
calculated the sensitivity and negative predictive value of the TWA test for predicting
arrhythmic events. Furthermore, when assessing various parameters such as baroreflex
sensitivity, TWA and heart rate turbulence within the 2–4 week acute phase following MI,
no singular parameter was found to effectively predict outcomes. However, during the non-
acute phase (10–14 weeks) after MI, the combination of abnormal TWA and LVEF below
50% yielded the most accurate diagnostic results [54]. A different research investigation
demonstrated that TWA has the potential to forecast the prognosis following MI when
assessed at roughly 30 days after the incident. However, risk assessment post-MI proves
to be a challenging task, particularly in populations with preserved systolic function
and concomitantly low incidence of adverse events. The Alternans Cardiac Electrical
Stability Study findings indicate that TWA progresses from initial to subsequent evaluations,
exhibiting 67% concurrence [52]. The administration of TWA testing prior to patient
discharge subsequent to acute MI does not reveal an augmented probability of mortality,
showed Tapanainem et al. Despite a mortality rate of 6.9% among the patient cohort
during an average follow-up duration of six months and the detection of persistent TWA
in 14.7% of patients, no instances of mortality were observed in patients exhibiting positive
TWA [67]. Additional research investigations have demonstrated that the occurrence of
TWA in the early aftermath of MI is about 25% [63].

Nishibe et al. proposed in their study one potentially valuable metric for assessing
alternans, known as Alternans Ratio. The study demonstrated that a set of alternans indices
was established for every heartbeat, which comprised the orthogonal waveform distance
between the target beat and the neighboring two beats. In the presence of alternans, the
first index was found to be greater than the second index [69].

Therefore, TWA meets the fundamental criteria for serving as a therapeutic marker,
particularly in individuals diagnosed with myocardial infarction, being the causal pathway
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of arrhythmogenesis [62]. Historically, TWA has been applied to guide the decision-making
process for implanting cardioverter-defibrillators (ICD), whereas its capacity to aid in di-
recting pharmacologic therapy has not been fully recognized [51]. Elevated TWA furnishes
supplementary insights for forecasting appropriate implantable cardioverter-defibrillator
therapy in myocardial infarction patients because malignant tachycardia episodes have
been considered as a surrogate for SCD. Monasterio et al. showed that TWA has been useful
in identifying a subgroup of patients with myocardial infarction who are less likely to
benefit from ICD therapy. However, there are conflicting results regarding the association
between TWA classification and the risk of malignant tachyarrhythmias in patients who
have received ICD therapy [70].

Although the existence of macroscopic TWA has been documented, it was regarded as
an uncommon discovery, consistently linked to an unfavorable prognosis, until microscopic
TWA was initially reported in the 1980s [54].

2.2. Microvolt T-Wave Alternans
2.2.1. Definition of Microvolt T-Wave Alternans

Microvolt T-wave alternans (MTWA) is a phenomenon characterized by fluctuations
in the form and magnitude of the T-wave, resulting in an oscillatory pattern, and has been
shown to be useful in predicting malignant ventricular arrhythmias and SCD in various
cardiac disorders [29,41,71–78] (Figure 2).
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MTWA reflects beat-to-beat variation in the spatial and temporal repolarization het-
erogeneity, caused by cellular repolarization alternans, and may provide a substrate for
reentry [79–81]. The accurate evaluation of MTWA is heavily reliant on meticulous skin
preparation to minimize the impedance between the skin and the electrodes. The detection
and measurement of MTWA require the application of sophisticated signal processing tech-
niques, primarily due to its small amplitude and susceptibility to background noises [82].
Therefore, new algorithms have been developed for its detection. MTWA may possess
distinctive value in detecting a low-risk cohort with a high negative predictive value,
especially in individuals with congestive heart failure [29].

2.2.2. The Analysis of Microvolt T-Wave Alternans

The identification of microvolt T-wave alternans (MTWA) can be accomplished through
two methodologies: the spectral approach and the modified moving average (MMA)
method applied in the time domain [29,72]. Both techniques require specialized equipment
and software. The spectral method requires a target heart rate of 105–110 beats per minute
for a specific period using specialized exercise protocols, pharmacological agents, or atrial
pacing. It also requires the use of exclusive high-resolution electrodes [29,31]. The MMA
methodology, conversely, does not require specialized electrodes. The spectral method
calculates the alternans voltage by extracting the square root of the spectral power at the
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alternans frequency, with a minimum MTWA level of ≥1.9 µV required for a positive test
result. However, up to 40% of tests are classified as “indeterminate” due to the spectral
method’s requirement of achieving a steady target heart rate, which may be impeded by
patient-related factors [29–31].

In the domain of clinical research for the assessment of Holter ECG MTWA, the preem-
inent method employed is the non-spectral approach referred to as MMA [41,73,83]. The
MMA method is a non-spectral approach that involves segregating odd and even beats into
separate compartments and calculating the maximal MTWA value for every 15 s of the ECG
recording by determining the maximum discrepancy between successive T-waves [84–88].
This technique enables the evaluation of MTWA in the context of both standard exercise
stress testing and 24 h Holter ECG monitoring, obviating the need for specialized electrodes
or a regulated heart rate [30,87,89]. The MMA technique has conventional thresholds of
47 µV for an “abnormal” outcome and 60 µV for a “severely abnormal” test result [41,90].
However, current recommendations suggest using the maximum recorded MTWA level
during pharmacotherapy, without considering the time of day, heart rate, or ST-segment
deviation [91].

MTWA has a high negative predictive value of 98%, but a low positive predictive
value of 8–10% in low-risk populations. Studies have shown that the absence of notable
MTWA in individuals with myocardial infarction significantly reduces the likelihood of
SCD. However, the low positive predictive value of MTWA has led to an interest in ex-
ploring a composite of noninvasive parameters, primarily autonomic indices such as heart
rate turbulence [74,92,93]. Combining heart rate turbulence with MTWA quantification
using either spectral or MMA approaches may improve the classification of the risk of
cardiovascular fatality, which aligns with the underlying mechanism of SCD arising from
transient triggers acting on an unstable substrate. Further research is needed to deter-
mine whether advancements in MTWA detection methodology can enhance its positive
diagnostic capacity [93].

2.2.3. The Importance of Microvolt T-Wave Alternans
Microvolt T-Wave Alternans Analysed through the Spectral Method

The use of 24 h ambulatory ECG monitoring to evaluate TWA has shown potential
in predicting cardiac mortality [91,94–96]. Spectral analysis has been widely employed
in processing MTWA in patients with chronic heart failure, which enables stratification
into low and high-risk groups for SCD [97–100]. Positive TWA has been associated with
non-sustained ventricular tachycardia, ventricular premature complexes and a high risk
of malignant tachyarrhythmic events [80,97]. Hennersdorf and colleagues demonstrated
a significant association between patients with a history of chronic heart failure and a
positive TWA and the occurrence of non-sustained ventricular tachycardia during the
six-month follow-up period. In addition, patients with a positive MTWA test exhibited a
relatively higher frequency of ventricular premature complexes compared to those who
tested negative, although this difference was not statistically significant [97]. Nevertheless,
Ikeda and colleagues reported that using the same analytical technique, 49% of patients
demonstrated MTWA, with 15% of these individuals experiencing symptomatic, sustained
ventricular tachycardia or ventricular fibrillation during a six-month follow-up [80]. The
concurrent evaluation of MTWA and late potentials has a strong positive predictive value
for an arrhythmic event in patients with myocardial dysfunction following acute myocar-
dial infarction. Noninvasive determination of MTWA, along with abnormal heart rate
turbulence and ventricular premature contraction, shows promise in identifying high-risk
patients with myocardial dysfunction following acute myocardial infarction [78,80,88].

Microvolt T-Wave Alternans Analysed through the Time-Domain Modified Moving
Average Method

Given that certain patients, including those receiving medications such as beta-
blockers and digoxin, and those with physical constraints, are not suitable candidates
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for spectral MTWA testing, the majority of studies have concentrated on employing the
MMA technique [87]. The presence of MTWA detected using the MMA technique was
significantly associated with a nearly three-fold greater risk of cardiac death or resuscitated
cardiac arrest during the follow-up period [91,101]. The measurement of MTWA from 24 h
Holter ECGs is a predictive factor for cardiac mortality in individuals with ischemic and
nonischemic left ventricular dysfunction. In Sakaki’s investigation, 9.2% of participants
met the primary endpoint, which was defined as cardiac mortality [102]. Among these
patients, five experienced SCD, nine died from congestive heart failure, and twelve died as
a result of cardiac complications, such as congestive heart failure and frequent ventricular
arrhythmias [87].

Maeda et al. found that in patients with myocardial infarction, a positive MTWA
was a significant covariate for the incidence of life-threatening ventricular arrhythmias
during a mean follow-up of 6 years [103]. Furthermore, Hoshida et al. demonstrated
that MTWA was more closely linked to arrhythmic events than to overall cardiac mor-
tality [104]. Another important aspect described by Ikeda et al. was the right moment
for MTWA measurements after an acute episode of myocardial dysfunction, caused by
myocardial infarction (see Table 1). The authors proposed that to enhance the prognostic
power of MTWA testing, it should be conducted several weeks after MI, preferably at least
2 to 3 weeks later. This is because the measurement of MTWA immediately after acute MI
(i.e., 8 days) did not reveal an increased risk for mortality. Subsequent studies have con-
firmed that MTWA is the most significant predictor for SCD in this patient population [105].
In disagreement with the previous study, Yu et al. studied the period immediately following
MI, with MTWA being monitored within 15 days after MI. In their cohort study, MTWA
could identify patients with a heightened susceptibility to fetal ventricular arrhythmias [86].
Thus, the predictive utility of MTWA after MI can predict SCD, depending on the time of
the investigation and the associated pathologies [31].

Table 1. The moment for microvolt T-wave alternans measurement after myocardial infarction
[86,105].

Article The Moment for MTWA 1

Measurement Year Number of
Participants

Follow-Up
Period Events

The Odds Ratio
between MTWA and

MACE 2

Ikeda et al. [105] 2–3 weeks after the acute heart
failure episode 2002 850 2 weeks–1 month Sudden

cardiac death <0.0001

Yu et al. [86] Within 1 to 15 days after the
acute heart failure episode 2012 227 16 ± 7 months

Lethal
ventricular

arrhythmias
<0.0001

1 MTWA = microvolt T-wave alternans. 2 MACE = major adverse cardiovascular events.

Selvaraj et al. observed that while a positive MTWA test indicated a higher risk of
cardiac death and life-threatening arrhythmia in both ischemic and nonischemic cardiomy-
opathy, in the context of patients with myocardial infarction, the incidence of sudden cardiac
death was significant, yet no association was found between SCD and MTWA [106–108].
In another study that analyzed myocardial dysfunction, MTWA was positive in 17% of
patients, during a follow-up of 3 years, but only 1,8% reached an endpoint defined as SCD
or life-threatening arrhythmic events [109].

The Eplerone Post-Acute Myocardial Infarction Hear Failure Efficacy and Survival
Study (EPHESUS) showed that the amplitude of MTWA was observed to be greater in
patients who suffered from sudden cardiac death compared to survivors or those without
sudden cardiac death, irrespective of the lead used for measurement. According to research,
Holter ECG-based MTWA measured by MMA is a strong predictor of SCD in high-risk
post-MI patients with left ventricular dysfunction. The maximum MTWA was higher
in patients who suffered sudden cardiac death, but there was no significant difference
between survivors and non-SCD patients. The study also noted that the highest levels of
MTWA were typically found in the early afternoon, which deviates from the usual circadian
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pattern of SCD that peaks in the early morning hours. However, this timing aligns with the
increased risk of SCD in heart failure patients [110]. Sulimov et al. included in the endpoint,
not only SCD or malignant ventricular arrhythmias but also stroke, being one of the few
studies that correlates MTWA with stroke. Over a 12-month follow-up period, there were
15 cases of sudden cardiac death and 8 cases of non-sudden cardiovascular death, which
included 5 fatal myocardial infarctions and 3 fatal strokes. The individuals who did not
survive had significantly higher values of MTWA [111].

The initial trial that utilized MTWA as a tool to direct prophylactic ICD placement is
the Alternans Before Cardioverter Defibrillator (ABCD) study. Over a median follow-up
period of 1.9 years, a primary endpoint of either appropriate ICD discharge or SCD at one
year was met by 7.5% of the patients [112,113]. In a different investigation, MTWA may
lack the ability to detect a subset with a low enough risk in this cohort to eliminate the
requirement for prophylactic ICD placement, despite total mortality being lower in the
MTWA-negative cohort [114]. Conversely, MTWA has the potential to differentiate not only
a high-risk cohort but also a low-risk group who are unlikely to gain advantages from ICD
prophylaxis and could survive for two or more years without enduring death or persistent
ventricular arrhythmia [115].

Assessment of myocardial substrate pertains to the evaluation of the underlying
structural and functional abnormalities of the heart, which can precipitate arrhythmias
and sudden cardiac death. This includes conditions such as ischemic heart disease, car-
diomyopathy, heart failure, and valvular heart disease [116,117]. Diagnostic tools such as
echocardiography, cardiac magnetic resonance imaging, or invasive electrophysiological
testing can be used to assess myocardial substrate. TWA has been identified as a valuable
marker for identifying patients at heightened risk of arrhythmic events, particularly in
those with structural heart disease such as ischemic cardiomyopathy or dilated cardiomy-
opathy [118–120]. In these patients, TWA has been shown to be a more potent predictor of
arrhythmic events than conventional risk factors such as left ventricular ejection fraction or
QRS duration [119,121].

The combination of TWA and assessment of myocardial substrate has been demon-
strated to improve the risk stratification for arrhythmic events and sudden cardiac death
compared to using either parameter alone [120,121]. For instance, a study published in the
Journal of the American College of Cardiology in 2009 showed that combining TWA with
left ventricular scar burden, a measure of myocardial substrate, was a superior predictor
of arrhythmic events compared to either parameter alone [122–124]. Another study dis-
covered that TWA, a marker of repolarization instability on the ECG, was independently
associated with both left ventricular systolic and diastolic dysfunction on echocardiography
and predictive of future MACE in patients with non-ischemic cardiomyopathy [125,126].
There is evidence to indicate that T-wave aspects and ejection fraction (EF) may have
complementary predictive value for MACE in patients with cardiovascular disease. In a
study of patients with left ventricular systolic dysfunction, TWA was a stronger predictor
of all-cause mortality compared to EF. Patients with TWA had a considerably higher risk of
mortality regardless of EF [127].

In a study of patients with ischemic cardiomyopathy and abnormal electrograms on
electroanatomic mapping, both TWA and left ventricular EF were found to be independent
predictors of MACE. Patients with both TWA and EF ≤ 30% had the highest risk of MACE,
followed by those with TWA or EF ≤ 30% alone [128]. Additionally, in a study of patients
with non-ST-elevation myocardial infarction, T-wave inversion on the initial ECG was a
significant predictor of adverse cardiac events at 1 year, even after adjusting for EF. Patients
with T-wave inversion and EF < 40% had the highest risk of adverse events [129]. Further-
more, in a study of patients with chronic stable angina and left ventricular dysfunction,
T-wave amplitude and QT interval were independent predictors of cardiac events and were
particularly useful for risk stratification in patients with EF ≤ 35% [130]. The combination
of T-wave amplitude and QT interval had a higher predictive value for MACE compared
to either parameter alone. Another study of patients with coronary artery disease and
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left ventricular dysfunction found that TWA was a strong predictor of all-cause mortality,
particularly in patients with EF ≤ 35% [131]. Adding TWA to clinical and echocardio-
graphic variables significantly improved risk stratification for mortality. Lastly, in a study
of patients with acute ST-segment elevation myocardial infarction, T-wave inversion on
the initial ECG was a strong predictor of one-year mortality, particularly in patients with
EF ≤ 40%. The combination of T-wave inversion and EF ≤ 40% had the highest risk
of mortality [132]. Collectively, these results suggest that T-wave patterns on the ECG
and echocardiographic parameters are closely associated and can offer complementary
information for risk stratification in patients with cardiovascular disease [128–132].

Several studies have explored the predictive value of both MTWA and myocardial
scars for MACE. For instance, a 2017 study in the Journal of the American Heart Association
investigated the prognostic value of TWA and late gadolinium enhancement (LGE) on car-
diac magnetic resonance imaging (MRI) for predicting MACE in patients with nonischemic
cardiomyopathy [133–135]. The study found that the presence of both TWA and LGE was
associated with an increased risk of MACE and that the combination of TWA and LGE had
a higher predictive accuracy for MACE than either TWA or LGE alone (C-index 0.78 vs 0.66
and 0.72, respectively) [136].

Similarly, a 2016 study in the Journal of the American College of Cardiology assessed
the prognostic value of T-wave inversion (TWI) and LGE on cardiac MRI for predicting
MACE in patients with hypertrophic cardiomyopathy (HCM). The study found that the
presence of both TWI and LGE was associated with a higher risk of MACE compared to
either TWI or LGE alone (hazard ratio 6.7 vs 2.5 and 3.6, respectively) [121].

Several studies have investigated the prognostic value of combining T-wave aspects
and myocardial scars for predicting MACE in different patient populations [137–139]. For
instance, in a 2015 study published in JACC: Cardiovascular Imaging, researchers assessed
the predictive value of TWA and LGE on cardiac MRI for MACE in patients with dilated
cardiomyopathy. They found that the presence of both TWA and LGE was associated
with an increased risk of MACE and that the combination of TWA and LGE had a higher
predictive accuracy for MACE compared to either TWA or LGE alone (C-index 0.80 vs 0.69
and 0.70, respectively) [140–142].

In addition, in patients with ischemic heart disease, T-wave patterns on the ECG and
findings on CMR have been found to correlate with MACE. TWA has also been identified
as a predictor of future MACE in patients with ischemic heart disease [143].

While these findings suggest that combining T-wave patterns and myocardial scars
on cardiac MRI may provide valuable information for risk stratification in certain patient
populations, more research is needed to validate these findings and determine their clinical
relevance [143,144].

TWA has been associated with myocardial ischemia and infarction. In a study involv-
ing patients with chronic stable angina, TWA was found to be a predictor of myocardial
ischemia on CMR and was also linked to a higher risk of major cardiac events during
follow-up [144].

In addition to T-wave patterns, other ECG parameters such as QRS duration and QT
interval have also been found to correlate with CMR findings in ischemic heart disease. For
example, prolonged QRS duration has been associated with a higher incidence of myocar-
dial fibrosis on CMR, as well as an increased risk of MACE [145]. Similarly, prolonged QT
interval has been linked to a higher prevalence of myocardial edema on CMR, and has also
been correlated with an elevated risk of MACE [146].

Taken together, these findings underscore the value of integrating ECG parameters
with CMR imaging to stratify the risk of patients with ischemic heart disease [143–146].

Electroanatomic mapping (EAM) is a non-invasive imaging technique that generates
a 3D map of the heart’s electrical activity and is widely utilized in the management of
arrhythmias. Although limited research has been conducted on the association between T-
wave patterns and EAM findings in predicting MACE, some studies have provided insights
into this relationship. For instance, in patients with ventricular tachycardia and structural
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heart disease, the presence of TWA on the surface ECG was linked to an elevated probability
of identifying critical isthmus sites on EAM, defined as the location of the slow conduction
that sustained the VT. Furthermore, patients with TWA were found to have a higher risk of
recurrent VT during follow-up [147]. Similarly, in patients with ischemic cardiomyopathy,
the presence of TWA on the ECG was associated with a higher probability of detecting
abnormal electrograms on EAM within the infarcted myocardium. These electrograms
were characterized by low-amplitude, high-frequency signals indicative of scar tissue or
conduction block. Notably, patients with both TWA and abnormal electrograms were at a
higher risk of MACE during follow-up [128].

A study conducted on patients with nonischemic cardiomyopathy revealed that the
presence of TWA on the ECG was linked with abnormal local activation time (LAT) on
EAM in the right ventricular outflow tract. This abnormal LAT was characterized as a
delay in the timing of the electrical signal relative to neighboring sites, indicating slow
conduction or conduction block. Patients with TWA and abnormal LAT had a higher
probability of developing sustained ventricular arrhythmias [148]. These studies suggest
that the occurrence of T-wave patterns on the ECG might be linked with abnormal electrical
activity in the heart as detected by EAM, which may increase the risk of major adverse
cardiovascular events. However, further research is needed to confirm these findings and
assess the clinical usefulness of integrating ECG and EAM data for risk stratification in
patients with cardiovascular disease [128,147,148].

According to several studies, TWA on the Holter ECG/24 h monitoring is associated
with abnormal electrograms on EAM in the region of the infarcted myocardium in patients
with ischemic cardiomyopathy or heart disease. Abnormal electrograms are defined as
low-amplitude, high-frequency signals indicative of scar tissue or conduction block, or
as fragmented electrograms with complex waveforms suggesting conduction abnormali-
ties [128]. Delayed electrical activation in the region of the infarcted myocardium has also
been associated with the presence of TWA on the ECG in patients with acute myocardial
infarction [149]. Patients with TWA and abnormal electrograms, delayed activation, or
fragmented electrograms have a higher risk of developing ventricular arrhythmias and
MACE [150]. These findings suggest that combining ECG and EAM data may be useful for
risk stratification in patients with ischemic heart disease. However, more research is needed
to confirm these findings and evaluate the clinical utility of this approach [128,149,150].

There is a scarcity of research that directly compares the predictive value of T-wave
features with residual ischemia detected through perfusion imaging in forecasting MACE.
In one study that evaluated patients with stable coronary artery disease, TWA was iden-
tified as an independent predictor of cardiac events, including MACE, over a follow-up
period of 2.2 years. The inclusion of TWA in clinical and myocardial perfusion imaging
variables enhanced the prediction of MACE, but the study did not explore the role of
residual ischemia on perfusion imaging specifically [151]. In contrast, another study that
assessed patients with acute myocardial infarction discovered that T-wave amplitude and
TWA on the initial ECG were strong predictors of 30-day MACE. However, adding residual
ischemia on perfusion imaging to clinical and ECG variables did not result in a significant
improvement in risk prediction [152]. Similarly, in a study of patients with stable angina
and suspected coronary artery disease, T-wave amplitude and TWA were determined as
independent predictors of MACE, but the inclusion of myocardial perfusion imaging vari-
ables did not significantly enhance the prediction of risk [127]. Overall, these studies imply
that T-wave features, particularly T-wave amplitude and TWA, may possess prognostic
value for MACE in patients with ischemic heart disease. Nonetheless, the role of residual
ischemia on perfusion imaging in risk prediction remains less clear [127,151,152].

Several studies have investigated the prognostic value of T-wave aspects in conjunction
with coronary angiography for the prediction of MACE. In a study by Ghanbari et al.,
603 patients with stable coronary artery disease who underwent coronary angiography
were monitored for a median of 2.6 years. TWA was measured using a modified moving
average method during exercise treadmill testing, while the severity of coronary artery
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disease was assessed via angiography. The results showed that TWA was a significant
independent predictor of MACE, although the addition of angiographic variables did not
significantly improve risk prediction beyond TWA alone [153].

In a study by Haigney et al. (2004), 219 patients with stable coronary artery disease
who underwent coronary angiography were followed for a mean of 16 months. T-wave
amplitude and TWA were measured during exercise treadmill testing, while the extent and
severity of coronary artery stenosis were assessed using the Gensini score. The study found
that T-wave amplitude and TWA were significant predictors of cardiac events, independent
of the Gensini score and other clinical variables. However, the contribution of residual
ischemia on angiography to risk prediction was not specifically examined [151].

The studies conducted by Schuster et al., Verrier et al. and Maytin et al. investigated
the predictive value of T-wave aspects, particularly TWA, in patients with stable angina
or coronary artery disease [154,155]. In Schuster et al.’s study, 139 patients underwent
both TWA testing and coronary angiography to assess the complexity and severity of
coronary artery disease using the Syntax score. During the 22-month follow-up, 11 cardiac
events occurred, and TWA was found to be a significant predictor of cardiac events,
independent of the Syntax score and other clinical variables. However, adding the Syntax
score did not significantly improve risk prediction beyond TWA alone. In Verrier et al.’s
study, 186 patients with stable coronary artery disease were followed for 25 months after
undergoing TWA testing during exercise treadmill testing and coronary angiography to
assess the presence and severity of coronary artery disease. During follow-up, 23 MACE
events occurred, and TWA was found to be a significant predictor of MACE, independent
of angiographic and clinical variables [154]. Similarly, in Maytin et al.’s study, 605 patients
with stable coronary artery disease were followed for a median of 3.5 years after undergoing
TWA testing during exercise treadmill testing and coronary angiography to assess the
severity of coronary artery disease using the Gensini score. During follow-up, 103 MACE
events occurred, and TWA was found to be a significant predictor of MACE, independent
of the Gensini score and other clinical variables [155]. These studies suggest that T-wave
aspects, particularly TWA, may be useful in predicting MACE in patients with stable or
unstable coronary artery disease, independent of the severity of coronary artery disease
assessed by coronary angiography or other clinical variables. However, more research is
needed to determine the optimal use of T-wave aspects in risk stratification and clinical
decision-making [154,155].

A study by Baman et al. followed 1149 patients with acute coronary syndrome who
underwent coronary angiography for a mean of 3.8 years. TWA was measured using the
spectral method during exercise treadmill testing, while coronary angiography was utilized
to determine the presence and severity of coronary artery disease. During the follow-
up period, there were 311 MACE events, including cardiac death, nonfatal myocardial
infarction, and revascularization. TWA was found to be a significant predictor of MACE,
even after adjusting for angiographic and clinical variables [155].

In summary, these studies indicate that T-wave parameters, particularly TWA, may be
valuable in predicting MACE in patients with stable or unstable coronary artery disease,
regardless of coronary angiography results. Nevertheless, further research is required to
establish the optimal application of T-wave parameters in clinical decision-making and risk
stratification [68,154,155].

The SYNTAX score is a tool utilized to evaluate the complexity of coronary artery
disease, based on the severity, location, and number of stenoses present in the coronary
arteries. It is frequently employed to inform decision-making for coronary revascularization
procedures, such as percutaneous coronary intervention (PCI) or coronary artery bypass
grafting (CABG). While the SYNTAX score has demonstrated predictive value for adverse
cardiovascular events, it is not typically used in conjunction with T-wave patterns as a
predictor [156].

Nevertheless, there is some research suggesting that T-wave patterns may be helpful
in predicting outcomes following revascularization procedures. For instance, one study
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found that T-wave alternans was linked to worse outcomes following PCI in patients with
stable angina. Another study found that the presence of abnormal T-wave morphology
was associated with higher rates of major adverse cardiac events after CABG [157].

Although the SYNTAX score has demonstrated some predictive value for adverse car-
diovascular events, there is limited research on combining T-wave patterns and the SYNTAX
score to predict outcomes. Further studies are necessary to determine the potential utility
of combining these factors in predicting major adverse cardiovascular events [156,157].

3. Future Perspectives

The presence of inhomogeneous repolarization has been linked to an elevated likeli-
hood of ventricular arrhythmias. T-wave morphologies have been extensively researched
over the past few decades in association with this phenomenon [10]. Multiple studies
have provided evidence that various abnormalities of the T-wave are linked with increased
susceptibility to MACE among individuals with acute myocardial infarction. We found
in the literature different analyzes regarding the T-wave, known under multiple names:
started with the inverted T-wave (TWI) to nonspecific T-wave: T-wave heterogeneity
(TWH), biphasic T-wave, T-wave loop morphology [11,12,158,159]. Most of the authors
have shown in their studies that those T-wave aspects are correlated with a higher risk of
SCD, malignant arrhythmias, myocardial infarction, stroke, overall mortality, or rehospital-
ization for AHF [3,11,118–120,160,161]. Multiple elements of repolarization heterogeneity
as a potential etiology of ventricular arrhythmogenesis will be discussed [3,4,162–177].

Recent research has investigated the application of advanced techniques, such as
wavelet transform and principal component analysis, for analyzing T-wave morphology
in order to enhance the accuracy of predicting MACE. These techniques enable more
precise measurements of various T-wave attributes, including amplitude, duration, and
shape, and can detect subtle changes in these features to improve the accuracy of MACE
prediction [178,179].

T-wave discordance refers to the incongruity between the T-wave direction and the
QRS complex direction observed on an ECG or Holter ECG/24 h monitoring. Such dispar-
ity is indicative of ventricular repolarization heterogeneity and is linked to an increased
risk of ventricular arrhythmias and sudden cardiac death. Some studies have demon-
strated that T-wave discordance can also forecast MACE in individuals with acute coronary
syndrome [180,181].

Furthermore, machine learning algorithms have been developed to evaluate T-wave
patterns and predict MACE. These algorithms utilize vast datasets to recognize patterns and
correlations that may be overlooked by conventional statistical methods. Several studies have
reported that machine learning algorithms can effectively predict MACE in patients with
heart failure and other cardiovascular diseases based on T-wave characteristics [182,183].

In patients with myocardial disfunction following a myocardial infarction, the overall
cosine of the angle formed between the wavefront of depolarization and repolarization is
represented by the term Total Cosine R-to-T (TCRT), yielded an independent predictive
value for MACE [164]. In an investigation analyzing patients with myocardial dysfunc-
tion subsequent to myocardial infarction in comparison to a cohort of individuals with
previous ventricular tachycardia, the total cosine R-to-T and the percentage of loop area
demonstrating T-wave irregularity were evaluated to determine the global angle formed
by the repolarization and depolarization loops. The investigation revealed notable varia-
tions in the morphology of repolarization signals in patients with ischemic heart disease
who have or have not suffered from ventricular fibrillation and ventricular tachycardia.
The study further highlights that the primary cause of T-wave abnormality is associated
with the proarrhythmic substrate, rather than being a result of ischemic or ischemic heart
disease [165].

However, there is a greater abundance of information available in the literature
about the T-wave aspects in patients with chronic heart failure that showed a correla-
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tion with MACE and that needed to be studied in patients with an acute myocardial
infarction [166–177] (see Table 2).

Table 2. Other T-wave aspects proved to have a correlation with MACE that can also be studied in
patients with myocardial infarction [166–177].

T-Wave
Aspect Article Year Number of

Participants
Follow-Up

Period Events

The Odds Ratio
between

T-Wave Aspect
and MACE 1

T-wave
heterogeneity Nearing et al. [12] 2012 255

30–45 min
before the
onset of

ventricular
tachycardia

Ventricular tachycardia <0.05

T-wave loop
morphology Okin et al. [172] 2002 1839 3.7 ± 9 years

Cardiovascular death
(myocardial infarction,

stroke, sudden
cardiac death)

<0.0001

The total
cosine R-to-T Rahola et al. [184] 2021 1678 8.6 ± 2.3

years
Sudden cardiac death,
Sudden cardiac arrest <0.03

Minor T-wave
abnormalities

Kumar et al. [168] 2008 3224 10 years Increased risk for
arrhythmic death <0.001

Greenland
et al. [169] 2003 39.573 22 years

Cardiovascular heart
disease, especially
coronary diseases

in men

<0.05

T-wave
morphology
restitution

Ramirez et al. [170] 2022 23.962 5 years Sudden cardiac death <0.001

T-wave
morphology
dispersion

Huang et al. [46] 2009 650 2.7 ± 1.8
years Cardiovascular mortality 0.016

Zabel et al. [173] 2000 280 32 ± 10
months

Ventricular tachycardia,
all cause-mortality <0.001

Inverted
T-wave

Kryttayaphong
et al. [165] 2019 2009 One year

Cardiovascular mortality,
hospitalization resulting
from unstable angina or
heart failure, non-fatal
myocardial infarction

<0.001

Merlo et al. [175] 2019 414 125 months

Sudden cardiac death,
ventricular arrhythmias

with malignant
potentials, heart

transplant

0.041

1 MACE = major adverse cardiovascular events.

Nearing et al. analyzed the TWH within a time frame of 30 to 45 min prior to the
initiation of ventricular tachycardia, as an alternative phrasing. The researchers reached a
conclusion that crescendos exist in the level of electrical instability that may serve as early
indicators of the onset of non-sustained ventricular tachycardia. They observed that in
91% of patients, the elevated levels of T-wave heterogeneity persisted prior to the initiation
of non-sustained ventricular tachycardia, thereby indicating that alterations in T-wave
heterogeneity may potentially serve as premonitory signs of heightened cardiac electrical
instability. It is noteworthy, however, that the authors have not published any specific
investigations focusing on patients with myocardial infarction [12,166,167].

Kumar et al. focused on isolated minor T-wave irregularities, represented by flat or
minimally inverted T-waves, measuring less than 1 mm amplitude. The study conducted
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a 15-year follow-up of the patients, revealing that a positive finding for minor T-wave
abnormalities was linked to a significantly elevated risk of primary arrhythmic death,
but no significant association was found between such findings and the incidence of
nonfatal myocardial infarction [169]. According to another investigation, minor T-wave
abnormalities can be regarded as indicators of an elevated risk for cardiovascular mortality
in both genders, and have a lasting prognostic impact [170].

The T-wave morphology restitution (TMR) method analyzes the T-wave morphology
in association with the heart rate. The quantification of TMR involved the use of time-
warping metrics to measure the extent of morphological variation in the T-wave for each
RR increment. The results indicated a statistically significant increase in TMR values among
SCD victims in comparison to other patients. Therefore, a correlation between T-wave
morphology and other aspects, such as heart rate, could better quantify the risk of SCD [171].
However, although TWR was significantly higher in non-survivors, it was not predictive of
outcome, defined as SCD, in Smetana’s study [172]. Other T-wave parameters that depend
on the heart rate are: T-wave morphologic dispersion, the temporal variability of T-wave
morphologic heterogeneity, periodic repolarization dynamics and T-wave area dispersion.
However, Ramirez and colleagues introduced a novel index called T-wave Morphologic
Variation (TMV), which measures the extent of T-wave morphological variation in relation
to a normal reference using a single-lead ECG and a single beat. The authors evaluated
the predictive value of TMV and found that it remained significantly associated with
MACE. However, the association between TMV and all-cause mortality was no longer
significant [171].

T-wave loop morphology represents repolarization abnormalities and is strongly
correlated with subsequent onset of myocardial infarction [159]. Moreover, aberrations
in the repolarization process, as assessed by T-wave loop analysis, serve as a prognostic
indicator for cardiovascular mortality in both genders [173]. Under a different name,
but approximately with the same method of measurement as T-wave loop morphology,
Huang and colleagues introduced the concept of T-wave morphology dispersion (TMD), a
metric that quantifies the heterogeneity of spatial T-wave patterns across different leads
by computing the mean angles between all conceivable pairs of reconstruction vectors. By
analyzing TMD, the authors were able to refine the assessment of the likelihood of mortality
due to cardiovascular events in the participants of the study [46].

In Rahola’s investigation, which involved a mean follow-up duration of 8.6 years,
a proportion of 3.9% of the patients suffered sudden cardiac death (SCD) or received
resuscitation following a sudden cardiac arrest. The measure of TMD evinced a robust
correlation with the risk of SCD and was significantly elevated in patients with a history of
SCD relative to their living counterparts. However, TMD did not demonstrate statistically
significant differences between those who experienced non-SCD or non-cardiac death and
the living population. As such, the temporal fluctuations in electrocardiographic spatial
heterogeneity of repolarization, as gauged by TMD, can independently prognosticate the
long-term risk of SCD in individuals diagnosed with myocardial infarction [173].

The conventional definition of TWI involves the presence of a negative T-wave that
exceeds or equals 1 mm in depth in at least two adjacent leads while omitting leads aVR,
III and V1 from the evaluation [174]. TWI is a Holter electrocardiography abnormality that
may lack specificity or sensitivity. Alternatively, it may serve as a useful biomarker for
detecting and diagnosing myocardial infarction or ischemia [160,175,176] (Figure 3).

Krittayaphong’s research identified TWI in 20% of the study population, with 4.4%
of patients experiencing MACE. However, the study found no significant interplay be-
tween the presence of TWI, whether in conjunction with ST-segment depression or as an
independent feature, and the likelihood of MACE [175].

Although T-wave inversion predicted SCD or malignant ventricular arrhythmias, an
important observed issue was the inversion of the T-wave in the anterolateral leads, which
may be linked to arrhythmogenic cardiomyopathy. Therefore, extended studies that exclude
this pathology and include only patients with myocardial infarction are needed [177].
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Research indicates that abnormal T-wave patterns can indicate underlying cardiac
pathology and increase the risk of cardiovascular mortality. Specifically, T-wave inversion
in leads V1-V3 has been identified as a predictor of sudden cardiac death in individuals
with hypertrophic cardiomyopathy, whereas T-wave inversion in the inferior leads has
been linked to an elevated risk of cardiovascular events in patients experiencing acute
coronary syndrome [118,185].

As we mentioned, the combination of T-wave patterns and myocardial substrate
assessment has been suggested to improve risk stratification for cardiovascular events and
sudden cardiac death compared to either parameter alone. For instance, a 2016 study in
the Journal of the American College of Cardiology demonstrated that T-wave inversion
in leads V1-V3 and late gadolinium enhancement on cardiac magnetic resonance imaging
were a superior predictor of adverse cardiovascular events than each parameter alone
in patients with hypertrophic cardiomyopathy [186]. Additionally, another study found
that T-wave inversion in leads V1-V4 was associated with reduced LVEF and a higher risk
of MACE in patients with idiopathic dilated cardiomyopathy [187]. Moreover, T-wave
inversion in leads V1-V3 on the electrocardiogram has been associated with left ventricular
diastolic dysfunction and increased left ventricular mass index on echocardiography, which
are established risk factors for MACE. However, further research is required to validate
these findings and establish the optimal approach for assessing T-wave characteristics and
myocardial substrate [188].

In patients with ischemic heart disease, the presence of T-wave inversion on the
ECG or Holter ECG/24 h monitoring and the findings on cardiac magnetic resonance
imaging (CMR) have been demonstrated to correlate with MACE. Studies have shown
that T-wave inversion in leads V1 to V3 on the ECG is associated with the presence of
myocardial scarring on CMR in patients with previous MI and is a predictor of future
MACE [189]. Furthermore, the extent of T-wave inversion in leads V2 and V3 on the ECG
is associated with the extent of myocardial scarring on CMR in patients with previous MI
and is an independent predictor of future MACE [190]. In patients with non-ST-segment
elevation myocardial infarction (NSTEMI), T-wave inversion in leads V1 to V3 on the ECG
is associated with a higher prevalence of myocardial necrosis on CMR, as well as a higher
risk of MACE during follow-up [191]. Additionally, T-wave inversion in leads V1 to V4 on
the ECG is associated with the presence of microvascular obstruction and intramyocardial
hemorrhage on CMR in patients with acute MI [192]. These findings suggest that T-wave
patterns and echocardiographic features are closely related and can provide complementary
information for risk stratification in patients with cardiovascular disease [189–192].

Hence, in Pirkola’s study, T-wave area dispersion (TWAD), T-wave morphology
dispersion (TMD) and temporal complexity of repolarization (TCRT) showed a substantial
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correlation with cardiac mortality, with these parameters being more strongly linked with
non-sudden cardiac deaths than with SCD. The parameters related to T-wave morphology,
which represent the heterogeneity of repolarization, enhance the predictive capacity of the
clinical risk model for myocardial infarction in the present treatment era [193].

Artificial intelligence (AI) is a computer-based technology that simulates human
intelligence and performs tasks that typically require human cognition, such as visual
perception, speech recognition, and decision-making. In the field of cardiovascular disease,
AI has shown promise in enabling more accurate and efficient diagnosis and treatment. AI
has been applied to various aspects of cardiovascular disease, including risk prediction,
image analysis and drug discovery [182,183,194,195]. With respect to predicting major
adverse cardiovascular events (MACE) using T-wave aspects as a feature, there is limited
research on the use of AI. However, some studies have explored the use of machine learning
and AI in predicting MACE in patients with cardiovascular disease. For instance, one study
used a deep neural network to predict TWA from standard 12-lead ECGs and achieved high
accuracy in predicting TWA compared to traditional spectral analysis methods [182,183].
Another study used machine learning to identify patients with heart failure and reduced
ejection fraction who were at high risk of sudden cardiac death by using a combination
of clinical variables, including TWA, to predict MACE [183,194]. Additionally, machine
learning algorithms have been used to analyze echocardiographic images and clinical data
to predict cardiovascular events in patients with suspected coronary artery disease, and
deep learning has been used to analyze ECG data and predict cardiovascular outcomes in a
large population-based cohort [194,195]. In these studies, the AI models have shown good
predictive performance in identifying individuals at high risk of MACE [182,183,194,195].

While there is limited research specifically on the combination of T-wave aspects and
AI for predicting MACE, these studies suggest that machine learning and AI may have
potential for predicting cardiovascular events in patients with known or suspected cardio-
vascular disease [194,195]. A deep neural network was employed in a study published
in Circulation in 2020 to analyze coronary computed tomography angiography (CCTA)
scans and predict MACE in patients with suspected or known coronary artery disease. The
authors reported that their model had superior accuracy compared to traditional risk scores
in predicting MACE [196]. In a separate study published in JAMA Cardiology in 2018, a
machine learning algorithm was used to analyze electronic health record data and predict
cardiovascular events in patients with heart failure. The authors reported that their model
demonstrated good accuracy in predicting MACE, such as hospitalizations and deaths
due to cardiovascular causes [197]. In another study published in Circulation in 2017, a
machine learning algorithm was employed to analyze ECG data and predict cardiovascular
outcomes in a large population-based cohort. The authors found that their model had
good predictive performance in identifying individuals at high risk of MACE, including
sudden cardiac death [182,183]. T-wave patterns on an ECG have been suggested as a
potentially useful tool for predicting MACE, although further research is needed to validate
these findings and determine the optimal methods for analyzing T-wave characteristics.
Successful use of T-wave patterns in accurately predicting MACE could have significant
implications for the prevention and management of cardiovascular disease [182,183,195].

The prognostic value of T-wave morphology assessed by 24 h Holter ECG monitoring
is paramount in identifying patients at risk for MACE. As such, preemptive therapeutic
interventions may be warranted for those displaying aberrant T-wave patterns [66]. The
deployment of ICD as a prophylactic measure against arrhythmic SCD has become com-
monplace, yet the prevalence of SCD has not declined despite a steady increase in ICD
implantation rates over the past two decades. While non-sustained ventricular tachycardia,
ventricular ejection fraction and electrophysiology study-induced programmed stimula-
tion have a high diagnostic yield in identifying individuals at risk for arrhythmic SCD,
these markers do not comprehensively account for the population vulnerable to aborted
SCD [184].
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Patients with LVEF less than 35% are at an increased risk of ventricular arrhythmias,
which may require ICD placement. The decision to implant an ICD is based on multiple
factors, such as LVEF, history of ventricular arrhythmia, underlying structural heart disease,
and certain genetic conditions, to assess the patient’s risk of sudden cardiac death. Several
studies have attempted to identify predictors of ventricular arrhythmias in these patients,
including T-wave alternans, QT dispersion and heart rate variability [198–202].

Although T-wave patterns alone are not sufficient to warrant ICD implantation, the
analysis of T-wave morphology can assist in the decision-making process for ICD im-
plantation in specific clinical scenarios. The current clinical guidelines recommend ICD
implantation for primary prevention in patients with reduced EF due to prior MI, nonis-
chemic dilated cardiomyopathy, or genetic or acquired arrhythmogenic disorders associated
with an increased risk of sudden cardiac death [199–201].

The decision to implant an ICD typically involves multiple factors, such as clinical
history, physical examination, imaging studies, electrophysiological testing and risk stratifi-
cation tools. T-wave patterns and other electrocardiographic findings may be utilized as
adjunctive tools to refine risk stratification in certain clinical situations, but they are not
considered the sole criterion for ICD implantation [203–205].

It is crucial to acknowledge that the decision to implant an ICD is complex and
should be tailored to each patient based on their individual clinical characteristics and risk
factors. Therefore, patients with suspected or established cardiac disease should undergo a
comprehensive evaluation by a qualified cardiologist to determine the most appropriate
management plan [199–205].

The current study results propose that T-wave morphology may be effectively em-
ployed to discern a subgroup of patients who are unlikely to derive significant therapeutic
benefit from ICD therapy, although further confirmatory investigations are required before
endorsing modifications to existing treatment guidelines [66]. Despite this therapeutic
approach, because effective antiarrhythmic agents suppress T-wave alternans or other
T-wave aspects, the T-wave analysis on 24 h Holter ECG could be a potential application in
drug testing [164].

4. Conclusions

The repolarization heterogeneity, observed through the different aspects of the T-
wave patterns measured on Holter ECG monitoring, is a potent predictor of unfavorable
outcomes and significant adverse cardiovascular events in patients with myocardial infarc-
tion. Nevertheless, several T-wave aspects showed a correlation with MACE in various
cardiovascular pathologies and need to be studied also in patients with myocardial in-
farction. Because in myocardial infarction the electrical instability can interfere with the
results, future studies should focus on the T-wave analysis by finesse methods, which
remove most of the artifacts and electrical instability and create a universal analysis
algorithm. Not least, AI is a promising tool for research, offering improved accuracy
and efficiency in data analysis, identifying complex patterns and supporting informed
decision-making processes.
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