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Abstract: Ascorbic acid (AA) is an indispensable nutrient required to sustain optimal poultry health
and performance, which is commonly excluded from the diet of broilers. To investigate the synthesis
and distribution of AA during broiler growth and clarify its possible turnover, 144 1 d old healthy
Arbor Acres broilers with a body weight of approximately 41 g were randomly assigned to eight
groups of 18 broilers each. The kidney, liver, ileum, and spleen of one bird from each group were
collected every week until 42 d to detect the synthesis capacity, tissue distribution, and transporter
gene expression of AA. The results showed that kidney L-gulonolactone oxidase (GLO) activity
responded quadratically (p < 0.001), with maximum activity observed at 7 to 21 d old. Hepatic
total AA and dehydroascrobate (DHA) concentration increased linearly (p < 0.001) with age, as did
splenic total AA (p < 0.001). In the ileum, mRNA expression of sodium vitamin C transporter 1/2
(SVCT1/2) decreased with the growing age of the broilers (p < 0.05). The expression of SVCT1 in the
kidney was not influenced by the growing age of the broilers. The progressive buildup of AA in the
liver and spleen of broilers as they age implies an amplified demand for this nutrient. The waning
synthesis capacity over time, however, raises concerns regarding the possible inadequacy of AA in
the latter growth phase of broilers. The addition of AA to the broilers’ diet might have the potential
to optimize their performance. However, the effectiveness of such dietary supplementation requires
further investigation.

Keywords: broiler; ascorbic acid; L-gulonolcactone oxidase; SVCT1/2

1. Introduction

Ascorbic acid (AA), commonly known as vitamin C, is a crucial water-soluble an-
tioxidant that plays essential roles in maintaining the health and optimal functions of
broilers. The antioxidant activity of AA stems from its ability to be reversibly oxidized
to ascorbyl free radical and further to dehydroascrobate (DHA) [1]. Some species, such
as humans, some passeriform birds, and guinea pigs can no longer synthesize AA due
to a nonfunctional mutant L-gulonolactone oxidase (GLO) [2], and thus require dietary
supplementation to meet their needs. In contrast, AA is usually excluded from the diet
of broilers [3] because chickens can synthesize AA via the glucuronatexylulose cycle by
GLO in the kidney [4,5]. The absorbed and/or synthesized AA can be transported to
cells by sodium-dependent vitamin C transporters—specifically, SVCT1 and SVCT2. The
function of SVCT1 as an AA transporter in chickens has been confirmed [6]. The tissue
distribution of the two transporters is dependent on their properties; SVCT1 is primarily
found in epithelial tissues, while SVCT2 is found mainly in tissues requiring adequate
AA concentrations, such as brain and spleen [1]. In a previous study, the authors found
that among the foregut segments of chickens, the ileum had the highest gene expression
of SVCT1, and the kidney also had high gene expression of SVCT1 [5]. The expression of
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SVCT1 in the ileum is responsible for the absorption of AA from dietary sources, while
SVCT1 in the kidney facilitates the reabsorption of AA from urine, both of which play vital
roles in the tissue accumulation of AA.

The tissue concentration of AA relies on its requirements for this nutrient. The ac-
cumulated AA in tissues generally has three sources: synthesis de novo from glucose in
the kidney (such as in chicken, etc.), or from the liver (such as in pigs, etc.), uptake AA
via SVCT1/2 or DHA via glucose transporters from diet, and reabsorb AA in the kidney
through SVCTs, chiefly SVCT1 [7]. The increased AA inside a cell could also stem from
the reduction of DHA to AA [8]. In laying hens, unlike in the kidney and ovary, where
the concentration of AA is super low (under 0.4 µmol/g weight), the concentration of
AA in the liver and spleen is as high as in the brain (more than 1.5 µmol/g weight) [5].
The AA inside the liver and spleen plays a vital role in maintaining their physiological
function. As an antioxidant, AA could neutralize free radicals that are generated during the
normal metabolic processes of the liver and spleen, thus protecting them from oxidative
stress and damage [9]. Furthermore, AA acts as a cofactor of the enzymes involved in
collagen synthesis, thereby preserving the structure and function of the liver and spleen.
Additionally, AA enhances the differentiation and proliferation of B- and T lymphocytes
and suppresses inflammation by inhibiting the production of inflammatory mediators
via the inhibition of enzymes such as cyclooxygenase and lipoxygenase [10]. It is vital to
monitor the concentration of AA in the liver and spleen to better understand its critical
functions in broilers.

The inclusion of AA in the diet of broilers is typically unnecessary due to their ability
to synthesize it. The ability of broilers to synthesize AA in the kidney can be affected by
various factors, such as gender, feed supply, and additives [4,11,12]. The adequacy of AA for
broilers under different conditions and in different physical states has also been questioned.
Numerous studies have focused on the effects of supplemental AA in the diet of broilers on
the antioxidant system, immunity, hatchability, and performance. The conclusions, however,
have been inconsistent. While some researchers argue that exogenous AA has no significant
impacts on production performance [13], others have reported enhanced body weight and
increased immunity in broilers given additional AA [14–17]. The inconsistent results have
prompted investigations into the factors affecting GLO activity and AA synthesis ability [4].
It is important to quantify GLO activity and AA concentration in tissues, particularly in
the liver and spleen of broilers, along with assessing the expression of AA transporters.
The deposition amount of AA in tissues has significance for clarifying the requirement of
AA during the feeding period of broilers. Additionally, the study of the expression of its
transporter can not only clarify the mechanism of its absorption and transport, but also
indirectly provide a theoretical basis for whether exogenous supplementation of AA is
needed. Thus, the purpose of this experiment is to investigate the changes in GLO activity
at different ages of birds during the feeding period, the distribution of AA in liver and
spleen, and the gene expression of AA transporters in ileum and kidney, to provide a
theoretical basis for the application of AA in broiler production.

2. Materials and Methods
2.1. Animals, Management, and Sampling

All experimental procedures including animal experimental protocols, management,
and sampling management conditions were approved by the Animal Care and Use Com-
mittee of China Agricultural University. A total of 144 1 d old male Arbor Acres broilers,
with similar health statuses, were allocated to 8 battery cages, with 18 birds in each cage. All
birds have free access to the same standard commercial feed and tap water. The ingredient
and nutrient composition of the feed is presented in Table 1. The birds were maintained in
a room where the temperature and the humility are controllable. The light scheme applied
in the experiment was a 20 h light and 4 h dark cycle. The birds were vaccinated using
Newcastle disease virus and infectious bronchitis virus at d 9 and infectious bursal disease
virus at d 21 via intranasal and intraocular method. The temperature was maintained at
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33~35 ◦C on the day of the birds’ arrival and on day 2, and was gradually reduced by
1 ◦C each day until it reached 21 ◦C on d 21 and thereafter. All the animal management
procedures employed in this experiment were based on the recommendations of Arbor
Acres management handbooks.

Table 1. Composition and nutrient contents of the diet used in the study.

Item, % 0~3 Weeks 4~6 Weeks

Corn 53.82 59.76
Soybean meal 38.54 33.22

Soybean oil 3.52 3.5
Calcium carbonate 1.76 1.21
Calcium phosphate 1.26 1.39

Sodium chloride 0.35 0.3
Choline chloride (50%) 0.2 0.2

L-Lys × HCl (78%) 0.2 0.16
DL-Met (98%) 0.15 0.1

Mineral premix 1 0.18 0.13
Vitamin premix 2 0.02 0.02

Total 100 100
Nutrient Level 3

AME, MJ/kg 12.36 12.6
Crude protein, % 22.02 19.72

Calcium, % 1 0.9
Available phosphorus, % 0.45 0.35

Lysine, % 1.19 1.04
Methionine, % 0.5 0.43

Methionine + Cystine, % 0.85 0.75
1 Provided per kilogram of diet: Cu, 8 mg; Zn, 75 mg; Fe, 80 mg; Mn,100 mg; Se, 0.15 mg; I, 0.35 mg. 2 Provided
per kilogram of diet: vitamin A, 10,000 IU; vitamin D3, 2400 IU; vitamin E, 40 IU; vitamin K3, 2 mg; vitamin B1,
2 mg; vitamin B2, 6.4 mg; vitamin B6, 3 mg; vitamin B12, 0.02 mg; folic acid, 1 mg; niacin, 30 mg; Capantothenate
acid, 10 mg. 3 Calculated.

On d 1, 2 broilers were randomly chosen from each cage, while 1 broiler was randomly
picked from each cage at d 7, 14, 21, 28, 35, and 42, and sacrificed by intravenous admin-
istration of pentobarbital anesthesia at a dose of 50 mg/kg body weight. Then, the body
cavity was immediately opened to collect the liver, the spleen, the kidney, and the ileum.
On d 1, the whole liver, kidney, and spleen were collected, while from d 7 to 42, the whole
spleen, the left lobe of the liver, and the middle part of the left kidney were collected from
broilers. All the samples were covered with aluminum foil, snap frozen in liquid nitrogen,
and preserved in −80 ◦C until further analysis.

2.2. Measurement of L-gulonolactone Oxidase Activity in Kidneys

The AA synthesis ability of broilers at different ages was determined by evaluating
the GLO enzyme activity in the kidney. The method used to measure GLO activity was
based on the rate of total AA (both AA and DHA) synthesized in the kidney tissue by
adding L-gulonolactone [18]. The detailed procedure was described before [5]. Briefly,
approximately 100 mg of kidney was homogenized using sodium phosphate buffer
with 0.2% sodium deoxycholate (TCI, Shanghai, China), followed by centrifuging at
20,000× g for 30 min at 4 ◦C. Then, the supernatants were added with L-gulonolactone
to bring its final concentration to 5 mmol/L and were incubated in water for 30 min
in the dark. A blank without L-gulonolactone was run to correct the endogenous AA.
After 30 min incubating, the reaction was stopped by adding the same volume of 5%
trichloroacetic acid, followed by 20 min incubating at room temperature in the dark,
after which the mixture was centrifuged at 4 ◦C, 10,000× g for 5 min. The supernatant
was used to detect GLO-synthesized AA.
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2.3. Ascorbic Acid Tissue Deposition

The HPLC with UV light detector was employed to determine the AA concentration
in the liver and spleens of broilers at different ages. Briefly, approximately 120 mg livers or
spleens were homogenized in 1.6 mL cold metaphosphoric acid solutions and centrifuged
at 16,000× g for 15 min at 4 ◦C. The obtained supernatants were used to measure the total
AA and AA levels. For the total AA measurement, an equal volume of 5 mmol/L Tris
(2-carboxy ethyl) phosphine hydrochloride (TCEP) in distilled water (pH = 2) was added
and allowed to react for 2 h at 4 ◦C in the dark. To detect the AA concentration in tissues,
an equal volume of distilled water was added instead of TCEP and maintained in the dark
at 4 ◦C for 2 h. After incubating for 2 h, the mixture was centrifuged at 12,000× g for 10 min
at 4 ◦C, about 10 µL of the supernatant was applied to run onto the HPLC column for AA
detection. The HPLC system was purchased from Waters, equipped with Waters 717 plus
autosampler and Waters 2487 dual wavelength UV detector. The column and the mobile
phase used in this study was described before [5]. Finally, the DHA levels in tissues were
calculated by using the total AA minus the AA levels in the liver and spleen.

2.4. Quantitative Real-Time PCR

Total RNA was extracted from ileum and kidney using TRIzol reagent (TAKARA Bio.,
Beijing, China) according to the manufacturer’s instructions. A nanodrop 2000 was applied
to quantify the RNA while the gel electrophoresis was employed to check the RNA integrity.
The PrimeScript RT reagent kit with gDNA eraser (TaKaRa, Dalian, China) was used for the
reverse transcription according to the manufacturer’s instructions. Quantitative real-time
PCR (qRT-PCR) was performed in triplicate on an Applied Biosystems 7500 Fast Real-Time
PCR System (Thermo Fisher Scientific, Waltham, MA, USA) with the TB Green Premix Ex
Taq (TaKaRa, Dalian, China). The primes sequences of SCVT1, SCVT2, GLO, and GAPDH
used in the present experiment was shown in Table 2. The transcript amplification results
were analyzed with the ABI 7500 software v2.3 and all values of different genes were
normalized to the expression of housekeeping gene GAPDH using comparative 2−∆∆Ct

method according to Livak and Schmittgen (2001) [19].

Table 2. Primer sequences of housekeeping and target genes.

Gene Name Primer Sequence 1, 5′-3′ NCBI Number Product Size

GAPDH
F 2 GACCCCAGCAACATCAAATG

NM_204305.1 110 bp
R TTAGCACCACCCTTCAGATG

GLO
F TCTCCTCTGGATCAGCACCT

XM_015285218.1 131 bp
R AGCGGCACTCGTAGTTGAAG

SVCT1
F GGGATACCCACGGTGACCTC

XM_004944768.2 100 bp
R GCCGTGCACAGGAGTAGTAA

SVCT2
F TGTCTTGTGCTCCTCCTCCT

NM_001145227.1 101 bp
R TCCATTCCCTGTCCCAAATA

1 Primer sequences are displayed in the 5′-3′ direction. 2 F, forward primer; R, reverse primer.

2.5. Statistical Analysis

The statistical analysis of the data was performed using SPSS statistical software (SPSS
for Windows, version 22.0, SPSS Inc., Chicago, IL, USA). One-way analysis of variance was
conducted, followed by Tukey’s multiple comparisons, to compare the differences among
the different ages of broilers. Linear and quadratic contrasts were utilized to evaluate the
statistical differences of AA concentrations, gene expression of SVCT1/2, and AA synthesis
ability of broilers during the 1–42 d growth period. A statistically significant difference was
defined as p ≤ 0.05.
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3. Results
3.1. GLO Enzyme Activities

GLO is responsible for the final step in the metabolic pathway that produces ascorbate
in animals. As shown in Figure 1A, the gene expression of GLO in the kidneys of the
broilers remained consistent from d 1 to d 42. However, the GLO enzyme activities differed
significantly during the 42-day growth period (p < 0.001). In addition, the GLO enzyme
activities in broiler kidneys showed quadratic effects (p < 0.001), with the lowest enzyme
activity occurring at d 1 and the highest enzyme activities observed from d 7 to d 21.
Subsequently, the GLO enzyme activity decreased gradually in broiler kidneys.
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Figure 1. The gene expression (A) and enzyme activity (B) of L-gulonolactone oxidase (GLO) in the
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3.2. The Concentration of AA in Liver and Spleen of Broilers

Different body tissues have varying concentrations of AA, and those with high
metabolic needs generally have greater concentrations. In a previous study, the authors
identified spleen, brain, and liver as poultry tissues with high AA concentrations (ranging
from 1.2 to 2.0 µmol/g wet tissue), while kidney, shell gland, and ovary had lower concen-
trations (ranging from 0.1 to 0.4 µmol/g wet tissue) [5]. In this study, the liver and spleen
AA concentrations of broilers were measured at different ages. As shown in Figure 2A–C,
the concentrations of AA, DHA, and total AA in the liver increased linearly with broiler
age (p < 0.001). From d 1 to d 14, the levels of AA, DHA, and total AA remained unchanged,
while from d 21 to d 42, they continued to increase until reaching the highest level at d 42.
DHA accumulation followed a similar pattern, with the highest level at d 35 and d 42. In
the spleen, the levels of total AA increased linearly with broiler age (Figure 2D, p < 0.001).
Although significant linear trends were observed in splenic total AA concentrations, no
significant differences were found between d 1, d 7, and d 14, or between days 21, 28, 35,
and 42 (p > 0.05). The splenic AA concentrations were higher from d 21 to 42 and showed a
positive quadratic response (p < 0.001) to broiler age. A quadratic effect was also observed
for splenic DHA level over the 42 days growth period, with the lowest level seen at d 14
and the highest at d 42 (p < 0.001, Figure 2F).

3.3. The Gene Expression Levels of SVCTs in Ileum and Kidney of Broilers

The gene expression of SVCTs in ileum was analyzed to detect the AA absorption
ability during the growing period. As shown in Figure 3A,B, SVCT1 expression in the
ileum was significantly affected by age. As age increased, the SVCT1 expression level
declined erratically, showing both significant linear and quadratic trends (p < 0.001). The
highest expression of SVCT1 in ileum occurred at d 1. After d 1, the expression of SVCT1 in
ileum dropped markedly to less than half of that at d 1, and the lowest expressions were
observed from d 21 to 35. As for the expression of SVCT2, during the 42-day growing
period, the SCVT2 gene expression decreased slightly in a linear fashion with increased
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age (p = 0.024) but approached a quadratic response (p = 0.087). Similar to SVCT1, the
expression of SVCT2 in the ileum also showed the highest level on d 1 (Figure 3B).
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Ascorbic acid can be reabsorbed by kidney tubular cells through SVCTs, which is
also an important way for animals to collect the AA needed by the body. In broilers, the
gene expression of SVCT1 in kidneys showed a linear trend (p = 0.015) with increasing
age. However, the SVCT2 expression exhibited a significant difference due to different
ages (p < 0.001) and showed linear and quadratic trends to growing age (both p < 0.001).
The gene expression of SVCT2 in kidneys was highest on d 1 (Figure 3D).

4. Discussion

As chickens are capable of synthesizing AA in their kidneys, the nutrient is typically
excluded from the diets of broilers under normal conditions. Consequently, broiler tissues
accumulate AA primarily through three physiological pathways, including de novo biosyn-
thesis from glucose in the kidney, reabsorption from urine via SVCT1 in nephrocytes, and
reduction from cellular DHA [8,20]. L-gulonolactone oxidase is an enzyme that is essential
for the final step of AA synthesis in animals’ tissues. The lack of GLO leads to biosynthesis
failure, and these animals solely rely on dietary AA supplementation to fulfill their AA
requirements. Nonetheless, the activity of GLO can be influenced by various factors, includ-
ing thermal stress and other stressors. Under stressful conditions, the activity of GLO may
be inhibited, resulting in a reduced amount of synthesized AA. This observation justifies
the need for AA supplementation in heat-stressed broilers [21]. In the current study, the
trend of GLO enzyme activity in broilers from 1 to 42 d of age is consistent with previous
research on rats [22], which showed an increase in activity after birth followed by a decline
with age. Nevertheless, the present results differ from those reported by Hooper, Maurice,
Lightsey, and Toler [4] who observed maximum GLO activity at 13 days, followed by a
decline to mature levels. These discrepancies may be due to differences in the method of
AA detection used. The HPLC procedure utilized in this experiment was more sensitive
and accurate for detecting low levels of AA compared to the spectrophotometric analysis,
resulting in more reliable results that reflect the dynamic of AA synthesis in broilers. In
addition, it is worth noting that chicken embryos have the capacity to synthesize AA
in the kidney (metanephros and mesonephros) and yolk sac membrane, with synthesis
rates increasing with the development stage [23,24]. The high biosynthesis rate of broilers
at hatching explains their high need for AA, as they grow rapidly and are exposed to a
complex environment that requires a greater amount of AA to cope with. However, GLO
catalyzes the conversion of L-gulonolactone to AA with the production of H2O2, which
can result in glutathione depletion and be detrimental to broilers [8]. As the broilers grow,
the antioxidant system also develops, which may rely less on the AA synthesis since the
formation of H2O2 requires extra antioxidants in the body. This may partly explain the
decline in GLO enzyme activity after 21 days.

Ascorbic acid can be transported to cells through SVCTs. The ileum, rather than
duodenum or jejunum, is the primary site for chickens’ absorption of AA from their diet [5].
In this experiment, the gene expression of both SVCT1 and SVCT2 in the ileum declined as
the broilers grew, which is consistent with the trend observed for SVCT1 in rat liver [25].
It has been reported that the feedback mechanisms exist to regulate the abundance of
ascorbate transporters at the cell surface, with important consequences for the modulation
of ascorbate absorption by enterocytes, reabsorption by kidney tubular cells, and uptake
into target cells. The decreased gene expression of SVCTs in the present experiment may
suggest the decreased ability of cells to absorb AA. This may be due to the lack of AA in the
diet of the broilers in the experiment, as the synthesis of SVCTs is not needed when there is
little AA in the diet to be absorbed. As noted, the expression of both SVCT1 and SVCT2
was highest on d 1, which implies that young broilers might require more AA. It also may
be concluded that supplementing the diet with AA during the early stages of a broiler’s life
may result in a higher absorptive capacity. It has been reported that SVCT1 in the kidney
plays a vital role in renal AA absorption from urine. Loss of SVCT1 in mice leads to a
loss of as much as 70% of their ascorbate body stores through daily urination [26]. The
expression of SVCT1 showed no differences during the 42-day growth period of broilers
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in the kidney, which implied unchanged reabsorption of AA from urine. However, the
expression of SVCT2 in the kidney declined markedly, which to some extent demonstrates
a decline in urinal AA as the broilers grew. It has been reported that in mice, the urinal AA
increased significantly from 3 months to 6 months of age but decreased markedly thereafter
to almost undetectable levels at 30 months of age [27]. The urinary AA contents may reflect
the AA requirements of animals. When their need for AA cannot be satisfied, they may
reabsorb more AA to prevent any loss of AA in urine. However, it is not easy to collect
urine from chickens to detect AA concentrations. Therefore, the expression of SVCTs may
reflect the urinary AA concentrations in broilers. The decreased expression of SVCT2 in
broiler kidneys from d 1 to d 42 may reflect the slightly decreased AA concentration in
urine, which also demonstrates a higher requirement for AA after hatchery.

Ascorbic acid participates in a number of reactions required for normal cell functions,
and its accumulation reflects the requirements of different tissues. Ascorbic acid acts as
an electron donor and can be easily oxidized, which explains its powerful antioxidant
capacity. As a coenzyme factor, AA also plays crucial roles in a lot of physiological activities
in animals. In chickens, the liver is one of the tissues with the most abundant levels
of AA [5]. It is well known that the liver has a central role in whole-body homeostasis,
and is responsible for metabolism, synthesis, storage, and redistribution of nutrients [28].
Sublethal endotoxin was found to increase ascorbate recycling and ascorbate concentration
in the liver to protect it against the reactive oxygen species produced by all the challenges [7].
Similarly, partial hepatectomy also caused an increased level of hepatic ascorbate [28]. In
the present experiment, the concentration of AA increased with the age of the broilers,
indicating a growing requirement for AA with age. The synthesis ability of AA, however,
decreased after 21 days of age. Therefore, the increased AA in livers might result from AA
recycling at the expense of glutamine and AA reabsorption by the kidney. Ascorbate also
contributes to immune defense by supporting various cellular functions of both the innate
and adaptive immune system. Ascorbic acid could promote the maturation of T cells, as
well as the proliferation and differentiation of B cells. Moreover, the macrophage phenotype
and function can be enhanced by supplementing with AA in AA-deficient mice [10,29–31].
The spleen combines the innate and adaptive immune system in a unique manner [32]
and plays vital roles in the immune system of chickens. In both mammals and chickens,
one of the highest levels of AA concentration is in the spleen. Consistent with previous
studies on mice, the levels of AA in broiler spleens increase with growing age [27]. The
increased concentration of AA in broiler spleens could maintain the physical functions
of the spleen and enhance broiler immunity. The increased AA levels in both livers and
spleens indicate the increasing requirement of AA in broilers as they grow. In ovo injection
of AA has been reported to have positive effects on posthatch growth and the antioxidant
capacity of broilers [24,33]. A previous study also indicated that supplementing broilers’
diets with AA induced lower GLO enzyme activities while increasing concentrations of AA
in livers and spleen, resulting in better production performance and enhanced antioxidant
ability [14]. The dietary inclusion of AA has been shown to increase its concentration in
tissues and inhibit de novo synthesis in the kidney, thus indicating the ability of broilers to
absorb AA from their diet and potentially impacting the feedback loop of AA synthesis in
the body. As previously discussed, the de novo synthesis of AA is dependent on glucose
and produces H2O2, which requires the presence of antioxidants to be removed from the
body. Therefore, including AA in the diet of broilers may yield more favorable results
compared to relying solely on their endogenous synthesis.

5. Conclusions

The results of GLO gene expression and enzyme activity suggest that gene expression
may not always accurately reflect protein function, and future studies should focus on de-
tecting the protein levels of SVCT1/2 in broilers. The research found that there is a decrease
in AA synthesis during the late phase of the broiler growing period, while the concentration
of AA in their tissues increases. This implies that the endogenous synthesis of AA may not
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fully meet the birds’ needs during the developmental stage. The study also suggests that
inhibiting the energetically costly process of de novo synthesis of AA may have benefits
for broiler production. Nevertheless, further studies are necessary to determine whether
exogenous AA supplementation can optimize the birds’ production performance.
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