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Abstract: The airbreathing walking catfish (Clariidae: Clarias) comprises 32 species that are endemic
to African freshwater systems. The species-level identification of this group is challenging due to their
complex taxonomy and polymorphism. Prior to this study, the biological and ecological studies were
restricted to a single species, Clarias gariepinus, resulting in a biased view of their genetic diversity
in African waters. Here, we generated the 63-mitochondrial Cytochrome c oxidase subunit 1 (COI)
gene sequences of Clarias camerunensis and Clarias gariepinus from the Nyong River in Cameroon.
Both C. camerunensis and C. gariepinus species maintained adequate intra-species (2.7% and 2.31%)
and inter-species (6.9% to 16.8% and 11.4% to 15.1%) genetic distances with other Clarias congeners
distributed in African and Asian/Southeast Asian drainages. The mtCOI sequences revealed 13 and
20 unique haplotypes of C. camerunensis and C. gariepinus, respectively. The TCS networks revealed
distinct haplotypes of C. camerunensis and shared haplotypes of C. gariepinus in African waters. The
multiple species delimitation approaches (ABGD and PTP) revealed a total of 20 and 22 molecular
operational taxonomic units (MOTUs), respectively. Among the two Clarias species examined, we
found more than one MOTU in C. camerunensis, which is consistent with population structure and
tree topology results. The phylogeny generated through Bayesian Inference analysis clearly separated
C. camerunensis and C. gariepinus from other Clarias species with high posterior probability supports.
The present study elucidates the occurrence of possible cryptic diversity and allopatric speciation
of C. camerunensis in African drainages. Further, the present study confirms the reduced genetic
diversity of C. gariepinus across its native and introduced range, which might have been induced
by unscientific aquaculture practices. The study recommends a similar approach to the same and
related species from different river basins to illuminate the true diversity of Clarias species in Africa
and other countries.

Keywords: walking catfish; DNA barcoding; haplotypes; phylogeny; genetic diversity

1. Introduction

The airbreathing catfish family, Clariidae (order Siluriformes), comprises 117 species
under 16 genera [1]. They are primarily freshwater species and distributed in Africa,
Syria, and Southern and Western Asia (Philippines to Java). Owing to their ability to walk
on land, these catfishes are also known as walking catfish. Among all extant Clariidae
catfishes, the genus Clarias Scopoli, 1777, is the most species-rich group, with 63 valid
species described so far [1,2]. With the increasing rate of Clarias species descriptions from
Asian and Southeast Asian countries [3], a new species, Clarias monsembulai Bernt and
Stiassny, 2022, was recently described from the African continent after 42 years of the latest
species (Clarias agboyiensis Sydenham 1980) discovery [4]. The species-level identification
of this group is challenging due to complex taxonomy and sexual polymorphism [5–8]. In
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addition to commercial value as a nutritious food source and aquarium decoration, this
species group maintains a predator–prey role in food webs and ecosystems. However, this
group of species confronts several threats, such as habitat shifting and alteration, massive
over-exploitation, wastewater effect, and invasion of alien species [9–14].

It is imperative to know the genetic diversity of any biodiversity elements to monitor
and conserve in their ecosystems beyond any political boundary to promote the Convention
on Biological Diversity—Nagoya Protocol, on access to genetic resources and equitable
sharing of benefits arising from their use (https://www.cbd.int/abs/, accessed on 4 March
2023). The genetic data have become an increasingly valuable tool in informing conser-
vation and management strategies for freshwater fishes and other animals [15,16]. By
providing information on population structure, genetic diversity, connectivity, and hy-
bridization, genetic data can help inform management decisions and ensure the long-term
sustainability of many important fishes including Clarias [17–20]. In addition to the high
species diversity of Clarias, only three species (Clarias batrachus Linnaeus, 1758, Clarias
gariepinus Burchell, 1822, and Clarias macrocephalus Günther, 1864) have been repeatedly
studied on different aspects, resulting in a limited view of their biological and ecological
perspectives [21–25]. Microsatellite markers and nuclear and mitochondrial gene sequences
were utilized to reveal the phylogenetic relationship, population structure, and diversifica-
tion of Clarias species [26–30]. In order to improve the in-depth phylogenetic relationship,
the genome sequences of C. batrachus were also generated and analyzed [31–33]. Further,
with the advancement of molecular tools, environmental DNA was also examined to track
the diversity of Clarias species [34]. In addition, several small- to large-scale DNA barcoding
attempts have been made to illuminate the genetic diversity of catfishes around the world,
including in Africa [35–38]. A recent study generated the first mitochondrial genome of C.
camerunensis and elaborated the diversification of Clarias species in Africa and the Asian
continent [39].

However, the genetic diversity of C. camerunensis Lönnberg, 1895, and C. gariepinus
is poorly known from Cameroon waters. Clarias camerunensis was described from the
Sanaga River, Cameroon, and distributed in Western and Western-Central Africa (Togo
south to the Democratic Republic of Congo (DRC), including the Congo River basin).
Although few gene sequences were generated from the different drainage systems of the
DRC, the Republic of Congo (RC), and Nigeria, the genetic diversity is unknown from
its type locality in Cameroon. Clarias gariepinus has a pan-African distribution and is
well studied throughout African drainages, except for Cameroon. In the recent past, the
Republic of Korea agreed to a cooperation framework for members of the Congo Basin
Forest Partnership to promote the sustainable management of forest ecosystems in Central
Africa (https://pfbc-cbfp.org/news-partner/Welcome-Korea-CBFP.html (accessed on 7
April 2023). To promote molecular techniques in systematics and biodiversity research
in African countries, the present study aimed to generate DNA barcode data for two
catfishes, C. camerunensis and C. gariepinus, from Cameroon waters and compared their
genetic diversity with other known distant populations. This genetic information will aid
in the speedy and accurate identification of Clarias species, as well as the conservation
and sustainable utilization of Clarias species in aquaculture by determining their genetic
diversity in African drainage systems.

2. Material and Methods
2.1. Sampling and Identification

A total of 63 Clarias specimens were collected from three different localities (3.760820◦

N 12.173112◦ E, 3.764950◦ N 12.246810◦ E, 3.815711◦ N 12.346524◦ E) in the Nyong River
from Cameroon during July 2019 to November 2020 (Figure 1). The specimens were
captured by using a standard cast net and euthanized with MS-222 (200 mg/L). The
specimens were identified as C. camerunensis (n = 50) and C. gariepinus (n = 13) based
on the major taxonomic keys [7,8]. The muscle tissue was aseptically excised from the
ventral thoracic region of each specimen and preserved in 70% ethanol for molecular
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experiments. The voucher specimens were fixed in 10% formaldehyde for long-term
preservation at Fisheries and Animal Industries (MINEPIA), Cameroon. The tissue samples
and genomic DNA were stored in the Department of Marine Biology at Pukyong National
University, Busan, South Korea. No prior permission was required for sampling, and the
host institutions approved the molecular data generation and analyses.
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Figure 1. Map showing the collection localities of C. camerunensis and C. gariepinus from Nyong River
in Cameroon (marked by the red pins). The Physical features of Cameroon map were acquired from
Encyclopedia Britannica (https://www.britannica.com/place/Cameroon#/media/1/90925/61979,
accessed on 4 March 2023). The IUCN range distribution of C. camerunensis and C. gariepinus in
African continent. Map was prepared using .shp files and acquired from IUCN and DIVA-GIS
platform. Species photographs were captured by Fantong Zealous Gietbong.

2.2. DNA Extraction, PCR Amplification, and Sequencing

Approximately 100 mg of muscle tissue was taken aseptically and added to
700 µL lysis buffer, 60 µL SDS, and 40 µL of Proteinase K in a 1.5 mL centrifuge tube.
The genomic DNA was extracted using the AccuPrep® Genomic DNA Extraction Kit
(Bioneer, Daejeon, Republic of Korea) with standard protocol. The mtCOI partial gene
fragment (~650 bp) was amplified using the published primer pairs (BCL and BCH) [40].
The amplification reactions were performed with a total volume of 30 µL (1× PCR buffer,
10 pmol of each primer, 2.5 mM of dNTPs, 1 U of Taq polymerase, and 1 µL of template
DNA) using a TaKaRa PCR Thermal Cycler Dice® Gradient (Takara Korea Biomedical
Inc., Seoul, Republic of Korea) with the standard thermal profile. The amplified PCR
products were visualized in 1.5% agarose gel and ethidium bromide stain (10 mg/mL)
compared with 100 bp DNA ladder. The targeted bands were cut out from the gel and
purified using AccuPrep® PCR/Gel Purification Kit (Bioneer, Daejeon, Republic of Ko-
rea) following the manufacturer’s protocols. The amplicons were further amplified with
the BigDye(R) Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems) in DNA En-
gine Tetrad 2 Peltier Thermal Cycler (BIO-RAD) and sequenced bi-directionally in an
automated sanger sequencer (96 capillaries ABI PRISM 3730XL Analyzer) at Macrogen
(https://dna.macrogen.com/ (accessed on 7 April 2023) (Daejeon, Republic of Korea).

2.3. Sequence Quality Check

The low-quality regions were trimmed from both 3’ and 5’ ends of forward and
reverse sequences using the software SeqScanner version 1.0 (Applied Biosystems Inc.,
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CA, USA). Both forward and reverse complements of reverse sequences were aligned
through ClustalX software to make a consensus sequence [41]. The consensus sequences
were further reviewed through nucleotide BLAST search (https://blast.ncbi.nlm.nih.gov
(accessed on 7 April 2023) and ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/
(accessed on 7 April 2023) to avoid the insertion/deletions and confirm the appropriate
amino acid array. The final barcode sequences were submitted to GenBank via the Bankit
submission tool (https://www.ncbi.nlm.nih.gov/WebSub/ (accessed on 7 April 2023).

2.4. Dataset Construction and Analyses

To examine the genetic diversity of C. camerunensis and C. gariepinus, three different
datasets were constructed for phylogenetic and haplotypic analyses. In the first dataset,
a total of 63 sequences (50 generated in this study and 13 acquired from GenBank) of C.
camerunensis were analyzed to examine the haplotype diversity and network construction.
To estimate the haplotypic diversity of C. gariepinus, the second dataset was constructed
with 13 generated and 174 database sequences. The number of haplotypes and haplo-
type diversity (Hd) were estimated by using DnaSP v4.10.9 [42]. The TCS networks of
all haplotypes were constructed in Popart [43,44]. In the third dataset, 287 sequences
(63 generated and 224 databases) of 18 Clarias species were acquired from GenBank. The
DNA sequences (MG824585, JF510512, and HM882796) of Clarotes laticeps (Siluriformes:
Claroteidae) were used in the dataset as an out-group. The first dataset was aligned us-
ing the ClustalX program, and the best-fit model was estimated through PartitionFinder
version 1.1.1 and Mr. MODELTEST version 2, with the lowest BIC score [45,46]. Because
the PartitionFinder found the same model (GTR + I + G) for all three codon positions, we
did not partition the data further. The Bayesian Inference was built in Mr. Bayes v3.1.2 by
choosing nst = 6 for GTR + G + I model and four (one cold and three hot) MCMC, and it was
run for 1,000,000 generations with 25% burn-in with tree saving every 100 generations [47].
The MCMC analysis was applied to generate the convergence metrics until the standard
deviation of split frequencies arrived at 0.01 and the PSRF for all parameters neared 1.0. The
BA phylogeny was further illustrated using the web-based iTOL tool (https://itol.embl.de/
(accessed on 7 April 2023) [48]. The genetic distances were calculated using Kimura 2
parameter (K2P) by MEGA11 [49]. To check the molecular operational taxonomic units
(MOTUs), two species delimitation methods, Automatic Barcode Gap Discovery (ABGD)
and Poisson Tree Process (PTP) analyses, were further applied for the third dataset [50,51].
Both ABGD and bPTP analyses were performed by using iTaxoTools 0.1 tool with de-
fault parameters [52]. Both Kimura (K80) and Jukes–Cantor (JC69) models were tested for
ABGD analysis to estimate the MOTUs. The maximum-likelihood tree was constructed in
MEGA11, and the unrooted Newick format was utilized for the PTP analysis.

3. Results
3.1. Genetic Divergence and Haplotype Distribution

The generated mtCOI sequences (633 bp) of C. camerunensis and C. gariepinus were
contributed to the global GenBank database and acquired the accession numbers (OP420808
to OP420857) and (OP555273 to OP555285), respectively. The generated sequences revealed
99–100% similarity with the GenBank sequences of C. camerunensis and C. gariepinus from
African waters. The overall mean genetic divergence was 7.6% in the third dataset of
the Clarias species. Both C. camerunensis and C. gariepinus showed 2.7% and 2.31% intra-
species genetic distances, respectively. An unexpectedly high intra-species genetic distance
(6.6%) was depicted in the GenBank sequences of Clarias angolensis, which needs further
verification by generating more data from its range. The third dataset also depicts high
inter-species genetic distance (17.3%) between all 18 Clarias species. Both C. camerunensis
and C. gariepinus maintained 6.9% to 16.8% and 11.4% to 15.1% genetic distances from other
Clarias species.

The dataset of C. camerunensis revealed 13 haplotypes with 86 segregating sites,
48 parsimony informative sites, haplotype diversity (Hd) = 0.8920, and nucleotide di-
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versity (π) = 0.2830. The TCS network depicted three distinct clusters of C. camerunensis
collected from different drainage systems of four African countries viz., Nigeria, Cameroon,
DRC, and RC (Figure 2). Cluster 1 and Cluster 3 were restricted by the specimens col-
lected from DRC and Nigerian drainage systems, respectively. However, Cluster 2 was
represented by the specimens from Cameroon and RC drainages with shared haplotypes.
The C. gariepinus dataset represents 20 haplotypes with 81 segregating sites, 13 parsimony
informative sites, haplotype diversity (Hd) = 0.8539, and nucleotide diversity (π) = 0.2578.
Most of the sequences of C. gariepinus revealed shared haplotypes throughout different
drainage systems in Africa. The TCS network also represents three clusters in C. gariepinus.
Cluster 1 represents the specimens collected from different drainage systems in native
and outside ranges. However, Cluster 2 represents the specimens restricted to Uganda
drainages, and Cluster 3 represents a single sequence generated from Zimbabwe rivers,
which needs further investigation (Figure 3).
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camerunensis from different drainage systems in Africa. Circle sizes are proportional to the haplotype
frequencies. The number of mutations is represented by the number in parentheses. The median
vectors (hypothetical haplotypes) are denoted by black circles.

3.2. MOTU Estimation and Phylogenetic Relationship

The multiple species delimitation methods (ABGD and PTP) showed 22 and 20
MOTUs, respectively, in the studied dataset. More than one MOTU was detected in
C. camerunensis, corresponding to different drainage systems in DRC, Cameroon+ RC, and
Nigeria. Most of the sequences of C. gariepinus generated from native and distant locali-
ties in non-native regions revealed a single MOTU. However, a single database sequence
(OL311814) generated from Zimbabwe showed a distinct MOTU, which needs further veri-
fication. Among other African Clarias, most of the species revealed single MOTU, except C.
macrocephalus and C. gabonensis with multiple MOTUs, which requires further investigation.
Further, the other two species (C. jaensis and C. buthupogon) showed separate MOTUs in
ABGD and single MOTU in PTP analysis, encouraging further systematics reevaluation
from African waters.
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The Bayesian (BA) phylogeny showed distinct clades of all Clarias species with high
posterior probability supports. Both the African and Asian clades cohesively clustered in the
present topology (Figure 4). The specimens of C. gariepinus collected from diverse drainage
systems in Africa and outside revealed monophyletic clustering in the present topology.
However, the specimens of C. camerunensis were revealed to be paraphyletic, with three
separate clades being recovered, one with specimens from Cameroon and RC drainages, the
other with specimens from DRC drainage, and the third one with specimens from Nigerian
drainage. Considering the limited sample size of C. camerunensis covering a smaller number
of riverine systems in the known range, this preliminary genetic information indicates high
genetic variability, the formation of distinct clades in BA phylogeny, and strong haplotype
structuring, evidenced by the presence of a distinct population of C. camerunensis in African
waters. Further, the reduced genetic variation, monophyletic clade, and shared haplotyping
network depicted the coalesced population of C. gariepinus in different freshwater systems
in Africa. The sequences generated from outside of the native range (Bangladesh, Brazil,
China, India, Indonesia, Malaysia, Myanmar, North Korea, Philippines, and Thailand) also
depicted close clustering with the sequences generated from African waters. However,
the single sequence of C. gariepinus (Accession No. OL311814) generated from Zimbabwe
water, distantly cladded which needs further re-examination from its voucher.
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4. Discussion

Biodiversity is an asset of any nation that should be conserved with high priority.
Thus, recognizing the genetic diversity of native species is crucial for various management
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action plans for the conservation of the ecosystem. The biogeography of Cameroon is
unique, with 13 terrestrial ecoregions, 1 marine ecoregion, and 1 pelagic province [53,54].
The native biodiversity of Cameroon is safeguarded by 39 terrestrial (51,538.0 km2) and
2 marine (1601.6 km2) protected areas. This country is often regarded as a miniature of
Africa due to its diverse landscape from coastal areas to mountains with savanna and
rainforest [55,56]. Cameroon ranks fifth for faunal diversity in Africa and accommodates
about 564 freshwater fish species in different river basins [1,2]. Most interestingly, the
biogeography and structure of these river basins play an important role in predicting the
diversification of freshwater fishes [57]. Globally, fish diversity is intensely threatened due
to the overexploitation, habitat destruction, and effects of climate change in the world, par-
ticularly in Cameroon [58,59]. Considering the high ichthyofaunal diversity in Cameroon,
the assessment of genetic diversity is important apart from the taxonomic assessment.
A high genetic variability/cryptic diversity was observed in African fishes earlier and
correlated to their evolution linked with geotectonic events and climate changes [23,60].

The present results also indicate that C. camerunensis populations are geographically
isolated with restricted gene flow in African waters. This restricted haplotypic distribution
in different riverine systems may enlighten their independent evolution and local adapta-
tions. It is evidenced that biogeographic variation directly affects the population structure
of any species by accumulating genetic mutation through their mobility, colonization, and
isolation [61]. The continental diversification and geographic barriers have triggered the
radiation and independent colonization of fish species in different biodiversity hotspots
and river basins [62–64]. The surveyed Nyong River is flowing west and south from its
source to the east of the Abang–Mbang tropical rainforest of east-central Cameroon and
joins the Gulf of Guinea in the Atlantic Ocean. Although the headwaters of the Nyong
River lie close to the Congo River basin, a significant genetic divergence was observed in C.
camerunensis collected from this riverine system and compared with the specimens from
the Inkisi and Luki River flows in the DRC. Both the Inkisi and Luki Rivers in DRC are the
south bank tributaries of the Congo River, which may constitute different genetic makeup
for their biotic elements. Further, the Kouilou–Niari River flows from the Sounda gorges
to the coastal region of Kouilou through Niari Valley and harbors unparallel freshwater
biodiversity in RC. The high genetic variability in C. camerunensis probably reveals past
or ongoing allopatric speciation or the presence of cryptic diversity in African waters.
Further, C. gariepinus is well established in aquaculture and introduced in several riverine
systems in Africa and other countries [9,10,12]. In the recent past, the diversification of C.
gariepinus has been illustrated, linked with the evolution of drainage basins in Africa [23].
The earlier genetic investigation with mitochondrial Cytb gene (approximately 1140 bp)
and microsatellite genotyping clearly segregated different populations of Clarias species
with high genetic diversity in different provinces on the African continent [23]. The present
genetic assessment is congruent with the earlier hypothesis and supported the unparallel
distribution of this Clarias species [23]. The present analyses support that the human-
induced translocations and aquaculture practices of C. gariepinus have left genetic diversity
and sharing haplotypes between geographically distant areas.

Sustainable aquaculture practices always require the assessment of genetic diversity
of both wild and farmed populations [65,66]. This genetic information is essential for
selective breeding, ensuring gene flow, and diminishing inbreeding depression for long-
term farming [67–69]. It also helps to eliminate the outbreeding, genetic homogenization,
and competition issues; therefore, the genetic specificity of domesticated stocks can be
advantageous for developing aquaculture management strategies [70,71]. C. camerunensis
is not yet significant in aquaculture; however, if this species is targeted for aquaculture, a
lack of understanding of its genetic variability, unscientific breeding, and transmigration
may naturally lead to genetic mixing and depletion of separate lineages [72,73]. To achieve
selective breeding, the genome-wide genetic diversity estimation has been attempted for
many commercially important fishes globally [74,75]. Therefore, the present knowledge on
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the genetic diversity of C. camerunensis discovered in the current research from different
African river systems is critical before this species is welcomed into aquaculture practices.

5. Conclusions

The mtCOI gene successfully delineated both African and Asian Clarias species in
this study. Our results highlight the high genetic variability and unique haplotypes and
MOTUs of C. camerunensis and reveal the allopatric speciation or presence of cryptic
diversity in African waters. The present analyses also support the coalesced distribution of
C. gariepinus in African and Asian waters. We propose a large-scale integrated assessment
of morphology, genetics, and spatial ecology to monitor and protect Clarias diversity. To
minimize inbreeding and the genetic erosion of several indigenous fish species for profitable
aquaculture in varied habitats in Africa, we advocate developing genome-wide population
genetic structure and subsequent planning.
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