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Mitochondria are essential organelles found in nearly all eukaryotic cells, responsible
for producing the energy that drives cellular processes. In recent years, researchers have
discovered that mitochondria are also involved in a wide range of cellular signaling
pathways [1,2]. As such, unravelling the function and signaling of mitochondria is critical
to understanding cellular life. This special issue, entitled “Mitochondrial Function and
Signaling to Regulate Cellular Life,” brings together a collection of 7 scientific papers
focused and 3 reviews on the latest research into mitochondria and their role in cellular
function. The papers in this issue cover a wide range of topics, from the role of mitochondria
in metabolic regulation to the impact of mitochondrial dysfunction on aging and disease.

One of the key themes that emerges from these papers is the importance of lifestyle fac-
tors in regulating mitochondrial function and signaling. For example, the close relationship
between lifestyle and mitochondrial is reviewed in the paper by Vargas-Mendoza et al. [3]
with a special focus on the interplay between nutrition and exercise. Another study [4]
highlights the potential applications of mitochondrial biology in the context of osteoarthritis
treatment. The results suggest that moderate aerobic exercise with a high-protein diet can
alleviate OA symptoms and articular cartilage degradation by reducing inflammation and
oxidative stress. Moreover, the paper by Casuso et al. [5] a high physiological dose of a
powerful antioxidant (i.e., the polyphenol hydroxytirosol) can enhance skeletal muscle
mRNA transcripts of the glucose oxidation pathway but hampers the protein translation.
Thus highlighting that caution should be taken when analyzing the effects of nutritional
interventions on muscle mRNA levels. In addition, Márquez-Ramírez et al. [6] shows that
avocado oil can be a promising therapeutic approach at preventing hypertensive renal
damage. The authors shows that a possible the possible underlying mechanism is related
with decreased mitochondrial reactive oxygen species (ROS) generation and improved
mitochondrial glutathione’s redox state.

Several papers in this issue explore the role of mitochondria in longevity and age-
related diseases. The review by Garone et al. [7] the ATP synthase and its role in maintaining
cellular function. The authors explain the role of mitochondrial transition pore on neuronal
cell death in vivo and in vitro models of neurodegenerative diseases. Furthermore, another
paper updates recent advances in mitochondrial quality control mechanisms that are ac-
tivated in the protection conferred by different cardiac conditioning interventions [8]. It
also discusses the role of extracellular vesicles in mitochondrial protection and turnover of
these organelles. Concluding that modulation of mitochondrial quality control mechanisms
and recognition of mitochondrial targets could provide a potential and selective therapeu-
tic approach for intermittent ischemia/reperfusion-induced mitochondrial dysfunction.
Krstic et al. [9] investigated the impact of pulmonary artery hypertension on mitochondrial
function in right ventricular cardiomyocytes. For that purpose, they developed a new
technique to measure beat-to-beat mitochondrial Ca2+ fluxes and determine mitochondrial
abundance and function. They found that compensatory hypertrophy resulted in larger
mitochondrial Ca2+ transients, indicating a compensatory mechanism to match ATP supply
to the increased energy demands of hypertrophic cardiomyocytes.

In another study, Morales-García et al. [10] address the regulation of the mitochondrial
unspecific pore (ScMUC) in the yeast Saccharomyces cerevisiae. Regulation of ScMUC
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was evaluated in isolated mitochondria under different conditions. The results showed
that ScMUC opening was reversible, and it was mediated by the ATP/ADP ratio and
[Ca2+]. A high ATP/ADP ratio promoted opening, while an increase in [Ca2+] closed
ScMUC. Notably, closure of ScMUC in the absence of ATP synthesis resulted in an increase
in ROS. These findings shed light on the regulation of mitochondrial function in yeast
and provide potential targets for further research on mitochondrial function in other
organisms. In another study using Saccharomyces cerevisiae the authors found that the
combination of polyunsaturated fatty acids (PUFA) and ethanol hypersensitizes yeast to
necrotic cell death by exacerbating membrane damage and mitochondrial cardiolipin loss,
independent of mitochondrial dysfunction and ROS generation [11]. This is a study with
a high biotechnological application for instance for the engineering of yeast for PUFA
production and highlights the need to target both ROS production and lipid peroxidation
to improve yeast resistance against necrotic cell death. Finally, a paper by Crola Da
Silva et al. [12] proposes a reliable and well-characterized method for the multiparametric
analysis of isolated single mitochondria by flow cytometry (FC) in the context of myocardial
infarction. Using a rat model of ischemia-reperfusion and a protective approach of post-
conditioning using low reperfusion pressure, they highlight FC as a reliable and sensitive
method to investigate changes in mitochondrial functions and morphology in pathological
conditions that disrupt their activity, such as ischemia-reperfusion.

In summary, mitochondrial research is essential for understanding physiological
processes related to exercise, nutrition, and aging in both health and disease. The im-
plementation of new techniques to study mitochondria in this context will advance our
knowledge of these organelles.
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