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Abstract: One of the most important challenges horticultural crops confront is drought, particularly
in regions such as the Mediterranean basin, where water supplies are usually limited and will become
even scarcer due to global warming. Therefore, the selection and diversification of stress-tolerant
cultivars are becoming priorities of contemporary ornamental horticulture. This study explored
the impact of water stress on two Tropaeolum species frequently used in landscaping. Young plants
obtained by seed germination were exposed to moderate water stress (half the water used in the
control treatments) and severe water stress (complete withholding of irrigation) for 30 days. Plant
responses to these stress treatments were evaluated by determining several growth parameters and
biochemical stress markers. The latter were analysed by spectrophotometric methods and, in some
cases, by non-destructive measurements using an optical sensor. The statistical analysis of the results
indicated that although the stress responses were similar in these two closely related species, T. minus
performed better under control and intermediate water stress conditions but was more susceptible to
severe water stress. On the other hand, T. majus had a stronger potential for adaptation to soil water
scarcity, which may be associated with its reported expansion and naturalisation in different regions
of the world. The variations in proline and malondialdehyde concentrations were the most reliable
biochemical indicators of water stress effects. The present study also showed a close relationship
between the patterns of variation of flavonoid and chlorophyll contents obtained by sensor-based
and spectrophotometric methods.

Keywords: abiotic stress; optical sensor; ornamental plants; reactive oxygen species; spectrophotometry

1. Introduction

One of the main challenges facing horticultural crops is drought, particularly in regions
such as the Mediterranean basin, where water availability is frequently insufficient. Due to
the increased water deficit brought about by global climatic changes, water is becoming
a scarcer and more expensive resource and irrigation will be utilised more sparingly.
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Therefore, the selection and diversification of stress-tolerant cultivars are becoming more
relevant in all horticultural fields, including floriculture [1,2]. Research on ornamental
species’ responses to water stress and the mechanisms underlying these responses has
significantly increased in recent decades [3–9].

Responses to water stress may vary between species or even cultivars of the same
species, particularly in deficit irrigation situations when a genotype-dependent response
is expected [10–13]. The conventional method for selecting drought-tolerant cultivars
has entailed cultivating plants in water-stressed settings and comparing their growth
and reproductive parameters to those recorded in plants in non-stressed environments.
However, more recently, plant breeding efforts have switched to alternate methods of
screening for stress tolerance, including the use of physiological [14–17] and biochemical
markers [10,18–21]. Amongst the biochemical indicators of stress, the most widely used
are those related to photosynthetic pigments, osmolytes, oxidative stress markers and
antioxidants [4,22,23].

One of the main elements of the chloroplast, the relative chlorophyll content, is strongly
correlated with the rate of photosynthetic activity [24,25]. The primary restriction on pho-
tosynthesis during mild to moderate drought is stomatal closure. To stop further water
loss during a water shortage, plants close their stomata, which reduces the amount of
CO2 available for photosynthesis and eventually results in a drop in nicotinamide adenine
dinucleotide phosphate (NADPH). In addition to stomatal restrictions, leaf photochemical
and biochemical deficiencies also contribute to a reduction in photosynthesis during water
stress [24,25]. The gradual down-regulation or suppression of metabolic activities reduces
RuBP content, which becomes the primary constraint during severe drought and prevents
the photosynthetic uptake of CO2 [26]. As a result of chlorophyll degradation and pigment
photo-oxidation under drought-stress circumstances, the decrease in chlorophyll concen-
tration might be regarded as a typical sign of oxidative stress [27,28]. Drought promotes
oxidative stress by reducing CO2 assimilation, which results in excess excitation energy and
electron flow to O2 and uncontrolled generation of reactive oxygen species (ROS). ROS are
by-products of plant aerobic metabolism [29], generated in various cellular compartments.
They play a crucial role as signalling molecules involved in stress responses and plant
growth, but when in excess may cause irreparable DNA damage and cell death [30]. In
plants, ROS exist in ionic and/or molecular states. Each form of ROS has a distinctive oxida-
tive capacity and influences different physiological and biochemical processes. Hydrogen
peroxide (H2O2) is recognised as an important redox molecule because of its distinctive
physical and chemical properties, including its outstanding stability inside cells and the
fast and reversible oxidation of target proteins [31]. H2O2 is involved in cell signalling
control, cell differentiation, senescence, and cell wall construction in plants. However,
when in excess, it leads to oxidative damage [32–34]. H2O2 also interacts with hormones to
control plant stress reactions and developmental processes. It may be easily detected in
plants using different methods since it is the most stable ROS [35]. Therefore, together with
malondialdehyde (MDA), H2O2 is one of the most frequently used oxidative stress markers
in plants [36–38]. MDA is a product of lipid peroxidation, which includes oxidative damage
of the fatty acids of cell membranes, lipoproteins, and other lipid-containing structures [39].

To combat the harmful effects of ROS, cells have evolved an effective, intricate sys-
tem of enzymatic and non-enzymatic antioxidant defences. The latter category includes
ascorbic acid, glutathione, flavonoids, phenols, and carotenoids [40]. These metabolites can
significantly lower ROS and prevent cell damage, complementing the enzymatic antioxi-
dant systems [41]. Together with photosynthetic pigments and osmolytes, they have been
successfully used as drought stress biomarkers [10,18,42,43]. The build-up of osmolytes
(or compatible solutes) in the cytosol is a typical response in plants to compensate for
osmotic imbalance. Their accumulation helps stress-tolerant plants reduce cellular dehy-
dration brought on by various abiotic stressors, such as salinity and drought. Osmolytes
perform a variety of roles in stress tolerance in addition to their function in osmoregulation,
such as operating as low-molecular-weight chaperones, ROS scavengers, or signalling
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molecules [44–46]. Proline is one of the most prevalent osmolytes in plants, which besides
its role in osmoregulation serves as a signalling molecule and antioxidant, quenching O2,
H2O2, and OH, stabilising ROS-scavenging, and maintaining a low NADPH (nicotinamide
adenine dinucleotide phosphate) level [47].

The present study integrates morphological characteristics with the aforementioned
biochemical stress indicators to conduct a comparative analysis of the responses to water
deficit of two ornamental species of the genus Tropaeolum, namely Tropaeolum majus and
T. minus. The genus Tropaeolum L. (fam. Tropaeolaceae) is distributed in Central and South
America [48] and includes several worldwide popular ornamentals. Tropaeolum majus L.
is a cultigen not known from the wild and probably originated in Peru by unintentional
hybridisation between T. minus L. and T. ferreyrae Sparre [49]. Due to its large and brightly
coloured flowers, it was introduced and became popular as a garden species or used in
landscaping in North and Central America, Africa, Asia, Europe, Australia, New Zealand
and the Oceanic Islands [50]. It is also used as an edible and medicinal plant [51–53] and is
effective as an aphid trap in vegetable gardens [54]. The species often eludes cultivation
through garden debris and is reported as invasive from different regions, such as the
Canary Islands, Malta, Hawaii and California. As a climber, attaining a length up to 1 m or
more [51], it outcompetes native vegetation by shading and smothering [55].

Tropaeolum minus L. was the first species of this genus cultivated in Europe, but
gradually its popularity declined in favour of the more robust and showier T. majus [56]. It
is a uniform species, with few cultivars, originating in Peru and Ecuador and cultivated
throughout the world, not reported as naturalised or invasive [56]. Besides its interest as
ornamental, it is beneficial for horticultural crops or fruit trees by deterring pests [56].

The objectives of this study were to assess which of these two species is more suitable
to be grown in conditions of limited hydric resources and also to identify biochemical
water stress markers helpful to characterise their mechanisms of response to drought. The
plants were grown under controlled conditions and two levels of water deficit, and several
morphological and biochemical parameters were determined in the harvested material. The
relative resistance of the two species to water stress was assessed based on the multivariate
statistical analysis of the obtained data.

2. Materials and Methods
2.1. Plant Material

Seeds were purchased from commercial suppliers (Vilmorin Seed Generation, Paris,
France). The seeds were germinated for twenty days in standard Petri dishes (�= 85 mm)
in a growth chamber under controlled conditions, 12 h light/12 h dark, at 25 ◦C. Three
weeks after germination, seedlings were individually placed in 12 cm diameter pots filled
with a mixture of commercial peat and perlite (3:1), watered regularly with tap water, and
transferred to a greenhouse at the Polytechnical University of Valencia, Spain, with natural
light, 60% relative humidity and a temperature range of 17–23 ◦C.

2.2. Drought Treatments and Growth Parameters

Two months after transplanting the seedlings, when plants were fully-grown in the
vegetative stage, stress treatments were initiated. Six replicates per treatment and species
were placed in plastic trays (12 pots per tray) and watered twice weekly with tap water
added to the trays. Plants in the control group received 1.5 L of tap water per irrigation,
those in the intermediate water stress (IWS) group received 0.75 L, and those in the severe
water stress (SWS) group did not receive any water at all. Substrate moisture expressed as
volume percentages and soil electroconductivity (EC) expressed in dS m−1 were determined
weekly, from the beginning to the end of the treatments, with a WET-2 Sensor (Delta-T
Devices, Cambridge, UK).

After 30 days of treatment, when the soil moisture of the SWS treatment dropped to ca.
5% volumetric water content, the plant material was sampled. The roots were cleaned with



Life 2023, 13, 960 4 of 22

a brush after separating the aerial portion, and both the above and below-ground parts
were weighed and measured individually.

Morphological growth parameters such as the number of leaves, leaves fresh weight,
dry weight and water content, stem length, fresh weight, total dry weight and water
content, and root length, fresh weight, dry weight and water content were measured for
all individual plants. Water content was determined by weighing a part of the harvested
material before (fresh weight, FW) and after drying at 65 ◦C for 72 h (dry weight, DW),
using the equation [(FW − DW)/FW] × 100.

Fresh plant material samples (0.05–0.1 g) were placed in adequately labelled 2 mL
Eppendorf tubes and stored at −75 ◦C before being used for the biochemical tests. Dry
material samples were kept in paper bags at room temperature.

2.3. Biochemical Analyses

The non-destructive measurements of chlorophyll, flavonols and anthocyanins con-
tents, and the nitrogen balance index (NBI) were performed using the optical sensor Dualex
Scientific® (Force-A, Orsay, France). Dualex (dual excitation) is a field-portable device for
measuring the UV absorbance of the leaf epidermis using two-fold excitation of chlorophyll
fluorescence, which allows rapid measurements on attached leaves even in outdoor set-
tings [57]. Measurements were performed on the adaxial and abaxial sides of three leaves
from the top of each plant.

For quantitative estimation of photosynthetic pigments, fresh leaf material (0.05 g)
was ground and extracted in 1 mL ice-cold 80% acetone (v/v). Extraction was carried out
overnight on a shaker in the dark. Samples were centrifuged at 13,300× g for 10 min at
4 ◦C, and the supernatant was collected. The absorbance of the supernatant liquid was
determined at 470 nm, 646 nm and 663 nm. The concentrations of chlorophyll a (Chl a),
chlorophyll b (Chl b) and carotenoids (Caro) were calculated according to the classical
Lichtenthaler and Wellburn method [58] and expressed in mg g−1 DW.

Two types of osmolytes were analysed in the study, proline (Pro) and total soluble
sugars (TSS). Quantification of Pro in the leaves of the harvested plants was performed
according to Bates et al. [59]. Fresh ground material (0.05 g) was extracted in 3% (w/v)
aqueous sulphosalicylic acid and mixed with acid ninhydrin. Samples were then incubated
in a water bath for 1 h at 98 ◦C, cooled on ice for 10 min, and extracted with toluene. The
absorbance of the organic phase was measured spectrophotometrically at 520 nm. The
standard curve was obtained with solutions containing known Pro concentrations, assayed
in parallel. Pro contents were expressed as µmol g−1 DW.

Total soluble sugars were determined following the method of Dubois et al. [60].
Freshly ground leaf samples (0.05 g each) were extracted overnight with 80% methanol
(v/v). After centrifugation at 13,300× g at 4 ◦C for 10 min, 500 µL of 5% phenol (v/v)
and 2.5 mL of concentrated sulphuric acid were added to the supernatant to induce an
exothermic reaction to caramelise the extracted sugar contents. Absorbance was measured
at 490 nm. TSS contents were expressed as equivalents of glucose, the sugar used as the
standard (mg eq. glucose g−1 DW).

Oxidative stress marker malondialdehyde (MDA), antioxidant compounds total phe-
nolic compounds (TPC), and total flavonoids (TF) were measured in extracts prepared in
80% (v/v) methanol from 0.05 g ground fresh leaf material. For peroxide quantification
(H2O2 measurements), samples (0.05 g) were homogenised in 500 µL of 0.1% trichloroacetic
acid (w/v).

MDA quantification was performed according to Hodges et al. [61], with some modifi-
cations [62]. The extracts were mixed with 0.5% (w/v) thiobarbituric acid (TBA) prepared in
20% (w/v) trichloroacetic acid (TCA), or with 20% TCA without TBA for the corresponding
controls. Samples were incubated in a dry block thermostat at 95 ◦C for 15 min, cooled
on ice and centrifuged at 13,300× g for 10 min at 4 ◦C. MDA contents in the extracts
were determined according to Taulavuori et al. [62], based on the extinction coefficient of
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the MDA-TBA adduct at 532 nm (155 mM−1 cm−1), after subtracting the non-specific ab-
sorbance at 440 and 600 nm. Finally, MDA concentrations were calculated in nmol g−1 DW.

Hydrogen peroxide (H2O2), another oxidative stress marker, was measured according
to Loreto and Velikova [63]. Fresh leaf material (0.05 g) was extracted with a 0.1% (w/v)
trichloroacetic acid (TCA) solution, and the homogenate was centrifuged at 13,300× g
for 15 min at 4 ◦C. An aliquot of 500 µL supernatant was mixed with 500 µL of 10 mM
potassium phosphate buffer (pH 7) and 1 mL of 1 M potassium iodide. The absorbance
was determined at 390 nm, and a standard curve was obtained from samples containing
known H2O2 concentrations, assayed in parallel. H2O2 concentrations were expressed as
µmol g−1 DW.

The concentration of total phenolic compounds (TPC) was measured according to
Blainski et al. [64], based on the reaction of the methanol extract with the Folin–Ciocalteu
reagent in the presence of sodium carbonate. The samples were incubated at room tem-
perature in darkness for 90 min, and the absorbance was measured at 765 nm. Samples
with known gallic acid (GA) concentrations were assayed in parallel to obtain a calibration
curve, and TPC contents were calculated as mg eq. GA g−1 DW.

Total flavonoids (TF) were quantified according to the protocol of Zhishen et al. [65].
The methanol extract of each sample was incubated with sodium nitrate for the nitration
of aromatic rings containing a catechol group, followed by a reaction with AlCl3 at basic
pH. The samples were quantified spectrophotometrically at 510 nm, and TF concentrations
were expressed as equivalents of catechin (mg eq. C g−1 DW), which was utilised as
the standard.

2.4. Statistical Analysis

One-way ANOVA was performed separately in each species to assess the impact of
the water stress treatments (CON, IWS, and SWS) on T. majus and T. minus. Subsequently,
the Tukey Honestly Significant Difference (HSD) post hoc test was applied to identify
statistically significant differences between the treatments’ mean values, with a significance
level of p < 0.05.

Two-way ANOVA was applied to check also the effect of species, in addition to that of
the treatment, and the significance of the interaction of the two factors.

To gain a comprehensive understanding of the collected data and identify the primary
drivers of variation, two types of multivariate descriptive statistics were employed: correla-
tion analysis and principal component analysis (PCA). To improve the visual presentation
of the results and avoid overlapping labels, we replaced the individual fresh and dry
weights of root, stem, and leaf with their respective sum, obtaining the total fresh weight
(TFW) and total dry weight (TDW). Similarly, the two components of chlorophyll, Chl a
and Chl b, were replaced with their sum (Chl tot).

Two separate Pearson correlation matrices were calculated for T. majus and T. minus
data, using a 95% confidence interval.

Two customised scatter plots were generated from the complete dataset to exam-
ine further the relationship between the chlorophyll and flavonoid levels measured with
the spectrophotometer in the laboratory and those obtained through Dualex sensor mea-
surements. The Pearson correlation coefficients (R) and their corresponding statistical
significance levels (p-values) are shown in the plots.

For the PCA, all the measured traits were set as active quantitative variables, whereas
the two species (T. minus and T. majus) and the three water stress treatments (CON, INS,
SWS) were used as supplementary categorical variables that were not included in the
principal components (PCs) determination. The PCs were computed by centring and
scaling the quantitative variables, diagonalising the correlation matrix, and extracting the
related eigenvectors and eigenvalues. The p-values of the correlation coefficients between
the traits and the first two PCA components are provided in Table S1 of the Supplementary
Materials. The eigen analysis is displayed in Figure S1 of the Supplementary Materials.



Life 2023, 13, 960 6 of 22

The analysis of variance and post hoc test were performed with the stats [66], Em-
means [67] and Multcomp [68] packages of the R 4.2.2 statistical software and were vi-
sualized with the ggplot2 [69] package. Additionally, the Corrr [70], Corrplot [71], and
FactoMineR [72] packages were used for the multivariate analysis.

3. Results
3.1. Effects of Water Stress on Plant Growth

After four weeks of water stress treatment, when the substrate moisture was below 5%
under severe water stress conditions, all plants were sampled, and their growth parameters
were analysed. The two-way ANOVA indicated a significant effect of the treatment for
different parameters but only the lengths of root and leaves varied significantly between
species. The interaction of the two factors was significant only for the water content of
roots and leaves (Table 1).

Table 1. Two-way ANOVA (F values) considering the effect of Species (S), Treatment (T), and their
interactions (S × T) on growth parameters: stem length (SL), root length (RL), stem diameter (SD),
leaf number (LN), fresh weight root (FWr), dry weight root (DWr), fresh weight stem (FWs), dry
weight stem (DWs), fresh weight leaves (FWl), dry weight leaves (DWl), root water content (WCr),
stem water content (WCs) and leaves water content (WCl).

Parameter S T S × T

SL 29.956 *** 4.220 * 1.195 ns

RL 14.740 *** 0.567 ns 0.59 ns

SD 9.452 ** 7.779 ** 1.261 ns

LN 1.160 ns 2.020 ns 1.501 ns

FWr 0.436 ns 1.852 ns 0.72 ns

DWr 0.205 ns 2.284 ns 1.030 ns

FWs 0.362 ns 9.704 *** 0.419 ns

DWs 0.317 ns 11.034 *** 2.192 ns

FWl 3.714 ns 9.810 *** 0.322 ns

DWl 2.827 ns 3.572 * 0.14 ns

WCr 0.706 ns 1.765 ns 3.731 *
WCs 0.077 ns 0.997 ns 3.983 *
WCl 0.12 ns 4.781 * 0.108 ns

*, **, *** significant at p = 0.05, 0.01 and 0.001, respectively; ns: not significant.

The root length of T. majus plants did not vary significantly, with measurements
ranging between 17.6 (SWS) and 18.7 cm (CON). In T. minus, only a slight, non-significant
increase in the root length in the IWS treatment with a mean value of 28.8 cm was observed,
as compared to the CON (24.1 cm) and SWS treatments (24.6 cm) (Figure 1A). Although
increased root growth is a typical response of plants under water stress conditions for
exploring moister layers of the soil when growing in pots, root expansion is limited.

The average stem length values slightly increased under stress treatments in the two
species, but these variations were not statistically significant (Figure 1B). Similarly, the stem
diameter was not significantly affected by the water stress treatments, although a slight
decrease in the mean values was noticed in both species, in parallel to the increasing water
deficit (Figure 1C).

A notable decline in the mean leaf number of about 50% was recorded in plants of
T. majus under water stress conditions (IWS and SWS treatments), whereas for T. minus,
only a minor decrease was observed in the SWS treatment. However, the differences with
the corresponding control values were not significant for both species. Notably, the number
of leaves in T. minus CON plants (~39) was much lower than in T. majus CON plants (~65)
(Figure 1D). To summarise the results shown in Figure 1, a trend to increase the mean
values of stem length and to decrease those of stem diameter and leaf number in response
to water stress was observed in both studied species. Therefore, although slightly taller,
the water-stressed plants were less vigorous than those in control, as their stem diameter
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and the number of leaves decreased. However, due to the variability in the measurements,
reflected in relatively large SE values, the differences with the control, non-stressed plants
were not statistically significant.
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Figure 1. Growth parameters: root length (A), stem length (B), stem diameter (C) and leaf number (D)
in Tropaeolum majus and T. minus plants grown under controlled conditions in the greenhouse, after
30 days of water stress treatment (CON—control, IWS—intermediate water stress, SWS—severe water
stress). Values shown are means ± SE (n = 6). The same lowercase and uppercase letters indicate
homogeneous groups between treatments for T. majus and for T. minus, respectively, according to the
Tukey test (p ≤ 0.05).

After recording the morphological parameters in the initial experimental phase, the
fresh weight (FW), dry weight (DW), and water content (WC) of the roots, stems, and
leaves were determined in control and water-stressed plants (Figure 2).

Water stress (IWS and SWS treatments) did not affect the growth of T. majus plants at
the root level, as no significant changes compared to the control were detected in the root
FW (Figure 2A), DW (Figure 2D) or WC (Figure 2G), as previously observed for root length
(Figure 1A). The same results were obtained for T. minus plants subjected to severe water
stress. However, in this species, root FW increased significantly, ca. 2.5-fold higher than in
CON plants, in response to the IWS treatment (Figure 2A); the relative increase in root DW
was even higher, about 3-fold (Figure 2D), partly due to the parallel decrease in root WC
(Figure 2G).

The stem FW (Figure 2B) and DW (Figure 2E) of T. majus plants were not affected by
the IWS treatment but decreased significantly under severe water stress (SWS) conditions,
down to ca. 70% of the mean values measured for both parameters in the unstressed
plants (CON). Mean FW (Figure 2B) and DW (Figure 2E) values of T. minus plants showed
a decreasing trend with increasing water deficit intensity, although the differences with
the control plants were statistically significant only for DW under severe water stress
conditions (SWS treatment). Regarding the responses to the water stress treatments in
terms of leaf FW (Figure 2C), both species showed a similar trend, with a reduction of mean
FW values with increasing intensity of the applied treatment; however, the differences with
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the unstressed plants were significant only for the SWS treatment, amounting to ca. 42%
and 48% of the corresponding controls for T. majus and T. minus, respectively. It is worth
noting that leaf FW was higher in T. minus than in T. majus under all tested conditions. The
same qualitative pattern of variation was also observed for the leaf DW measurements in
both species, although in this case, the differences between mean values were significant
only in T. minus plants (Figure 2F).
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Figure 2. Weight and water content parameters: fresh weight (FW) of roots (A), stems (B), and leaves
(C); dry weight (DW) of roots (D), stems (E) and leaves (F); water content (WC) of roots (G), stems
(H) and leaves (I) in Tropaeolum majus and T. minus plants grown under controlled conditions in the
greenhouse, after 30 days of water stress treatment (CON—control, IWS—intermediate water stress,
SWS—severe water stress). Values shown are means ± SE (n = 6). The same lowercase and uppercase
letters indicate homogeneous groups between treatments for T. majus and for T. minus, respectively,
according to the Tukey test (p ≤ 0.05).

The two species showed high resistance to drought-induced dehydration of the aerial
part of the plants, as stem (Figure 2H) and leaf (Figure 2I) WC did not change in response
to the IWS or SWS treatments. A summary of all growth parameters represented as
variation calculated in percentage in relation to their respective control value is presented
in Supplementary Table S2.

3.2. Effect of Water Stress on Parameters Measured in the Greenhouse with an Optical Sensor

The differences in chlorophyll, flavonols and anthocyanins contents, and the nitrogen
balance index (NBI), measured with a Dualex optical sensor, were analysed at the end of
the water stress treatments (Table 2). No significant differences were observed in T. majus
plants in any of the measured variables when comparing the different treatments. In
T. minus, flavonol contents showed a significant reduction of 36% with respect to the control
plants under severe water stress conditions. The water deficit also caused a progressive
increase in the NBI of 12% (IWS) and 32% (SWS), although only the latter value significantly
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differed from the control. A summary of the optical sensor measurements represented as
variation calculated in percentage in relation to their respective control value is presented
in Supplementary Table S3.

Table 2. Dualex parameters, chlorophyll concentration, leaf epidermal flavonols, anthocyanins
and nitrogen balance index (NBI) as affected by 30 days of water stress treatments (CON—control,
IWS—intermediate water stress, SWS—severe water stress).

Plant name Treatment Chlorophyll
(µg cm–2)

Flavonols
(µg cm–2)

Anthocyanins
(µg cm–2)

Nitrogen Balance
Index (NBI)

T. majus
CON 17.7 ± 1.0 a 0.7 ± 0.0 a 0.3 ± 0.0 a 27.6 ± 0.1 a
IWS 19.5 ± 1.7 a 0.8 ± 0.0 a 0.3 ± 0.0 a 27.5 ± 0.1 a
SWS 18.2 ± 2.0 a 0.7 ± 0.0 a 0.3 ± 0.0 a 28.8 ± 1.0 a

T. minus
CON 20.2 ± 1.0 A 1.1 ± 0.0 B 0.3 ± 0.0 A 19.5 ± 0.1 A
IWS 22.2 ± 2.9 A 1.1 ± 0.0 B 0.3 ± 0.0 A 22.2 ± 0.3 AB
SWS 18.7 ± 1.3 A 0.7 ± 0.0 A 0.3 ± 0.0 A 28.5 ± 0.0 B

Values shown are means ± SE (n = 6). The same lowercase and uppercase letters indicate homogeneous groups
between treatments for T. majus and for T. minus, respectively, according to the Tukey test (p ≤ 0.05).

The parameters quantified in the greenhouse showed only a small variation between
species, but the interactions detected by the two-way ANOVA according to the two factors
(species and treatment) were not significant (Table 3).

Table 3. Two-way ANOVA (F values) considering the effect of Species (S), Treatment (T), and
their interactions (S × T) on Dualex optical sensor measurements [total chlorophyll (Dx Chl tot),
anthocyanins (Dx Ant), nitrogen balance index (NBI), and flavonols (Dx TF)] and on biochemical
parameters [chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids (Caro), proline (PRO), malondi-
aldehyde (MDA), total phenolic compounds (TPC), total flavonoids (TF), total soluble sugars (TSS),
and hydrogen peroxide (H2O2)].

Parameter S T S × T

Dx Chl tot 1.703 ns 0.997 ns 0.243 ns

Dx Ant 1.312 ns 0.393 ns 0.286 ns

NBI 7.024 ** 3.232 ns 1.810 ns

Dx TF 8.117 ** 3.276 ns 1.942 ns

Chl a 19.405 *** 1.269 ns 3.116 ns

Chl b 8.334 ** 0.407 ns 2.168 ns

Caro 24.302 *** 0.526 ns 3.892 *
Pro 7.690 ** 10.089 *** 3.405 *

MDA 0.108 ns 8.585 *** 0.233 ns

TF 6.644 * 1.233 ns 2.134 ns

TPC 6.520 * 1.320 ns 1.124 ns

TSS 5.290 * 0.198 ns 0.396 ns

H2O2 28.512 *** 9.185 *** 6.718 **
*, **, *** significant at p = 0.05, 0.01 and 0.001, respectively; ns: not significant.

3.3. Effect of Water Stress on Biochemical Parameters

Although the concentrations of the biochemical compounds analysed showed gen-
erally significant differences between species, the interaction of the factors Species and
Treatment detected by the two-way ANOVA were significant only for carotenoids, proline
and hydrogen peroxide, indicating a similar trend in the two species’ responses to stress
(Table 3). The concentration of the photosynthetic pigments was measured spectrophoto-
metrically in the sampled leaves (Figure 3). The concentration of chlorophyll a (Figure 3A)
and chlorophyll b (Figure 3B) did not vary significantly in response to water stress in
any of the two analysed species. However, mean chlorophyll values showed opposite
trends, increasing with respect to the control in T. majus, particularly in the IWS treatment,
and decreasing progressively in T. minus. Carotenoid contents showed the same trend as
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chlorophylls in both species, although the reduction observed in T. minus was significant
under SWS conditions (Figure 3C).
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Figure 3. Effect of 30 days of water stress treatment (CON—control, IWS—intermediate water stress,
SWS—severe water stress) on the contents of photosynthetic pigments in T. majus and T. minus leaves.
Chlorophyll a (A), Chlorophyll b (B), and total carotenoids (C). Values shown are means ± SE (n = 6).
The same lowercase and uppercase letters indicate homogeneous groups between treatments for
T. majus and for T. minus, respectively, according to the Tukey test (p ≤ 0.05).

During the water stress period, mean proline (Pro) concentration increased signifi-
cantly in both species in response to the SWS treatment (Figure 4A). Leaf Pro contents were
similar (ca. 2 µmol g−1 DW) in unstressed plants of both species, but the relative increase
over control values was much higher in T. minus, about 4-fold, than in T. majus (1.75-fold).
In any case, even the maximum absolute Pro concentration reached, ~8 µmol g−1 DW, was
too low to have any relevant osmotic effect. On the other hand, no significant stress-induced
changes were observed in total soluble sugars (TSS) contents in any of the two species
(Figure 4B).

Malondialdehyde (MDA) and hydrogen peroxide (H2O2) leaf concentrations in the
Tropaeolum plants were measured to assess the potential drought-induced generation of
secondary oxidative stress (Figure 5). MDA levels increased in parallel to the intensity of
water stress, reaching values significantly higher than the controls under SWS conditions.
The relative rise in MDA contents was more accentuated in T. majus than in T. minus, about
2-fold vs 1.5-fold, respectively, with respect to the non-stressed plants (Figure 5A). On
the other hand, H2O2 contents showed a significant reduction of 54% in T. minus plants
subjected to the SWS treatment, whereas they did not vary in T. majus (Figure 5B).

Significant changes in total phenolic compounds (TPC, Figure 6A) and total flavonoids
(TF, Figure 6B) contents under water deficit conditions were registered only in T. minus
plants. Specifically, compared to the corresponding non-stressed controls, leaf TPC and TF
levels decreased by ca. 30% and 50%, respectively, under severe water stress. In the case of
T. majus plants, no significant variation was observed in any of the treatments (Figure 6). A
summary of all biochemical parameters represented as variation calculated in percentage
in relation to their respective control value is presented in Supplementary Table S4.
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Life 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 5. Effect of 30 days of water stress treatment (CON—control, IWS—intermediate water stress, 
SWS—severe water stress) on leaf concentrations of oxidative stress markers in T. majus and T. minus 
plants. Malondialdehyde (MDA) (A) and hydrogen peroxide (H2O2) (B). Values shown are means ± 
SE (n = 6). The same lowercase and uppercase letters indicate homogeneous groups between treat-
ments for T. majus and for T. minus, respectively, according to the Tukey test (p ≤ 0.05). 

 
Figure 6. Effect of 30 days of water stress treatment (CON—control, IWS—intermediate water stress, 
SWS—severe water stress) on leaf concentrations of total phenolic compounds (TPC) (A) and total 
flavonoids (TF) (B) in T. majus and T. minus plants. Values shown are means ± SE (n = 6). The same 

Figure 5. Effect of 30 days of water stress treatment (CON—control, IWS—intermediate water stress,
SWS—severe water stress) on leaf concentrations of oxidative stress markers in T. majus and T. minus
plants. Malondialdehyde (MDA) (A) and hydrogen peroxide (H2O2) (B). Values shown are means
± SE (n = 6). The same lowercase and uppercase letters indicate homogeneous groups between
treatments for T. majus and for T. minus, respectively, according to the Tukey test (p ≤ 0.05).
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Figure 6. Effect of 30 days of water stress treatment (CON—control, IWS—intermediate water stress,
SWS—severe water stress) on leaf concentrations of total phenolic compounds (TPC) (A) and total
flavonoids (TF) (B) in T. majus and T. minus plants. Values shown are means ± SE (n = 6). The same
lowercase and uppercase letters indicate homogeneous groups between treatments for T. majus and
for T. minus, respectively, according to the Tukey test (p ≤ 0.05).

3.4. Multivariate Analysis of the Results

By analysing the T. majus and T. minus correlation matrices (Figures 7 and 8), we could
determine the magnitude and direction of the linear relationship between the morphological
and biochemical traits. This analysis enabled us to identify the most effective biochemical
markers for characterising and distinguishing the responses to drought stress in these two
closely related species.

In T. majus, the total plant fresh weight exhibited a negative correlation with MDA
content, highlighting that oxidative stress caused a reduction in plant growth. Notably, the
total chlorophyll content showed a negative correlation with the leaf number, suggesting
that reduced leaf production led to higher pigment concentration in the photosynthetic
organs of this species. In addition, the leaf number correlated negatively with stem length,
indicating that the plant may reduce leaf production to minimise water loss through
transpiration while increasing stem length to reach higher or more favourable locations for
light exposure or airflow. These changes can help maintain optimal growth under drought
stress conditions.

In T. minus, the total plant fresh and dry weight negatively correlated with the proline
levels (Figure 8). Indeed, proline was the most accumulated osmoregulatory compound in
this species in response to drought stress. However, its osmoprotective and antioxidant
contribution was insufficient to prevent the generation of reactive oxidative species, as
evidenced by the positive correlation found between proline and MDA. MDA, in turn,
showed a negative correlation with the leaf water content, indicating that oxidative stress
compromised the cellular membranes and their ability to maintain cellular homeostasis.

It is worth noting that in both species, the content of H2O2, a reactive oxygen species
generated in response to a variety of stress conditions, was positively correlated with
pigments (carotenoids and total chlorophyll) contents, flavonoid and phenols, as well as
with the leaf water content.
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Figure 7. Matrix of the Pearson correlation coefficients between the 22 traits measured on T. majus.
The strength of each correlation is represented by a circle above the diagonal, with larger and more
intense circles indicating stronger correlations. Green circles indicate a positive correlation (from
0 to 1), whereas violet circles indicate a negative correlation (from 0 to −1). Significance levels are
denoted by asterisks (*, **, and ***, at p < 0.05, 0.01, and 0.001, respectively). The numerical values of
the correlation coefficients are displayed below the diagonal. Abbreviations: soil water content (soil
WC), Dualex total chlorophyll (Dx Chl tot), Dualex anthocyanins (Dx Ant), Dualex nitrogen balance
index (NBI), Dualex flavonols (Dx TF), stem length (SL), root length (RL), stem diameter (SD), leaf
number (LN), total dry weight (DWtot), total fresh weight (FWtot), root water content (WCr), stem
water content (WCs), leaf water content (WCl), carotenoids (Caro), proline (PRO), malondialdehyde
(MDA), total phenolic compounds (TPC), total flavonoids (TF), total soluble sugars (TSS), hydrogen
peroxide (H2O2), total chlorophyll (Chl tot).
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Figure 8. Matrix of the Pearson correlation coefficients between the 22 traits measured on T. minus.
The strength of each correlation is represented by a circle above the diagonal, with larger and more
intense circles indicating stronger correlations. Green circles indicate a positive correlation (from
0 to 1), whereas violet circles indicate a negative correlation (from 0 to −1). Significance levels are
denoted by asterisks (*, **, and ***, at p < 0.05, 0.01, and 0.001, respectively). The numerical values of
the correlation coefficients are displayed below the diagonal. Abbreviations as in Figure 7.

Several parameters were measured with both the optical sensor and spectrophotome-
try. The measurements of the chlorophyll content performed in the greenhouse with the
Dualex sensor before plant harvest and by spectrophotometry after plant harvest on frozen
leaf tissue showed a significant positive correlation (Figure 9A), with a Pearson correlation
coefficient of 0.5, indicating a moderate positive association between the two sets of mea-
surements. The correlation between the flavonoid content measured with the Dualex sensor
and the spectrophotometer was even stronger, with a correlation index of 0.82 (Figure 9B),
indicating a strong positive correlation between the two measurement methods.
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To obtain an all-encompassing view of the observed data and identify which varia-
bles were the most important in explaining the variation in the gathered data, we per-
formed a principal component analysis (PCA, Figure 10), a statistical technique used to 
reduce the dimensionality of the dataset while retaining as much of the original infor-
mation as possible. The first principal component (PC1), which accounted for 27.5% of the 
total variability, provided a clear separation of the effects of the three treatments (CON, 
IWS and SWS) and allowed for the distinction of their relative impact on the two species. 
The barycenters of T. minus and the control and intermediate salt stress treatments were 
located on the positive side of the X-axis, showing a positive correlation with PC1. On the 
contrary, in T. majus, the severe salt stress treatments had barycenters on the negative side 
of the X-axis, indicating a negative correlation with PC1. This arrangement confirmed that 
T. minus performed better under control and intermediate water stress, whereas T. majus 

Figure 9. Scatterplot between (A) the content of chlorophyll measured with the Dualex sensor and
the spectrophotometer and (B) the content of flavonoids measured with the Dualex sensor and the
spectrophotometer. The green shaded area around each line represents a 95% confidence interval for
the relationship between the variables.

To obtain an all-encompassing view of the observed data and identify which variables
were the most important in explaining the variation in the gathered data, we performed a
principal component analysis (PCA, Figure 10), a statistical technique used to reduce the
dimensionality of the dataset while retaining as much of the original information as possible.
The first principal component (PC1), which accounted for 27.5% of the total variability,
provided a clear separation of the effects of the three treatments (CON, IWS and SWS) and
allowed for the distinction of their relative impact on the two species. The barycenters of
T. minus and the control and intermediate salt stress treatments were located on the positive
side of the X-axis, showing a positive correlation with PC1. On the contrary, in T. majus, the
severe salt stress treatments had barycenters on the negative side of the X-axis, indicating
a negative correlation with PC1. This arrangement confirmed that T. minus performed
better under control and intermediate water stress, whereas T. majus exhibited higher
resistance under severe water stress. The second axis, which explained approximately
18% of the total variation, summarised the distinction between the two species regarding
biochemical compounds. T. minus, with higher levels of proline, flavonoids, and pigments,
was located on the negative side of PC2 along with the barycenters of these biochemical
markers, reflecting their higher content in this species, even in the absence of drought
stress, except for proline. The contribution of the total soluble sugar content was relatively
insignificant, as indicated by its position close to the axis intersection, suggesting an overall
negligible contribution to the plant’s response to drought stress. The root, stem and leaf
water contents also showed minimal contribution in elucidating the data variation and
differentiating the response of the two plant species under examination.
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control (CON), intermediate water stress (IWS), and severe water stress (SWS). The green circles
indicate the two investigated species (T. minus and T. majus), whereas the violet squares display the
22 measured traits. Abbreviations as in Figure 7.

4. Discussion

Water stress in plants first becomes apparent in a reduction in growth due to inter-
ference with numerous physiological and biochemical processes. Drought inhibits the
growth of plants more than any other environmental component by affecting photosynthe-
sis, chlorophyll synthesis, nutrient metabolism, ion uptake and translocation, respiration,
and carbohydrate metabolism [73,74]. Reduced leaf water potential and turgor pressure,
stomatal closure, and reduced cell development and enlargement are the hallmarks of
drought stress in plants [75]. The investigated species showed a general trend of growth
reduction, but not for all analysed parameters. There are numerous reports on the reduc-
tion of stem length, diameter and leaf number under drought due to the inhibition of cell
division, cell expansion, or both [76,77]. However, the two studied species showed only a
non-significant variation in these parameters. Similarly, all traits related to roots (length,
fresh and dry weight) did not differ significantly in the three treatments. On the contrary,
water stress, especially the complete absence of irrigation, strongly affected the dry and
fresh weight of stems and leaves in both species. Compared to control values, the reduction
of the total fresh weight under severe water stress was similar in both species, about 35% in
T. majus and 40% in T. minus. The differences between species were more accentuated when
considering the reduction in total dry weight in the SWS treatment, 30% and over 50%
of the control in T. majus and T. minus, respectively. Therefore, although several growth
parameters varied similarly in both species in response to drought, T. majus is relatively
more tolerant to severe water deficit than T. minus, as dry weight reduction is one of the
most reliable indicators of plants’ susceptibility to water stress [78].

As stated earlier, physiological and biochemical parameters are helpful in screening
for drought tolerance in ornamental plants [10,13,79]. Under severe water deficit, pho-
tosynthetic pigments usually show a decline in concentration [80–84], and maintaining
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their levels constant may indicate drought tolerance [85]. However, depending on the
genotype and the drought stress duration, these compounds’ concentrations may not vary
or even increase under drought [4,86,87]. In the present work, when measuring possible
variations on photosynthetic pigments—chlorophylls and carotenoids—in response to
the water stress treatments, the only significant change detected was the decrease in total
carotenoids contents in T. minus plants subjected to the SWS treatment.

Proline, a “key player” in osmotic regulation, is an excellent indicator of stress, as its
concentration usually increases under osmotic stress [88]. However, a higher concentration
of this compatible solute is not always related to better stress tolerance, as many examples
of comparative studies reported a higher proline accumulation in the most susceptible
genotypes [89,90]. This also seems to be the case in the analysed Tropaeolum species since
T. minus, less drought tolerant than T. majus, showed a higher absolute proline concentration
and a stronger relative increase over control levels in the plants subjected to the SWS
treatment. The multivariate analysis showed a negative correlation of proline with growth
parameters in both species, but its concentrations were too low to be considered essential in
their osmotic adjustment. Therefore, in Tropaeolum (or at least in the two species analysed
in the present work), proline can be considered a suitable marker of water stress but is
probably not directly involved in tolerance mechanisms based on osmotic adjustment
under drought conditions.

Of all other biochemical parameters, MDA also showed a strong negative correlation
with substrate moisture and plant growth parameters. MDA has been long reported as an
ideal marker of lipid peroxidation during oxidative stress [91]. Although MDA reliability as
an oxidative stress biomarker has been recently questioned due to the variability of reported
data [92], numerous examples of significant correlations exist between its concentrations
and the levels of oxidative stress suffered by plants [93,94]. In the two Tropaeolum species,
concentrations of MDA increased gradually with the severity of water stress, reaching the
highest levels in the plants subjected to the SWS treatment.

Another widely used indicator of oxidative stress is H2O2, a moderately reactive
ROS, produced when the superoxide radical (O2

−) is dismutated into O2 and H2O2 [95].
However, in this study, H2O2 concentrations did not vary in T. majus and even decreased
in T. minus but, in both species, its levels were positively correlated with the content of
photosynthetic pigments, flavonoids and phenols, as well as with the leaf water content.
Indeed, H2O2 also acts as a signalling molecule in response to stress, activating various
pathways that lead to the upregulation of antioxidant defences, which help protect the
plant against oxidative damage and to maintain cellular homeostasis. The higher content
of H2O2 may have promoted the accumulation of flavonoids and phenolic compounds; the
antioxidant activity of these metabolites could enhance the protection of the photosynthetic
organ, contributing to the maintenance of the leaf water content and the preservation of the
pigments pool.

As the multivariate analysis highlights, the results indicate similar responses of both
species to drought but a more pronounced susceptibility to severe water stress in T. minus.
The expansion of T. majus as a naturalised or even invasive species may be partially related
to its ability to adapt better to conditions of soil water scarcity. This can be explained by its
more efficient antioxidant system, as reflected by the concentrations of carotenoids, total
phenolics and flavonoids, which did not vary in T. majus but suffered a reduction under
severe water stress treatment in T. minus.

Finally, a practical aspect of this work is that, although values of chlorophyll and
flavonols measured by Dualex and spectrophotometric assays differ, there is a good cor-
relation in the pattern of variation registered by these two methods. Thus, simple and
non-invasive measurements of these compounds by this optical sensor can be trustworthy
in the species analysed.
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5. Conclusions

The responses to water deficit of Tropaeolum majus and T. minus plants, evaluated
by quantifying several growth and biochemical parameters, were similar. However, the
smaller reduction of the total fresh and dry weight of T. majus, indicated its relatively
higher tolerance to severe water stress. Both species behaved similarly under mild water
stress conditions, but the PCA revealed that T. minus performed better under control and
intermediate water stress. Proline and malondialdehyde were identified as the optimal
biomarkers of water stress in the two species. A positive correlation in the concentration of
chlorophylls and flavonoids was found when analysed with the Dualex optical sensor in
the greenhouse or by spectrophotometric assays in the laboratory, proving that Dualex can
be used as a reliable indicator of the pattern of variations of these compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/life13040960/s1, Figure S1: Eigen analysis of PCA; Table S1: Correlation
coefficients between the first two PCs (PC1 and PC2) and the variables included in PCA. Abbrevia-
tions: Carotenoids (Caro), total chlorophyll (Chl tot), total dry weight (DWtot), Dualex anthocyanins
(Dx Ant), Dualex total chlorophyll (Dx Chl tot), Dualex nitrogen balance index (NBI), Dualex flavonols
(Dx TF), total fresh weight (FWtot), hydrogen peroxide (H2O2), leaf number (LN), malondialdehyde
(MDA), proline (PRO), root length (RL), stem diameter (SD), stem length (SL), soil water content (soil
WC), total flavonoids (TF), total phenolic compounds (TPC), total soluble sugars (TSS), leaf water
content (WCl), root water content (WCr), stem water content (WCs), IWS—intermediate water stress,
CON—control, SWS—severe water stress; Table S2: Variation of growth parameters such as stem
length (vSL), root length (vRL), stem diameter (vSD), leaf number (vLN), fresh weight root (vFWr),
dry weight root (vDWr), fresh weight stem (vFWs), dry weight stem (vDWs), fresh weight leaves
(vFWl), dry weight leaves (vDWl), root water content (vWCr), stem water content (vWCs), leaves
water content (vWCl) in intermediate water stress (IWS) and severe water stress (SWS) calculated in
percentage in relation to their respective control (CON) value; Table S3: Variation of dualex optical
sensor measurements such as total chlorophyll (vDx Chl tot), anthocyanins (vDx Ant), nitrogen
balance index (vNBI), flavonols (vDx TF) in intermediate water stress (IWS) and severe water stress
(SWS) calculated in percentage in relation to their respective control (CON) value; Table S4: Variation
of biochemical parameters such as Chlorophyll a (vChl a), Chlorophyll b (vChl b), carotenoids (vCaro),
proline (vPRO), malondialdehyde (vMDA), total phenolic compounds (vTPC), total flavonoids (vTF),
total soluble sugars (vTSS), hydrogen peroxide (vH2O2) in intermediate water stress (IWS) and severe
water stress (SWS) calculated in percentage in relation to their respective control (CON) value.
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