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Abstract: (1) Background: There is growing interest in using insects to treat nutrient-rich organic
wastes, such as the black soldier fly (BSF), one of the most efficient organic waste recyclers for
upcycling nutrients into the food system. Although biochar (BC) was shown to enhance nutrient
retention and the final product quality during the composting of livestock and poultry manure
in many previous studies, little information is available on the effect of BC on livestock manure
bioconversion by black soldier fly larvae (BSFL). (2) Methods: This study investigated the effect of
adding a small amount of BC to chicken manure (CM) on the bioconversion system of the black
soldier fly (including N2O and NH3 emissions and the final distribution of nitrogen during the
treatment process). (3) Results: The lowest N2O and NH3 emission and highest residual nitrogen
in the substrate were observed in the 15% BC treatment. The highest bioconversion rate of CM
(8.31%) and the peak of larval biomass was obtained in the 5% BC treatment. (4) Conclusions: The
results demonstrate the feasibility of adding 5% BC to reduce pollution and achieve a satisfactory
BSFL-based CM bioconversion efficiency.

Keywords: chicken manure; black soldier fly; biochar; ammonia

1. Introduction

With increasing global demand for protein, the poultry industry is expanding rapidly,
leading to the generation of an increasing amount of livestock manure that requires ap-
propriate management. In China, the poultry industry was estimated to have produced
3.16 billion tons of spent litter in 2015 and is increasing at an annual average rate of 2.32%,
which has exceeded the rate of industrial solid waste and become the primary pollution
source [1,2]. However, poultry litter is a valuable resource, rich in essential plant nutrients,
containing 3–5% nitrogen, 0.9–3.5% phosphorus, and 1.5–3% potassium. Moreover, the
calcium, magnesium, and sulfur contents are much higher in poultry litter than in cattle or
pig manure [2,3]. This indicated that improper disposal of livestock waste will not only
lead to the waste of these resources, but also may cause environmental pollution, impacting
soil, water, and air quality, possibly exceeding the buffer capacity of the ecosystem, and
resulting in the spread of pathogens and other risks [3,4].

Recently, insect bioconversion has been widely recognized as a more sustainable,
economically viable, and environmentally friendly solution to livestock and poultry manure
management [5,6]. The black soldier fly (BSF) Hermitia illucens L. (Diptera: Stratiomyidae) is
a promising candidate for treating manure and upcycling it into the food system [7,8]. The
black soldier fly larvae (BSFL) can modify the manure’s physical, chemical, and biological
properties in one or two weeks and efficiently convert livestock manure into larval biomass
and frass, with the former as a feed ingredient in aquaculture and poultry, while the
latter as an organic fertilizer [9–11]. Additionally, BSFL bioconversion of manure can
recycle nutrients, reducing noxious odor, carbon dioxide emission, pathogenic bacteria,
and antibiotics [12,13], leading to its rapid use in reducing environmental contamination
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caused by livestock and poultry manure due to these unique features. Actually, it is being
industrialized globally and is recommended as an efficient way to convert organic waste
in the new century [12,14]. Despite the advantages of higher efficiency, high product-
added value, and lower greenhouse gas (GHG) emissions of BSFL bioconversion versus
conventional composting technology, studies have shown that a large amount of nitrogen is
still lost in the form of ammonia (NH3) and nitrous oxide (N2O) during BSFL bioconversion
of livestock manure [9,15–17]. Additionally, lack of fair exchange of ambient air in the
breeding site could lead to NH3 enrichment, polluting air quality, possibly negatively
affecting larval metabolism, and causing corrosion of rearing equipment [10]. Moreover,
N2O is considered to be the third most important long-lived greenhouse gas after CO2 and
CH4. [18]. Therefore, reducing NH3 and N2O emissions is essential for BSFL-based CM
bioconversion systems.

Biochar (BC) is a carbon-rich material widely used in environmental applications such
as soil remediation, carbon sequestration, and wastewater treatment due to its characteris-
tics, such as large surface area, recalcitrant, and catalysis [19,20]. In recent years, BC has
also been widely used as a composting ameliorator to activate other compost materials
with horticultural and ecological advantages, including microbial biomass [21–23]. In the
study of Yin et al. [24], 10% BC treatment was demonstrated to increase the cellulase and
urease activities by 56% and 96%. Additionally, BC can change the bacterial community
co-occurrence patterns and keystone bacteria and accelerate degradation of carbohydrates
and amino acids [25–27]. Steiner et al. [28] reported that adding 20% BC to poultry lit-
ter compost could achieve faster decomposition, reducing NH3 concentration and total
nitrogen loss by 64% and 52%, respectively.

As reported by Beesigamukama et al. [29], the BC treatment of brewery-spent grain
followed by BSFL rearing could significantly increase larval production and give a 21%
increase in nitrogen retention in frass fertilizer, achieving a 195% increase in the biomass
conversion rate relative to the control. In the study of Qin, Zhang, Hou, Li, Jiang, Chen, Yu,
Tomberlin, Zhang and Li [14], BSFL bioconversion of soybean dregs with BC was shown
to reduce NH3 emission by 18.0% and increase nitrogen in frass by 35.0%, confirming the
feasibility of BC as an amendment for the BSFL-based bioconversion system.

Although BC is commonly used as an amendment in composting to improve aeration
condition and reduce nitrogen loss, whether BC can also provide a favorable growth
environment and reduce the emission of polluting nitrogen gas during the bioconversion
of CM by BSFL is still largely unknown. In order to answer this question, this study
investigated the effects of different dosages of BC addition on the bioconversion of CM by
BSFL and determined the optimal BC addition amount by comprehensively monitoring
BSFL growth, environmental factors, and nitrogen flow directions.

2. Materials and Methods
2.1. Chicken Manure and Biochar

Chicken manure was obtained from the Henan Agricultural University egg breeding
plant (Zhengzhou, Henan, China), with a moisture content of about 75%. Chicken feed
formula was 66% corn, 22% soybean meal, 10% wheat bran, 1% rock flour, and 1% premix.
Biochar (powder) was purchased from Tianjin Zhiyuan Chemical Reagent Co. (Tianjin,
China).

2.2. Insect Sourcing

The black soldier fly was the Wuhan strain, which was reared in the microbiology
laboratory of Henan Agricultural University. After hatching, the larvae were reared on
wheat bran with a moisture content of about 75% for four days under incubation in a plastic
box (18 cm × 32 cm × 26 cm) at a temperature of 27.7 ± 1.8 ◦C.
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2.3. Experimental Design

To construct the BSFL-based bioconversion of CM with different dosages of BC, dosage
of 0% (0 g), 2% (20 g), 5% (20 g), 8% (80 g) and 15% (150 g) (w/w) BC was stirred into 1000 g
of fresh CM in 5 L cylindrical glass bottles (18 cm × 25 cm of diameter × depth) in the
treatments of BC0, BC2, BC5, BC8 and BC15, respectively. Three biological replicates were
performed for each treatment. After that, each container was inoculated with 500 four-day-
old larvae at room temperature for 10 days.

2.4. Analytical Methods

The gas detection was performed as reported by Chen, Hou, Pang, Nowar, Tomberlin,
Hu, Chen, Xie, Zhang, Yu and Li [16]. To detect NH3 emission, the bottle was first sealed.
Next, the gas was continuously collected by a gas sampling pump and injected into a 2%
boric acid absorbent solution, followed by titration with the standard hydrochloric acid.
The gas in the glass bottle was collected in a collection bag, and the N2O concentration in
the sample was measured within 24 h by gas chromatography reported by Parodi, Gerrits,
Van Loon, De Boer, Aarnink, and Van Zanten [9].

The substrate temperature was measured every morning, and the ambient temperature
was recorded simultaneously. The substrate in each replicate was mixed, and 15 g (w/w) of
each substrate sample was collected on day 2, 4, 6, 8, and 10 during the experiment. All
samples were stored at −20 ◦C immediately after collection for subsequent analysis.

As previously reported [30], the inorganic nitrogen (NH4
+ and NO3

−) in each sample
was measured by the potassium chloride solution extraction-spectrophotometric method
(630 nm and 543 nm, respectively). Firstly, each freeze-dried sample (5 g) was mixed into a
2 mol L−1 KCl solution (1:10 w/v ratio) and then detected according to the Chinese national
standard HJ634-2012. Another 5 g (w/w) freeze-dried sample was ground to pass a 1 mm
screen, followed by adding concentrated sulfuric acid and H2O2, and then digestion at
380 ◦C. After digestion, the total Kjeldahl nitrogen (TKN) content was determined in an
automatic TKN tester following the Chinese national standard NY 525–2021.

To determine pH and electrical conductivity (EC), all the samples were thawed and air-
dried at room temperature, followed by grinding each sample to pass a 1 mm screen, adding
each sample (5.00 g) to 50.0 mL of water with carbon dioxide removed, shaking for 3 min,
and standing for 30 min. Finally, each sample’s pH or EC values were measured with a pH
acidity and conductivity meter following the Chinese national standard NY 525–2021 [31].

During BSFL bioconversion, 100 larvae were randomly withdrawn, cleaned, and
weighed daily to calculate the wet weight of individual larvae. After the BSFL bioconver-
sion, the larvae and residues were dried at 105 ◦C and weighed to obtain the dry weight.
To measure the nitrogen content in the larvae, the harvested larvae (10 g for each treatment)
were freeze-dried and then ground into powder [14]. Due to their high-fat content, they
were ground three times with the same mill but without a screen, following the Chinese
national standard GB/T 6432–2018.

2.5. Calculations and Statistical Analysis

The survival performance was calculated by Equation (1):

Survival rate = S2/S1 × 100% (1)

S1 is the total larvae count at the end of the experiment; S2 is the initial total larvae
count. The reduction rate, bioconversion rate, food conversion rate (FCR), and conversion
efficiency of ingested food (ECI) were calculated separately by Equations (2)–(5):

Reduction rate = (m1 − m2 − m3)/m1 × 100% (2)

Bioconversion rate = (m5 − m4)/m1 × 100% (3)
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FCR = (m6 − (m7 − m8))/(m9 − m10) × 100% (4)

ECI = (m5 − m4)/(m1 − m2 − m3) × 100% (5)

where m1 is CM dry weight; m2, the final residue dry weight; m3, BC dry weight; m4, initial
larvae dry weight; m5, final larvae dry weight; m6, CM weight; m7, final residue weight;
m8, BC weight; m9, initial larvae weight; m10, final larvae weight. Because BC is generally
considered a resistant material and cannot be biodigested [32], its weight was removed in
calculating the final residue.

The experimental data were statistically analyzed with Excell 2021 software and
plotted with GraphPad Prism 9.0. One-way analysis of the differences of varied parameters
among multiple samples (more than two) was performed using SPSS 26.0 (SPSS Statistical
IBM) and followed by the post hoc Tukey’s test.

3. Results
3.1. Gaseous Nitrogen Emission

In this study, BC application was shown to inhibit NH3 emission. In Figure 1a, the
highest peak of the NH3 emission rate was seen to decrease with increasing BC concen-
tration (0.19 ± 0.02, 0.19 ± 0.02, 0.14 ± 0.02, 0.15 ± 0.02, 0.13 ± 0.01 g/day from 0% BC
to 15% BC adding dosage, respectively), corresponding to the report of Awasthi et al [33].
Furthermore, the NH3 peak appeared earlier in the higher BC treatments (BC5, BC8, and
BC15) with a 1 d difference from the BC0 treatment (5 d). Accordingly, with the gradual in-
crease in BC ratio, the final cumulative emission of NH3 gradually decreased (1.10 ± 0.05 g,
1.04 ± 0.03 g, 0.85 ± 0.03 g, 0.82 ± 0.03 g, and 0.81 ± 0.03 g, respectively), resulting in a
significant difference in BC5, BC8, and BC15 relative to BC0 (p < 0.05, Figure 1b).
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Figure 1. Changes of ammonia (NH3) (a), cumulative NH3 (b), nitrous oxide (N2O) (c), and cumula-
tive N2O (d) emissions during BSFL bioconversion of chicken manure (CM). Results are presented
as the mean ± the standard deviation (SD) of three replicates, with error bars for SD. Different
lowercase letters indicated significant differences (p < 0.05, post hoc Tukey’s). BC0, BC2, BC5, BC8,
and BC15 indicated the treatments of CM amended with 0%, 2%, 5%, 8%, and 15% biochar (BC)
(w/w), respectively.
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Additionally, the BC-amended BSFL-based CM bioconversion system was also shown
to have a lower N2O emission than the BC-free system. At initial bioconversion, the emis-
sion of N2O showed a similar trend of increasing and decreasing in all the treatments,
reaching the highest emission peaks of N2O on 2 d (Figure 1c). The final cumulative N2O
emission values of the BC5, BC8, and BC15 treatments (0.0148 ± 0.0028, 0.0088 ± 0.0035,
and 0.0069 ± 0.0022 mg, respectively) are significantly lower than the value of BC2 treat-
ment (0.0252 ± 0.0050 mg) (p < 0.05), and very significantly lower than the value of BC0
treatment (0.0493 ± 0.0083 mg) (p < 0.01) (Figure 1d). Taken together, the N2O emission
values are low in all the treatments in the final BSFL-based CM bioconversion system,
less than in the system of pig manure [30] and soybean dregs [14], and comparable to the
bioconversion system of food waste [9].

3.2. Variations of Residual Nitrogen

The variations of the residual nitrogen state were investigated by measuring the
contents of organic nitrogen (Org-N), ammonium nitrogen (NH4

+-N), and nitrate nitrogen
(NO3

−-N). In the BSFL-based CM bioconversion system, with the bioconversion of the
BSFL, the weight of the substrate is decreasing, therefore the dynamic change of the absolute
content of nitrogen in the substrate cannot be calculated. However, the Org-N content
within the substrate can reflect the degradation rate of the substrate. As shown in Figure 2a,
the concentration of Org-N showed a downward trend in all treatments, and finally, in
the treatments of BC5, BC8, and BC15 (10.16 ± 0.42, 10.57 ± 0.73 and 10.89 ± 0.60 g/kg,
respectively) significantly reduced relative to the treatments of BC0 and BC2 (13.37 ± 1.12
and 13.61 ± 0.96 g/kg, respectively). This showed that adding an appropriate dosage of BC
(5% and 8%) could accelerate the decomposition of Org-N in the substrate, while adding a
high dosage of BC (15%) seemed to retain more Org-N in the substrate (Figure 2a).
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Figure 2. Changes of organic nitrogen (Org-N) (a), ammonium nitrogen (NH4
+-N) (b), and nitrate

nitrogen (NO3
−-N) (c) during bioconversion of CM by BSFL. The results are presented as the mean

± the standard deviation (SD) of three replicates, with error bars for SD. DM stands for dry matter
basis. Different lowercase letters showed significant differences (p < 0.05, post hoc Tukey’s). BC0,
BC2, BC5, BC8, and BC15 indicated the treatments of CM amended with 0%, 2%, 5%, 8%, and 15%
biochar (BC) (w/w), respectively.



Life 2023, 13, 938 6 of 15

The NH4
+-N change in the substrate of all the treatments is consistent with NH3

emission; with the rapid decomposition of organic nitrogen in the initial bioconversion
stage, the NH4

+-N content gradually increased, followed by buffering, all reaching the
highest peak on 4 d. The NH4

+-N content in the final substrate was significantly lower
in the BC0 and BC2 treatments (77.10 ± 10.68 and 102.84 ± 12.46 mg/kg DM) than in
the BC5 and BC8 treatments (132.28 ± 4.44 and 141.27 ± 1.63 mg/kg DM) (p < 0.05),
and highly significantly lower than in the treatment of BC15 (206.61 ± 17.38 mg/kg DM)
(p < 0.01) (Figure 2b). This indicated that BC addition to the BSFL-based CM bioconversion
system could accelerate the rapid mineralization and ammoniation of organic matter in
the substrate.

The proteins in CM were reported to break down into ammonium nitrogen by the
BSFL-based bioconversion system in the early stages. Later, nitrification was enhanced in
the substrate, converting NH3 into NO3

− [31,34,35]. Because of nitrification, NO3
−-N was

continually increased during the early bioconversion stage in all the treatments. At the end
of the bioconversion process, the NO3

−-N content was significantly lower in the substrate
from the BC0 and BC2 treatments (3.05 ± 0.40 and 3.45 ± 0.16 g/kg DM, respectively)
than in the substrate from the BC5 treatment (4.25 ± 0.26 g/kg DM) (p < 0.05) and highly
significantly lower than in the substrate from the treatments of BC8 and BC15 (4.68 ± 0.38
and 5.23 ± 0.25 g/kg DM, respectively) (p < 0.01) (Figure 2c). This indicates that the
substrate’s content of NO3

−-N gradually increased with the increase in the BC-adding
dosage in the bioconversion system.

3.3. Physicochemical Profile Changes of Substrate

Temperature is a crucial indicator of the composting process, reflecting the activ-
ity of microorganisms and the degradation of organic matter in the substrate [36]. As
shown in Figure 3a, in the initial bioconversion stage, the intense oxidation reactions medi-
ated by BSFL and indigenous microorganisms rapidly decomposed the abundant organic
biodegradable materials to generate energy, enabling the system at a higher temperature.
Moreover, the BC treatment could increase the temperature in the substrate, especially
the treatments of BC5 and BC8. Furthermore, the temperature change in the conversion
system did not show the typical temperature curve of CM composting, nor did it reach the
temperature of around 45–65 ◦C, the optimum temperature for composting [37], probably
due to the small scale of this experiment and lack of ambient temperature control, resulting
in a significant environmental influence on the temperature in the bioconversion system.

The pH value of the substrate not only affects the growth of BSFL and gas emission
but also indicates the substrate maturity, which is a crucial factor affecting the microbial
activities and population community during the composting process [31,38]. Similar pH
variation trends were observed in all treatments. Specifically, the decomposition of protein-
like organic matter in the system produced a large amount of NH3 nitrogen, thus prompting
an increase in pH in the initial bioconversion stage. Subsequently, due to the formation
and nitrification of low-molecular-weight fats, the pH values increased slowly [31,39].
In Figure 3b, the pH values were seen to vary between 7.0 and 8.5 in all the treatments
during bioconversion, consistent with the adaptation range beneficial to the metabolism
of the microorganisms [40]. In the present study, the final substrate of the BC2, BC5, and
BC8 treatments was generally alkaline (with a pH value of 8.26 ± 0.09, 8.33 ± 0.04 and
8.29 ± 0.06, respectively), which is suitable for the growth of most plants, and significantly
higher than the substrate pH of BC0 and BC15 (with a pH value of 7.94 ± 0.18 and
7.98 ± 0.11, respectively) (p < 0.05). A possible explanation is that the BC-free treatment
(BC0) released a large amount of NH3, resulting in a low pH. For the BC15 treatment, due
to the high concentration of BC, alkaline substances (NH4

+, etc.) in the substrate could not
be desorbed entirely by BC in the detection process. These results indicated that adding
2–8% BC can improve the pH value of the system.
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Figure 3. Changes of temperature (a), pH (b), and electrical conductivity (EC) (c) during bioconver-
sion of CM by BSFL. The results are presented as the mean ± the standard deviation (SD) of three
replicates, with error bars for SD. Different lowercase letters showed significant differences (p < 0.05,
post hoc Tukey’s). BC0, BC2, BC5, BC8, and BC15 indicated the treatments of CM amended with 0%,
2%, 5%, 8%, and 15% biochar (BC) (w/w), respectively.

Figure 3c shows the soluble salt contents of the substrate estimated through EC. EC
can reflect the salinity of the composting product and its suitability for plant growth
and is related to the mineralization of the substrate and the concentration of the mineral
fraction [41]. In the early stage, the EC values of the BC0, BC2, and BC5 treatments
steadily increased. Subsequently, the EC values began to slow down and decreased after
6 d, probably because BSFL and BC adsorbent absorbed the soluble salts generated by
degradation. However, the EC values were continuously reduced in the treatments of
BC8 and BC15 from the start of bioconversion. This indicates that adding BC to CM can
adsorb soluble salt within the substrate, reduce EC, and accelerate the mineralization of
the substrate. At the end of bioconversion, the EC values reached 4.54 ± 1.59, 4.23 ± 0.37,
3.85 ± 0.45, 3.17 ± 0.13, and 3.10 ± 0.43 mS/cm in the treatments of BC0, BC2, BC5, BC8,
and BC15, respectively. Despite no significant differences in final EC values among all the
treatments, the EC values in the treatments of BC5, BC8, and BC15 met the requirements
(EC < 4 mS/cm) for application as tolerable compost products for plants of medium
sensitivity [42,43].

3.4. Bioconversion Performance

The effects of the BC addition to CM on BSFL were investigated by analyzing the
survival rate, single larva wet weight changes, and fresh/dry larval mass. As shown in
Table 1, although the larvae survival rate of the BC treatments was higher than that of the
BC-free treatment, it did not reach a significant level (p > 0.05). This indicated that the
BC treatments did not significantly affect the survival rate of larvae. Figure 4 shows the
changes in the single larva wet weight with time in all the treatments. During the first
6 d, there were only slight differences in single larva wet weight among all the treatments,
followed by the peak on 8 d. The single peak larva wet weight was significantly higher in
the treatments of BC5 and BC8 (178.00 ± 3.00 and 185.67 ± 14.98 mg, respectively) than
in the treatments of BC2 and BC15 (148.67 ± 8.62 and 156.67 ± 14.74 mg, respectively)
(p < 0.05) and extremely significantly higher than in the treatment of BC0 (121.67 ± 5.03 mg)
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(p < 0.01). In addition, the final harvested fresh larval mass was significantly higher in the
treatment of BC5 (77.15 ± 0.58 g) than in the treatment of BC8 (69.21 ± 4.53 g) (p < 0.05) and
very significantly higher than in the treatments of BC15 (63.88 ± 2.42 g) (p < 0.01) and BC0
(52.80 ± 2.26 g) (p < 0.001), ultimately resulting in a significant increase in the dry larval
mass of the BC treatments (Table 1).

Table 1. The survival rate, fresh larval mass, dry larval mass, and nitrogen accumulated in larvae in
different BC treatments at the end of bioconversion.

Treatments Survival Rate
(%)

Fresh Larval
Mass (g)

Dry Larval
Mass (g)

Nitrogen
Accumulated in

Larvae (g/kg)

BC0 91.33 ± 4.62 a 52.80 ± 2.26 d 14.57 ± 0.31 c 68.88 ± 0.64 a
BC2 93.33 ± 6.11 a 71.28 ± 1.70 ab 18.83 ± 0.67 b 64.48 ± 0.33 b
BC5 96.67 ± 3.06 a 77.15 ± 0.58 a 22.97 ± 0.91 a 61.48 ± 1.35 c
BC8 94.67 ± 3.06 a 69.21 ± 4.53 bc 20.37 ± 0.67 b 61.64 ± 0.68 c
BC15 93.33 ± 1.15 a 63.88 ± 2.42 c 19.10 ± 0.75 b 60.88 ± 2.14 c

The results are presented as mean ± standard error (n = 3). Mean values followed by the same small letter in the
same column do not vary significantly (p < 0.05).
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The bioconversion performance was investigated by analyzing the reduction rate, biocon-
version rate, FCR, and ECI in the different treatments (Table 2). The reduction rate in CM was
significantly higher in the treatments of BC5, BC8, and BC15 (59.75 ± 3.63%, 56.93 ± 2.56%,
and 58.04 ± 8.47%, respectively) than in BC0 (BC-free treatment) (43.61 ± 0.64%) (p < 0.05),
with the highest reduction rate for the BC5 treatment. Similarly, the bioconversion rate was
significantly higher in the treatment of BC5 (8.31 ± 0.34%) than in the treatments of BC2,
BC8, and BC15 (7.51 ± 0.48%, 7.37 ± 0.25%, and 6.87 ± 0.30%, respectively) (p < 0.05), and
highly significantly higher than in the treatment of BC0 (5.21 ± 0.12%) (p < 0.01).
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Table 2. Reduction rate, bioconversion rate, FCR (fresh matter basis), and ECI (dry matter basis) in
different BC treatments.

Treatments Reduction Rate
of CM (%)

Bioconversion
Rate (%) FCR (kg) ECI (%)

BC0 43.61 ± 0.64 b 5.21 ± 0.12 c 12.79 ± 0.21 a 11.95 ± 0.41 a
BC2 50.10 ± 2.33 ab 7.51 ± 0.48 b 9.38 ± 0.81 b 13.66 ± 0.97 a
BC5 59.75 ± 3.63 a 8.31 ± 0.34 a 8.71 ± 0.38 b 13.96 ± 1.24 a
BC8 56.93 ± 2.56 a 7.37 ± 0.25 b 9.37 ± 0.69 b 12.98 ± 0.99 a
BC15 58.04 ± 8.47 a 6.87 ± 0.30 b 9.41 ± 0.12 b 12.18 ± 1.05 a

The results are presented as mean ± standard error (n = 3). Mean values followed by the same small letter in the
same column do not vary significantly (p < 0.05).

FCR is the most common measure in animal production systems: the amount of
feed needed (in kg) to obtain one kg of weight increase in the production animal [44]. In
this study, the FCR value was shown to be significantly higher in the treatment of BC0
(12.79 ± 0.21) than in all the BC-addition treatments (9.38 ± 0.81, 8.71 ± 0.38, 9.37 ± 0.69
and 9.41 ± 0.12 from the BC2 to BC15 treatments, respectively) (p > 0.05), with no significant
difference between all the four BC treatments.

Entomologists commonly use ECI to measure feed conversion efficiency on a dry matter
(DM) basis [44], and no significant difference was found in ECI between the five treatments.

3.5. Nitrogen Balance

The total TKN in the final substrate and final larvae was measured to evaluate the
nitrogen balance, and the nitrogen flow was observed. Table 3 shows the nitrogen distribu-
tion, including nitrogen loss, nitrogen in the residue, and nitrogen in larvae. NH3 emission
was shown as the significant pathway of nitrogen loss, accounting for 16.51–25.90% of
total nitrogen in the five treatments. With the increase in the BC-adding dosage, the NH3
emission gradually decreased, and BC15 showed the best performance in reducing NH3-N
loss, from 25.90 ± 0.70% to 16.51 ± 0.92% relative to BC0. Moreover, N2O emission ac-
counted for only <0.01% of total nitrogen in all the five treatments, with the lowest N2O
emission loss for the BC15 treatment. This indicated that BC amendment could effectively
decrease NH3 and N2O emission, and the effectiveness was improved with the increase in
the BC-adding dosage, agreeing with the previous study [2].

Table 3. Nitrogen distribution in terms of nitrogen loss, residual nitrogen, and larval nitrogen.

Treatments
Nitrogen Loss (%) Nitrogen in Residue (%) Nitrogen

in Larvae (%)NH3 N2O Org-N NH4
+-N NO3−-N

BC0 25.90 ± 0.70 a 0.0012 ± 0.0003 a 40.95 ± 2.09 a 0.24 ± 0.03 d 9.33 ± 0.93 d 23.58 ± 1.28 c
BC2 23.50 ± 0.96 ab 0.0006 ± 0.0001 b 38.32 ± 1.38 ab 0.31 ± 0.05 d 10.33 ± 0.96 d 27.53 ± 0.35 b

BC5 21.50 ± 1.46 bc 0.0004 ± 0.0001
bc 27.89 ± 0.46 d 0.45 ± 0.03 c 14.42 ± 1.08 c 35.74 ± 0.20 a

BC8 19.27 ± 0.93 cd 0.0002 ± 0.0001 c 32.23 ± 2.22 c 0.56 ± 0.03 b 18.55 ± 0.95 b 29.39 ± 1.36 b
BC15 16.51 ± 0.92 d 0.0001 ± 0.0000 c 34.70 ± 0.76 bc 0.96 ± 0.05 a 24.24 ± 0.17 a 23.59 ± 0.29 c

The results are presented as mean ± standard error (n = 3). Mean values followed by the same small letter in the
same column do not vary significantly (p < 0.05).

Moreover, a part of the nitrogen in the substrate was bio-converted into the larvae.
After bioconversion, the nitrogen accumulated in the larvae was significantly higher in the
BC0 treatment (68.88 ± 0.64 g/kg) than in the BC2 treatment (64.48 ± 0.33 g/kg) (p < 0.05)
and much significantly higher (p < 0.01) than in the treatments of BC5, BC8, and BC15
(61.48 ± 1.35, 61.64 ± 0.68 and 60.88 ± 2.14 g/kg, respectively) (Table 3). This indicated
that the nitrogen content of BSFL gradually decreased with the increase in the BC-adding
dosage. Despite the highest larval nitrogen accumulation in the BC0 treatment, the BC5
treatment had the highest proportion of larval nitrogen to total nitrogen (35.74 ± 0.20%),
significantly higher (p < 0.05) than that of the BC2 and BC8 treatments (27.53 ± 0.35%
and 29.39 ± 1.36%) and much significantly higher (p < 0.01) than that of the BC0 and
BC15 treatments (23.58 ± 1.28% and 23.59 ± 0.29%) (Table 3). This can be attributed to a
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significantly higher final harvested dry larval mass in the BC treatments than in the BC-free
treatment (Table 1). Additionally, most residual nitrogen was still Org-N, and its proportion
in total nitrogen tended to decrease first and then increase with increasing the BC-adding
dosage. The Org-N content was the lowest in the BC5 treatment (27.89 ± 0.46%), which was
significantly lower (p < 0.05) than that in the treatments of BC8 and BC15 (32.23 ± 2.22% and
34.70 ± 0.76%) and much significantly higher (p < 0.01) than that in the treatments of BC0
and BC2 (40.95 ± 2.09% and 38.32 ± 1.38%). The proportion of Org-N in residues to total
nitrogen showed a significant negative correlation with the proportion of larval nitrogen to
total nitrogen, indicating that the larval nitrogen was only derived from the conversion of
Org-N in CM (Table 3). Moreover, the proportion of NH4

+-N and NO3-N in residues to
total nitrogen also gradually increased with the increase in the BC-adding dosage, with the
highest proportion in the BC15 treatment (0.96 ± 0.05% and 24.24 ± 0.17%, NH4

+-N and
NO3

—N, respectively) and the lowest proportion in the BC0 treatment (0.24 ± 0.03% and
9.33 ± 0.93%, NH4

+-N and NO3-N, respectively) (Table 3). These results indicated that BC
can strongly retain NH4

+ and NO3
− from the substrate.

4. Discussion

Although the use of BSFL for the bioconversion of livestock manure is considered
the most promising treatment method, the nitrogen loss during the conversion process is
enormous. In this study, BC was used for the first time as an amendment for the BSFL-
based CM bioconversion system, and the BC effect on BSFL performance and nitrogen flow
direction during bioconversion was investigated.

In this study, adding an appropriate proportion of BC to CM was found to be able
to accelerate CM degradation, increase the reduction rate and bioconversion rate, reduce
the nitrogen loss (NH3 and N2O), and retain more nitrogen in frass. This can be mainly
attributed to the unique properties of BC, such as greater porosity, functional groups,
water-holding capacity, cation exchange capacity, and micropore properties [45–47].

Firstly, the BC effect on the CM bioconversion system is its adsorption function, which
is related to the large specific surface area and internal pore volume of BC as well as the
presence of various surface acidic functional groups, cation exchange sites, and microp-
ores [21,48,49], enabling the adsorption of NH3 released during the bioconversion process
and a significant reduction in NH3 emission (Figure 1b). Although not considered a GHG,
NH3 is critical for the agricultural value of the final product and ecosystem protection [50],
and its emission is also the primary means for nitrogen loss during aerobic composting
or BSFL-based bioconversion [15,51]. Moreover, the content of NH4

+ in the substrate can
be a direct indicator of rapid mineralization and ammoniation of organic matter during
the compost bio-oxidation stage, reflecting the utilization of nitrogen-containing organic
matter [31,32]. In the early stage of bioconversion, the easily degradable organic matter
content was relatively high, leading to the rapid reproduction of microorganisms, including
ammoniated bacteria, accelerating the decomposition of Org-N and the accumulation of
NH4

+ in the substance (Figure 2a,b) [33,34]. However, the production of acidic groups on
the surface during BC oxidation, especially carboxyl groups, can effectively adsorb NH4

+

(or its precursor’s urea and uric acid) produced in the system to the BC surface, affecting
the NH4

+ and NH3 equilibrium and reducing NH3 emission, allowing more NH4
+ to be

retained in the substrate (Figure 2b) [2,52,53].
Secondly, the BC surface is commonly perceived to have a negative charge and cannot

retain NO3
−. However, the BC-treated substrates showed higher NO3

− content (Figure 2c),
consistent with the results of Kammann et al. [54], and the NO3

− retention by BC is
probably attributed to non-conventional ion-water bonding/non-conventional hydrogen
bonding [55]. Additionally, BC could retain more NH4

+ and NO3
− in the substrate, thus

reducing the pool of inorganic nitrogen available for nitrification and denitrification, leading
to a reduction in N2O emission (Figure 1d) [56,57]. More importantly, the generated N2O
can also be adsorbed on the surface by BC and then reduced to N2 by oxidation [21,48,58].
Moreover, BC could adsorb Org-N compounds from the substrate through π-bonds, thus
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reducing the ability to mineralize Org-N compounds, which may be an indirect mechanism
for the decrease in NH3 emission [21,59,60], and also explains the trend of decreasing
and then increasing for Org-N content (Figure 2a), as well as the trend of increasing and
then decreasing for nitrogen in larvae with increasing the BC-adding dosage in this study
(Table 3).

Thirdly, BC can also adsorb toxins, heavy metals, and drug residues from CM. Specifi-
cally, the toxins can inhibit microbial growth, and heavy metal ions, although not affecting
larval weight, can accumulate in larvae and frass, leading to a decrease in the quality of the
final product and a significant reduction in bacterial diversity in the gut of BSFL [61]. BC
can also adsorb pesticide residues in the substrate that are harmful to BSFL growth, such as
cyromazine, thus improving the survival rate and bioconversion rate of BSFL [62].

Fourthly, BC possess large pores, which could improve the substrate’s physical prop-
erties, enhancing aeration and gas diffusion, and avoiding the formation of anaerobic
microsites [63]. Oxygen content plays a crucial role in the composting process and is a
critical factor in the degradation of organic substrates of mixtures by aerobic microorgan-
isms [64]. BC addition into the mix was observed to enhance the effectiveness of oxygen
supply during the composting process due to its higher porosity and larger specific surface
area [45,64,65]. The increase in the oxygen content in the substrate could enhance the
nitrification process of NH3 to NO3

− since nitrifying bacteria are aerobic microorganisms
and their proliferation could significantly reduce the loss of gaseous NH3 and increase
the NO3

− content, achieving the conservation of nitrogen, despite the release of N2O in
this process [49,66,67]. Moreover, the increased oxygen content could also change the
structure or the activity of the microbial community in the substrate, increasing microbial
diversity and reducing pathogenic bacteria [68,69], accelerating the degradation of organic
matter during the process and decomposing complex biopolymers to more simple organic
compounds (amino acids, small carbohydrates, and phenolic compounds) [21], thus im-
proving the growth environment and the uptake of substrate nutrients by BSFL [24,70].
Additionally, alterations in the microbial structure within the substrate could result in
improved BSFL performance [5,71], and similar results were also observed in substrates
inoculated with functional bacteria [72].

Fifthly, BC can also alter the symbiotic pattern of the bacterial community, especially
promoting key bacterial taxa with a high capacity to degrade carbon sources and increasing
the activities of cellulase, urease, dehydrogenase, and xylanase [24,33]. Additionally, it
was found that adding BC to vermicomposting could increase the enzyme activities of
protease and phosphatase, which promotes the substrate’s rapid decomposition. This may
explain the significantly higher larval unit weight and harvested larval dry weight in the BC
treatments, while there was a lower nitrogen accumulation in larvae in the BC treatments
than in the BC-free treatment because BC promotes the decomposition of carbon sources in
chicken manure (Table 1). This illustrates that BC, as a carbon-rich material, is extremely
stable and does not introduce any additional nutrients to the system due to its ability of
being difficult to be decomposed by microorganisms and used by BSFL, but its addition
can improve the growth environment of BSFL.

Sixthly, BC addition can also enable the acquisition of higher temperatures in the
substrate (Figure 3a), which can be attributed to the ability of BC to reduce heat loss and
enhance aeration, thus increasing the number and activity of microorganisms, accelerating
the bioconversion of the substrate, and causing the generation of more heat [73,74]. The
higher temperatures generated within the matrix may also accelerate the abiotic oxidation
process on the BC surface, enabling more hydrophilic functional groups (e.g., carbonyl
groups, hydroxyl) to be used for microbial decomposition [75].

Finally, BC addition could also raise the pH of the substrate (Figure 3b) due to the
leakage of some soluble alkaline components from BC [73,76]. Although BSFL can adapt to
a wide range of pH values, higher pH values were shown to help accelerate BSFL growth,
as reported by Pang et al. [77]. Moreover, the mobility of ions (e.g., heavy metals) is usually
determined by pH, and the solubility of their toxic metals is reduced in matrices with a
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higher pH, thus reducing their toxicity when used as fertilizers [45]. More importantly,
higher pH usually could increase the conversion of NH4

+ to NH3 [9,10]

5. Conclusions

In this study, we investigated the effect of BC as an ameliorator on the BSFL-based CM
bioconversion system. The results showed that BC could reduce nitrogen loss (NH3 and
N2O) and enhance nitrogen retention in residue, promoting BSFL growth and increasing
the bioconversion rate, which can be attributed to BC’s adsorption function and porous
structure. Additionally, the BC5 treatment showed the best bioconversion performance,
retaining more nitrogen (40.87%) by BSFL, achieving the highest biomass (22.93 g) and
bioconversion rate (8.31%), indicating BC can be used as an ameliorator in the BSFL-based
CM bioconversion system. This study provided useful information on the use of BSFL in
CM bioconversion and laid a technical basis for using CM as the substrate for large-scale
BSFL bioconversion. Future studies can focus on 1© the effects of different types of BC
on the BSFL-based CM bioconversion system; 2© the changes of relevant enzymes in the
bioconversion system of BSFL after adding BC, and their effects on the system; 3© the effects
of BC addition on the microbial community structure in the substrate in the BSFL-based
CM bioconversion system.
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