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Abstract: Wolfiporia extensa (WE) is a medicinal mushroom and an excellent source of naturally
occurring anti-inflammatory substances. However, the particular bioactive compound(s) and mecha-
nism(s) of action against inflammation have yet to be determined. Here, we studied anti-inflammatory
bioactive compounds and their molecular mechanisms through network pharmacology. Methanol
(ME) extract of WE (MEWE) was used for GC-MS analysis to identify the bioactives, which were
screened by following Lipinski’s rules. Public databases were used to extract selected bioactives and
inflammation-related targets, and Venn diagrams exposed the common targets. Then, STRING and
Cytoscape tools were used to construct protein-protein (PPI) network and mushroom-bioactives-
target (M-C-T) networks. Gene Ontology and KEGG pathway analysis were performed by accessing
the DAVID database and molecular docking was conducted to validate the findings. The chemical
reactivity of key compounds and standard drugs was explored by the computational quantum me-
chanical modelling method (DFT study). Results from GC-MS revealed 27 bioactives, and all obeyed
Lipinski’s rules. The public databases uncovered 284 compound-related targets and 7283 inflamma-
tion targets. A Venn diagram pointed to 42 common targets which were manifested in the PPI and
M-C-T networks. KEGG analysis pointed to the HIF-1 signaling pathway and, hence, the suggested
strategy for preventing the onset of inflammatory response was inhibition of downstream NFKB,
MAPK, mTOR, and PI3K-Akt signaling cascades. Molecular docking revealed the strongest binding
affinity for “N-(3-chlorophenyl) naphthyl carboxamide” on five target proteins associated with the
HIF-1 signaling pathway. Compared to the standard drug utilized in the DFT (Density Functional
Theory) analysis, the proposed bioactive showed a good electron donor component and a reduced
chemical hardness energy. Our research pinpoints the therapeutic efficiency of MEWE and this work
suggests a key bioactive compound and its action mechanism against inflammation.

Keywords: Wolfiporia extensa; inflammation; HIF-1 signaling pathway; N-(3 chlorophenyl)
naphthylcarboxamide; network pharmacology

1. Introduction

Inflammation is a crucial component of innate immunity’s protection against infec-
tions or tissue damage brought on by pathogen invasion, non-microbial stimuli, chemical
stimulants, and toxicants, as well as by improper autoimmune reactions [1–3]. It may
be distinguished by the presence of fluid accumulation and active cells, which are often
symptoms of tissue degeneration [4]. Thus, the primary functions of inflammation are
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the elimination of pathogens and cell repair, but effective inflammation resolution and
the restoration of homeostasis are essential for preventing inflammatory disorders [5,6].
Numerous variables, such as a shortage of antioxidants, vitamins, and anti-inflammatory
substances such as zinc and selenium, might contribute to an insufficient inflammatory
resolution. Reactive oxygen species (ROS) are formed during the inflammatory process as
a consequence of the synthesis of cytokines and other pro-inflammatory mediators [7–10].
Hence, nonsteroidal anti-inflammatory drugs (NSAIDs) have been utilized as successful
treatments for inflammatory disorders. However, these medications might cause serious
gastrointestinal toxicity that is linked to thrombus formation, elevated blood pressure, and
congestive heart failure [11–13]. Because of these drawbacks, there is a pressing need for
innovative anti-inflammatory medicines originating from natural sources, notably plants
and mushrooms, that have the ability to decrease the release of inflammatory mediators
while also minimizing adverse side effects.

Mushrooms are valued functional foods used for their culinary values (taste and flavor)
and medicinal (disease prevention) properties [14–17], notably hypocholesterolemic [18]
and antiproliferative [19] effects. Wolfiporia extensa (Peck) Ginns (syn. Poria cocos F.A.Wolf)
is a nutritious pharmaceutical mushroom, traditionally used to treat various ailments such
as inflammation, acute gastroenteric catarrh, chronic gastritis, dizziness, edema, nausea,
nephrosis, and gastric atony [20]. The primary metabolite from W. extensa, “Polysaccharide-
II or 1,6-branched 1,3-alpha-D-galactan”, successfully delayed the production of the IFNγ

activated IP-10 inflammation marker through regulating the expression of the IP-10 gene at
the translational level while assuring human vascular endothelial cell (EC) toxicological
safety, and also showed its efficiency as a new anti-inflammatory agent [21]. In mice, the col-
itis induced by TNBS was successfully alleviated by mitigating pro-inflammatory cytokines
and boosting anti-inflammatory mediators in blood and colon-tissue by employing CMP33
from W. extensa [22]. Exploratory research concerning secondary metabolites revealed
an anti-inflammatory action shown by ethanolic extract of W. extensa sclerotium on paw
edema in acute and chronic stages [23]. Lee et al. deduced that six triterpenoids extracted
from W. extensa sclerotia regulated NO and PGE2 levels in LPS-induced Raw 264.7 cells,
downregulating iNOS and COX-2 expression [24,25]. Despite such evidence of W. extensa’s
anti-inflammatory potential, there is no information on the cellular signaling mechanism
of its therapeutic action or how it might exert anti-inflammatory effects to restore tissue
damage or injury in individuals.

Hopkins first introduced Network Pharmacology in 2007 [26], an integrated drug
discovery endeavor that includes system biology, bioinformatics and multidirectional
pharmacology of the system [27]. This newly emerged process can pinpoint the molecular
system of disease and the pathways of the biochemical framework of drugs at the molecular
level [28,29]. It has changed the research paradigm from the “one target, one medication”
model, to the newly postulated “multiple targets, multi-components” approach, by offering
comprehensive composite target-compound and target-pathway networks to facilitate
rationality and compatibility of medicines [30].

In this study, a comprehensive network pharmacology approach was employed to
explore the potential molecular mechanisms of the bioactive compounds of WE supporting
its anti-inflammatory action. To identify bioactives from WE, gas chromatography and
mass spectroscopy (GC-MS) analyses were conducted. Drug-likeness parameters were ad-
ditionally filtered; the targets related to filtered bioactives and inflammation were acquired
by accessing public databases. Common targets among them were culled, generating a
substantial network to find core targets and bioactives. Gene set enrichment analysis was
employed to unearth the targets linked to the hub signaling pathway, biological process,
cellular component, and molecular function prediction. Finally, the selected targets were
subjected to molecular docking simulation and quantum parameter analysis (DFT—Density
Functional Theory) for extensive affirmation of WE’s chemical reactivity to determine the
most effective anti-inflammation candidate (Scheme 1).
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2. Materials and Methods
2.1. Mushroom Collection, Identification, and Extraction

The mushrooms (Wolfiporia extensa) were collected from (Latitude: 36. 666700, Longi-
tude: 128. 510729, Gyeongsangbuk-do, Republic of Korea) in December 2020. The collected
mushrooms (200 g) were dried at ambient temperature (20–22 ◦C; for 7 days) and ground
into a coarse powder using an automated grinder. The refined powder (30 g) was soaked
in 300 mL of methanol (Daejung, Siheung, Republic of Korea). The extraction (repeated
3 times at room temperature) was carried out in a sealed bottle, with continuous shaking
and stirring (for 5 days) using an electric shaker machine in order to increase the yield rate.
The mixture was filtered (Whatman qualitative filter paper Grade 1) and evaporated using
a vacuum evaporator (IKA, Staufen, Germany). The evaporated sample (MEWE) was dried
using a hot water bath (IKA, Staufen, Germany) at 40 ◦C and preserved in a refrigerator
(−4 ◦C) for GC-MS analysis.

2.2. GC-MS Analysis

MEWE was analyzed by GC-MS technique using the GC-MS system (Agilent 7890A,
5975C Agilent Technologies Inc., Santa Rosa, CA, USA) and a DB-5MS capillary col-
umn (30 m × 0.25 µm × 0.25 mm). The detailed protocol was described in our previous
study [31].

2.3. Bioactive Compounds Filtration

The bioactive compounds (by GC-MS) were detected by the drug-likeness protocol
“Lipinski’s rule of five” to obtain potentially active compounds with a drug-like character.
Each compound was considered in terms of the absorption, distribution, metabolism and
excretion (ADME) framework and the requirement for an oral bioavailability score > 0.50.
Here, the essential pharmacokinetic factor is the oral bioavailability (OB) aspect of the
ADME processes [32]. This analysis was performed through accessing an online tool,
Swiss ADME [33]. SMILES notations for the compounds were obtained from PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 23 December 2021) database.

https://pubchem.ncbi.nlm.nih.gov/


Life 2023, 13, 893 4 of 21

2.4. Extraction of Compound Associated Targets and Inflammatory Targets

Using ‘Homo sapiens’ mode, we compiled the target genes associated with filtered
bioactives by entering their SMILES into the SEA (Similarity Ensemble Approach) (http:
//sea.bkslab.org/, accessed on 7 January 2022) and STP (Swiss Target Prediction) (http:
//www.swisstargetprediction.ch/, accessed on 9 January 2022) databases. In contrast,
inflammation-related genes were gathered accessing DisGeNeT (https://www.disgenet.
org/search, accessed on 18 January 2022) [34], Malacards (https://www.malacards.org/,
accessed on 24 January 2022) [35] and OMIM (https://www.ncbi.nlm.nih.gov/omim,
accessed on 5 February 2022) [36] databases. VENNY 2.1 (https://bioinfogp.cnb.csic.es/
tools/venny/, accessed on 13 February 2022) displayed the common targets among MEWE
bioactives and inflammatory target genes.

2.5. Common Targets Network Construction

To assess possible protein interactions, the common targets were entered into the
String Database (https://string-db.org/, accessed on 25 February 2022) in ‘Homo sapiens’
mode, with a medium confidence level of 0.400. For better visualization, we imported
the network into Cytoscape 3.8.2 software [37], and the whole network was analyzed in
Cytoscape using the CytoHubba plugin and the following three algorithms: Maximal
Clique Centrality (MCC) [38], Maximum Neighborhood Component (MNC), and Degree
value [39]. Formulas are given below:

MCC(v) = ∑C∈S(v) (|C| − 1)! (1)

where S(v) is the set of maximum cliques containing v and (|C| − 1)! is the sum of all
positive integers that are smaller than |C|.

MNC(v) = |V(MC(v))| (2)

where MC(v) is the G[N(v)]’s mostly linked component and G[N(v)] is the G’s induced
subgraph by N(v).

Deg(v) = |N(v)| (3)

where N(v) represents the connections of v’s neighbors, and v is their respective node.

2.6. Mushroom-Bioactives-Targets Network Construction

The bioactive compounds of MEWE, common inflammatory targets, and mushroom
were loaded into Cytoscape 3.8.2 software to generate a graphical representation of the
Mushroom-Compound-Target network. The merging function plugin Cytoscape was used
to create this network. The Network Analyzer was used to evaluate network topology
parameters. Nodes represent bioactives, targets, and mushrooms, and edges indicate their
interaction. The frequency of connective neighbors of a node is referred to as its degree.
The greater the number of linked edges in a node, the greater the impact [40].

2.7. Analysis of GO and KEGG Pathway Involvement within Common Targets

All common targets were submitted to the Annotation, Visualization, and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/tools.jsp, accessed on 10 March 2022) database
for molecular functional annotation and KEGG pathway analysis to uncover their involve-
ment in signal transduction. We chose OFFICIAL GENE SYMBOL as the identifier and
Homo sapiens as the species for this enrichment analysis. In network pharmacology, the
KEGG database has immense significance in illustrating targets involved in a disease’s
molecular mechanism. The GO database depicts the biological descriptors of those tar-
gets, notably, Biological Process (BP), Cellular Component (CC) and Molecular Function
(MF) [41]. A threshold value for GO terms and pathways enrichment was selected as
p-value < 0.05. The FDR error control approach was used to correct the p-value, and the

http://sea.bkslab.org/
http://sea.bkslab.org/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://www.disgenet.org/search
https://www.disgenet.org/search
https://www.malacards.org/
https://www.ncbi.nlm.nih.gov/omim
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
https://david.ncifcrf.gov/tools.jsp


Life 2023, 13, 893 5 of 21

outcome was referred to as the Q value. The bubble plot map of KEGG pathways was
graphically displayed utilizing Origin Pro 2021 to analyze the pathways.

2.8. Preparation of Ligand and Receptor Protein

Preferential ligands revealed from compound-target network research included con-
ventional drugs such as Aspirin and Indomethacin; co-crystallized protein ligands were
acquired in .sdf format using the PubChem chemical library. Furthermore, the metabolites
were processed for molecular docking assays using the LigPrep program included in the
Schrödinger suite-Maestro v12.5, adopting the previously reported techniques [42]. In
addition, 5 receptor proteins of the hub signaling pathways targets with crystal structures
had been selected for accessing in the RCSB Protein Data Bank (https://www.rcsb.org/,
accessed on 19 March 2022) and the UniProt database (https://www.uniprot.org/, accessed
on 19 March 2022), within which each of them have been accessible, i.e., TLR4 (PDB ID:
3UL7), EGFR (PDB: 5WB7), FLT1 (PDB: 3HNG), NOS3 (PDB: 1M9J) and NOS2 (PDB: 1NSI).
The Schrödinger Suite-Maestro v12,5 embedded Protein Preparation Wizard tools have
been configured once the 3D crystal structure have been found from the RCSB database
following our previously described protocols [43,44].

2.9. Molecular Docking Simulation Using Glide

We utilized Glide tools plugged-in Schrödinger Suite-Maestro version 12.5 software
for molecular docking investigations to identify receptor grids’ active site molecules (co-
crystallized ligand site) [42]. During grid preparation, we employed default topological
parameters such as the vdw (van der Waals) scaling factor 1.00, the OPLS3 force field and
charge cut-off value 0.25 for individual 3D protein structures. At the plausible docking site,
a cubic box of specific dimensions was set on kernel active site residues of macromolecules
and the box size was given 14 Å × 14 Å × 14 Å co-ordinates. The docking experiments
were subsequently implemented deploying the standard precision (SP) scoring algorithm
of Glide, with each ligand noted individually in terms of the highest rating posture and
docking score.

2.10. Quantum Chemistry of Frontier Molecular Orbitals

By following the Lee Yang Parr (B3LYP-D3) correlation functional approach at the
6–31G++ (d,p) level basis set, all compounds’ (hub and standard drugs) structural coordi-
nates were thoroughly optimized using Jaguar panel of Maestro 12.5 software [45]. This
optimized geometry also yielded frontier molecular orbital energies of HOMO (highest
occupied molecular orbital) and LUMO (lowest occupied molecular orbital). In order to
compute the HOMO-LUMO gaps of each chemical, LUMO energy was subtracted from
the appropriate HOMO energy value. Depending on the energies of frontier HOMO and
LUMO, the following formulae computed each compound’s hardness (ï) and softness (S)
to hypothesize their chemical reactivity.

ï= (HOMO − LUMO)/2

S = 1/ï

3. Results
3.1. Chemical Composition of MEWE

Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed the presence of
27 bioactives in MEWE (Figure 1). The spectrometric data of identified bioactives, including
RT (Retention Time), area (%), chemical formula and the names of bioactives, are displayed
in Table 1. Several diversified chemical classes including Organooxygen compounds,
Pyrans, Acyl halides, Isothiocyanates, Azolines, Boronic acid derivatives, Carboxylic acids
and derivatives, Fatty acyls, Naphthalenes, Benzene and substituted derivatives, Pyrim-
idine nucleosides, Glycerolipids, Organonitrogen compounds, and Steroids and steroid
derivatives were found in MEWE.

https://www.rcsb.org/
https://www.uniprot.org/
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Table 1. A list of 27 GC-MS-detected chemical components in methanolic extract of W. extensa.

S.N. R.T.
(min)

Area
(%)

PubChem
CID

Chemical
Formula

Bioactives
Class Bioactives Name

1 4.38 0.43 54544338 C5H6N2O2
Organooxygen

compounds N-Cyano-3-oxobutanamide

2 4.43 0.8 580975 C7H10O2
Organooxygen

compounds
1,3-Cyclopentanedione, 2,4-dimethyl- or

2,4-Dimethyl-1,3-cyclopentanedione

3 4.83 1.76 119838 C6H8O4 Pyrans 2,3-Dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one or
3-Hydroxy-2,3-dihydromaltol

4 5.45 4.58 12991 C4H6O Organooxygen
compounds 2-Butyn-1-ol or, 2-Butynol

5 5.68 0.74 643131 C4H5ClO Acyl halides (2E)-2-Butenoyl chloride or 2-Butenoyl chloride

6 5.75 0.82 123411 C4H3NS Isothiocyanates Thiocyanic acid, 2-propynyl ester or Propargyl
isothiocyanate

7 5.99 0.99 76665 C6H10N2O Azolines 3H-Pyrazol-3-one, 2,4-dihydro-4,4,5-trimethyl- or
3,4-Trimethyl-5-pyrazolone

8 6.08 0.68 5362763 C8H14O Organooxygen
compounds 2-Heptenal, 2-methyl- or 2-methyl-2-heptenal

9 6.2 1.96 8102 C6H15N Organooxygen
compounds 1-Hexanamine or Hexylamine

10 6.49 2.41 538272 C8H15BO3
Boronic acid
derivatives

Lactic acid, 2-methyl-, monoanhydride with
1-butaneboronic acid, cyclic ester or

alpha-Hydroxyisobutyric acid cyclic butaneboronate

11 6.87 2.88 11850 C6H14O6
Organooxygen

compounds Galactitol

12 7.08 7.14 5951 C3H7NO3

Carboxylic
acids and

derivatives
L-Serine or Serine

13 7.31 0.8 5366263 C19H38O Organooxygen
compounds Ether, methyl 1-octadecenyl or 1-Methoxy-1-octadecene
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Table 1. Cont.

S.N. R.T.
(min)

Area
(%)

PubChem
CID

Chemical
Formula

Bioactives
Class Bioactives Name

14 7.35 0.41 11005 C14H28O2 Fatty acyls Tetradecanoic acid or Myristic acid

15 7.64 24.3 5780 C6H14O6
Organooxygen

compounds Sorbitol

16 8.74 0.41 554151 C17H34O2 Fatty acyls Pentadecanoic acid, 13-methyl-, methyl ester or
13-Methylpentadecanoic acid methyl ester

17 8.9 1.21 985 C16H32O2 Fatty acyls Hexadecanoic acid or Palmitic acid

18 9.39 1.27 5284421 C19H34O2 Fatty acyls 9,12-Octadecadienoic acid (Z,Z)-, methyl ester or Methyl
linoleate

19 9.57 1.33 5280450 C18H32O2 Fatty acyls 9,12-Octadecadienoic acid (Z,Z)- or, Linoleic acid

20 10.2 1.12 610075 C10H6ClNO2 Naphthalenes Naphthalene, 6-chloro-1-nitro- or
6-Chloro-1-nitronaphthalene

21 10.3 1.07 581332 C15H23Cl2N3

Benzene and
substituted
derivatives

Hexahydropyrazin-1-propylamine,
4-[2-[3,4-dichlorophenyl]ethyl]-

22 11 3.29 5789 C10H14N2O5
Pyrimidine
nucleosides Thymidine

23 12.9 4.96 10850 C27H50O6 Glycerolipids Glycerol tricaprylate or Tricaprylin

24 14.3 6.43 159892 C4H5N3O2
Organonitrogen

compounds
2-Hydroxy-4-hydroxylaminopyrimidine or,

N4-hydroxycytosine

25 15.6 5.75 6432563 C28H44O
Steroids and

steroid
derivatives

Ergosta-5,7,22-trien-3-ol, (3.beta.,22E)- or
(3.beta.)-Ergosta-5,7,22- trien-3-ol

26 16.3 4.24 532200 C17H12ClNO Naphthalenes 1-Naphthalenecarboxamide, N-(3-chlorophenyl)- or
N-(3-chlorophenyl)naphthylcarboxamide

27 16.6 1.8 312796 C28H48O
Steroids and

steroid
derivatives

.alpha.-Ergostenol

Notes: S.N. = Serial number; R.T. = Retention time.

3.2. Bioactive Compounds Filtration

Following Lipinski’s rule, the bioactives which have a molecular weight not more than
500, hydrogen bond acceptor (HBA) not more than 10, hydrogen bond donor (HBD) not
exceeding 5, Moriguchi octanol-water partition coefficient score not exceeding 4.15 and
maintaining a standard ‘Abott Bioavailability Score’ of not more than 0.1 were considered as
biologically active constituents. Following these filtration criteria, all bioactives (27) showed
drug likeliness while not violating more than one of Lipinski’s assertions (Supplementary
File S1: Table S1).

3.3. Common Targets of Bioactives Intersected from SEA and STP Databases

After filtration, bioactives-associated targets were extracted from the SEA and STP
databases. Inputting bioactives-specific SMILES in the respective databases, a total of
608 targets from SEA and 730 targets from STP were gathered after removing duplication
(File S2). Finally, Venn analysis revealed 284 common targets (File S3) between two public
databases (Figure 2A).
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3.4. Identification of Inflammation Targets within Disease Targets and 284 Common Targets

Three public databases, namely, DisGeNET, OMIM, and Malacards, yielded a total of
7283 targets associated with inflammation (File S4). The Venn diagram showed 42 common
targets (File S5) when comparing the inflammatory targets (7283) and 284 bioactives-
related targets (Figure 2B). However, the identified 42 common targets were connected
to 21 out of the 27 bioactives. No targets were found in either database that connected
with the remaining 6 bioactives, namely, 2,4-Dimethyl-1,3-cyclopentanedione; 3-Hydroxy-
2,3-dihydromaltol; 2-Butynol; 2-Butenoyl chloride; alpha-Hydroxyisobutyric acid cyclic
butaneboronate and N4 hydroxycytosine.

3.5. Network Construction of 42 Common Targets

The extracted 42 common targets were added to the STRING database to generate
a PPI network to uncover possible mechanisms of MEWE anti-inflammatory action. The
STRING network analysis indicated that each target in the network was related to the others
via 42 nodes, 177 edges, and an average number of neighbors of 8.429, where network
diameter and radius were 4 and 2, respectively. The Cytoscape network was used to explore
key targets in the network, by means of three algorithms (MCC, MNC and Degree value)
integrated with cytoHUBBA to increase network node precision and accuracy. Interestingly,
TLR4, EGFR, and NOS3 were the top three essential targets in all algorithm-based networks
studied (File S1: Figure S1). Table 2 shows the ranking of each gene present in the network
according to the three algorithms.

Table 2. Classified orders of PPI network of 42 common targets based on different algorithms.

MCC MNC Degree

Rank Genes Score Rank Genes Score Rank Genes Degree

1 TLR4 1298 1 TLR4 18 1 TLR4 18

2 EGFR 1232 1 EGFR 18 2 EGFR 18

3 NOS3 1180 3 NOS3 16 3 NOS3 16

4 PTPRC 1158 3 PTPRC 16 4 PTPRC 16

5 MAPK14 1085 5 F2 15 5 MAPK14 15

6 PPARG 969 6 MAPK14 14 6 F2 15

7 FGF2 920 7 TRPV1 13 7 TRPV1 13

8 JAK2 217 8 FGF2 12 8 FGF2 12

9 NOS2 148 9 ALOX5 11 9 ALOX5 11

10 CNR1 146 10 CNR1 10 10 PPARG 11
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Table 2. Cont.

MCC MNC Degree

Rank Genes Score Rank Genes Score Rank Genes Degree

11 SIRT1 142 10 PPARG 10 11 CNR1 10

12 CNR2 134 10 PTGER4 10 12 PTGER4 10

13 ADORA1 132 10 SIRT1 10 13 SIRT1 10

14 PTGER3 130 14 PTGER3 9 14 PTGER3 9

15 PTGDR2 122 14 PTGES 9 15 PTGES 9

16 NPY5R 121 16 CNR2 8 16 JAK2 9

17 LCK 96 16 NOS2 8 17 CNR2 8

18 PTGER4 84 16 JAK2 8 18 PLA2G4A 8

19 TRPV1 82 16 PLA2G4A 8 19 LTB4R 8

20 F2 72 20 ADORA1 7 20 F2R 8

21 PDGFRB 54 20 HRH1 7 21 NOS2 8

21 ALOX5 54 20 LCK 7 22 ADORA1 7

23 PTGES 38 20 TRPA1 7 23 PTGDR2 7

24 FLT1 36 20 F2R 7 24 LCK 7

25 F2R 33 25 PDGFRB 6 25 TRPA1 7

26 PLA2G4A 32 25 FLT1 6 26 PPARA 7

26 HRH1 32 25 PLAU 6 27 HRH1 7

26 CD38 32 25 CD38 6 28 NPY5R 6

29 LTB4R 30 29 PTGDR2 5 29 CD38 6

30 PTGFR 26 29 NPY5R 5 30 PDGFRB 6

31 PLAU 24 29 PARP1 5 31 FLT1 6

32 TRPA1 16 29 PLAT 5 32 PLAU 6

33 PLAT 14 29 PTGFR 5 33 NR1H4 5

34 PLA2G2A 12 29 PPARA 5 34 PARP1 5

34 PPARA 12 35 NR1H4 4 35 PLAT 5

36 PARP1 10 35 LTB4R 4 36 PTGFR 5

37 NR1H4 7 35 PLA2G2A 4 37 CYP2C19 4

37 CYP2C19 7 38 CYP2C19 3 38 PLA2G2A 4

39 KCNK3 6 38 KCNK3 3 39 FABP1 4

39 KCNK9 6 38 KCNK9 3 40 KCNK3 3

41 FABP1 5 38 FABP1 3 41 KCNK9 3

42 GBA 2 42 GBA 2 42 GBA 2

3.6. Analysis of Mushroom-Compound-Targets Network

The mushroom-compound-targets network was constructed to evaluate the inter-
connection between mushrooms components and common inflammatory targets. The
Network Analyzer applications in Cytoscape ascertained that 100 edges were bound to
64 nodes in the network; 42 nodes were common disease targets, 21 nodes referred to
compounds and one node referred to the mushroom, viz. W.extensa (Figure 3). To detect
key chemicals within the network, compounds that interacted with targets and mushrooms
were assessed based on their relationship with adjacent targets, referred to as the ‘Degree
Value’. Finally, N-(3-chlorophenyl)naphthylcarboxamide was exposed as the most active
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and potent metabolite in the network, which might protect against inflammation [File S1:
Table S2].
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3.7. Gene Ontology (GO) Analysis of 42 Common Targets

Gene ontology (GO) enrichment assessment of potential targets was performed to
elucidate the crucial pharmacological processes as well as to corroborate the biological
features (biological processes, chemical contents and molecular function) of the 42 in-
flammation targets. Here, the first ten functional keywords were picked based on gene
percentages. File S1: Figure S2A demonstrates that the top 10 biological processes (BP) were
the release of sequestered calcium ions into the cytosol, response to lipopolysaccharide,
positive regulation of phosphatidylinositol 3-kinase signaling, negative regulation of blood
pressure, inflammatory response, positive regulation of ERK1 and ERK2 cascade, activation
of MAPKK activity, negative regulation of the apoptotic process, positive regulation of
cell proliferation and positive regulation of cytosolic calcium ion concentration. The top
10 chemical contents (CC) were the integral component of the plasma membrane, plasma
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membrane, membrane raft, cell surface, an intrinsic component of the plasma membrane,
nuclear envelope, extracellular space, caveola, and the extrinsic component of the cyto-
plasmic side of plasma membrane focal adhesion (File S1: Figure S2B). The molecular
function (MF) output also indicated the presence of protein tyrosine kinase activity, enzyme
binding, receptor binding, phosphatidylinositol-4,5-bisphosphate 3-kinase activity, protein
phosphatase binding, drug binding, phosphatidylinositol 3-kinase binding, protein kinase
binding, Ras guanyl-nucleotide exchange factor activity and RNA polymerase II transcrip-
tion factor activity and ligand-activated sequence-specific DNA binding characteristics,
which may contribute to the anti-inflammatory activity of MEWE (File S1: Figure S2C).

3.8. KEGG Pathway Enrichment Analysis of Identified 42 Common Targets

Data in File S1: Table S3 show that 21 of the 42 common targets were actively engaged
in inflammation progression connected to 10 KEGG (Kyoto Encyclopedia of Genes and
Genomes) annotation pathways (filtered at less than 0.05 p-value). In order to undertake
the pathway enrichment analysis, the rich factor and corrected False Discovery Rate (FDR)
value (Q-value) were considered. The rich factor shows the extent of the pathway en-
richment with a significantly lower Q value. Figure 4 elucidates that the HIF-1 signaling
pathway was the most enriched within the selected targets in conformity with prior fil-
tration. Importantly, the Target-Pathway Network in Figure 5 provides intrinsic insight
into targets and the pathway relationships. Details of the core pathway, namely the HIF-1
signaling pathway, are shown in Figure 6.
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3.9. Docking Score Assessment of Key Bioactives and 5 HIF-1 Signaling Pathway Targets

The compound-target network analysis identified “N-(3-chlorophenyl)naphthylcar
boxamide” as the best bioactive component. It was therefore investigated to evaluate its
binding affinity with five targets of the HIF-1 signaling pathway linked to inflammatory
function (Table 3). The co-crystallized ligands of macromolecules were re-docked to assess
complex binding stability energy and compare disease reaction to a typical medication
(Aspirin, Indomethacin) for further validation.

Table 3. Docking score of highly enriched pathway targets of inflammation with key bioactives,
standard medicines and theirs co-crystallized ligands.

Gene PDB ID Bioactives Docking Score
Kcal/mol

TLR4 3UL7 N-(3-chlorophenyl)naphthylcarboxamide −4.027

Aspirin * −4.178

Indomethacin * −4.168

2-acetamido−2-deoxy-beta-D-glucopyranose −4.797

EGFR 5WB7 N-(3-chlorophenyl)naphthylcarboxamide −4.123

Aspirin * −4.182

Indomethacin * −4.707

2-acetamido-2-deoxy-beta-D-glucopyranose −4.205

FLT1 3HNG N-(3-chlorophenyl)naphthylcarboxamide −8.88

Aspirin * −6.794

Indomethacin * −5.538

N-(4-chlorophenyl)-2-[(pyridin-4-
ylmethyl)amino]benzamide −11.044

NOS3 1M9J N-(3-chlorophenyl)naphthylcarboxamide −7.236

Aspirin * −5.262

Indomethacin * −7.451

Chlorzoxazone −6.118

NOS2 1NSI N-(3-chlorophenyl)naphthylcarboxamide −8.85

Aspirin * −6.467

Indomethacin * −7.491

Protoporphyrin Ix Containing Fe −14.755
Notes: * denotes standard medicine.

In terms of docking affinity, N-(3-chlorophenyl)naphthylcarboxamide connecting to
TRP-356, VAL-336, PHE-353, and PRO-334 residues (forming one hydrogen and three hy-
drophobic bonds) of 1M9J exposed a substantial impact on the linkage with NOS3 (PDB ID:
1M9J) (Figure 7A). Compared to conventional medicines such as Aspirin (−5.262 Kcal/mol)
and Indomethacin (−7.451 kcal/mol), the affinity of the interaction complex (bioactive-
NOS3) was −7.236 kcal/mol.

An interface complex of N-(3-chlorophenyl)naphthylcarboxamide with NOS2 (PDB ID:
1NSI) was stabilized by the 2-H bond (CYS-200 and ARG-700) and 10 hydrophobic (TRP-
194, PHE-369, MET-434, TRP-372, and CYS-200) and one pi-sulfur (MET-434) interactions.
This interaction revealed an optimal docking energy of −8.85 kcal/mol as compared to
the reference medicine Aspirin (−6.467 kcal/mol) and Indomethacin (−7.491 kcal/mol)
(Figure 7B).
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The binding between the bioactive and the active site of FLT1 (PDB ID: 3HNG) target
demonstrated −8.88 kcal/mol energy by three H-bonds (ASP-1040, GLU-878, and CYS-
1039), ten hydrophobic bonds (VAL-891, LEU-1013, ILE-1038, VAL-841, ALA-859, LYS-861,
VAL-892, VAL-909, and LEU-882), two electrostatic bonds (LYS-861) and one pi-sulfur
bond (LYS-1039). This energy was substantially lower than for the conventional medicine
Aspirin and Indomethacin, with energy values of −6.794 kcal/mol and −5.538 kcal/mol,
respectively (Figure 7C).

The TLR4 gene (PDB ID: 3UL7) exhibited the comparable binding affinity with the bioac-
tive (−4.027 kcal/mol), through one hydrogen bond of LEU-119 residues, three hydrophobic
bonds of HIS-148, PRO-145, and LEU-119 residues (Figure 7D), which was a contrast to
standard medications Aspirin (−4.178 kcal/mol) and Indomethacin (−4.168 kcal/mol).

In the 5WB7 (EGFR target) scenario, interaction with the bioactive revealed that the
active pocket included one H-bonding with HIS-409 and two H-phobic bondings with PHE-
45 and ARG-29 residues (Figure 7E). The resulted docking score (−4.123 kcal/mol) was
almost parallel to the competitive standards Aspirin (−4.182 kcal/mol) and Indomethacin
(−4.707 kcal/mol). Details of binding information are given in File S1: Table S4.

However, this best bioactive “N-(3-chlorophenyl)naphthylcarboxamide” interaction
with TLR4 and EGFR targets displayed almost equivalent binding affinity relative to its
co-crystallized complex energy. Aside from that, the bioactive complex with FLT1 and
NOS2 showed relatively low docking energy, unlike the respective co-crystallized ligands;
values <−8 kcal/mol indicate significantly identical stability energy for any complex. How-
ever, the complex with the NOS3 target had greater affinity than the co-crystallized ligands.

3.10. DFT Evaluation of Key Compound and Standard Drugs

The DFT (Density Functional Theory) of key compounds and standard drugs was
checked to explore their chemical reactivity with other species or targets. Generally, how a
chemical molecule donates or accept its valence electrons to the ligand can be confirmed
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by the HOMO and LUMO levels. Here, the key bioactive “N-(3-chlorophenyl)naphthyl
carboxamide” showed a considerable HOMO energy (−0.224 Kcal/mol) and appears to
be a good electron donor constituent compared to the standard drugs, Indomethacin and
Aspirin. The stability of a compound depends on the HOMO-LUMO energy gap, and lower
energy is linked to a soft molecule. The key bioactive manifested a lower chemical hardness
energy (0.08255 Kcal/mol) than standard drug Aspirin (File S1: Table S5). Figure 8 displays
the frontier molecular orbitals localization pattern of the ground state (HOMO) and the
first excited state (LUMO) of corresponding compounds.
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4. Discussion

From the pathophysiological point of view, inflammatory disorders are complex, in-
cluding a cascade of events that may result in severe sickness and include several proteins
and pathways. Herbal treatments have long been used as an integral part of standard
medicine practice due to their rich chemical components [46]. However, in most situations,
the pharmacological mechanism of action of traditional medicines is still unknown. Net-
work pharmacology, in this regard, provides a fresh perspective on the search for effective
herbal substances against various diseases [47].

Through utilizing the GC-MS technique, a total of 27 bioactives from MEWE were
screened. Of them, 21 out of 27 bioactives were potentially directly involved in the therapeu-
tic efficiency of MEWE against inflammation. In addition, the compound-target network
exposed 42 inflammatory targets intimately associated with 21 bioactives in the mechanism
of inflammation. Among them, N-(3-chlorophenyl)naphthylcarboxamide was classified
as a core essential bioactive in the network. In addition, the KEGG pathway enrichment
analysis of 42 common targets disclosed that the BP, CC and MF activities interacted with
10 signaling pathways, among which 8 signaling pathways were closely related to the
inflammation process and development. The causality of the 10 signaling pathways in
inflammation are outlined here.

VEGF signaling pathway: VEGF activation induces angiogenesis in rheumatoid arthri-
tis, which increases synovium nutrient flow, leukocyte motility, and cytokine release.
Angiogenic factors make tumors more vascular, leading to a faster spread [48,49]. Platelet
activation pathway: activated platelets produce IL-6, IL-8, IL-1, and TNF- α (insoluble
versions) and regulate pro-inflammatory actions such as phagocytosis, leukocyte migration,
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and ROS generation. These mediators affect vascular inflammation, asthma, atheroscle-
rosis, and rheumatoid arthritis [50]. Regulation of actin cytoskeleton: immunodeficiency
or autoinflammatory diseases are linked to protein scrappiness (actin severing proteins,
nucleation promoting factors, stabilizing protein of actin, de-polymerizing protein of actin
and actin nucleators). These proteins subsequently intertwine with the actin cytoskele-
ton [51]. Ras signaling pathway: Ras activation produces pro-inflammatory cytokines,
contributing to rheumatoid arthritis and vascular inflammation [52]. Pathways in cancer:
intrinsic and extrinsic processes connect cancer with inflammation, activating transcription
factors including NFKB, STAT-3, and HIF-1. These variables cause tumor cell growth.
Thus, tumor-associated inflammation rises, halting immunological defenses [53]. Toxo-
plasmosis: parasite effectors may slow IFN-triggered toxoplasmacidal processes, causing
toxoplasma-induced inflammation. Such effectors affect STAT3/6 (upregulated by ROP16),
NFKB (upregulated by GRA15), and MAPK (induction by ROP38) signaling pathways
that impact cytokine production [54]. PI3K-Akt signaling pathway: cytokine TNF-α in-
duced phosphatidylinositol-3-kinase and its downstream target Akt stimulation lead to
the phosphorylation of IKK, which activates NFKB, and subsequently induces vascular
diseases [55]. HIF-1 signaling pathway: hypoxia-activated NFkB stimulates the synthesis
of pro-inflammatory cytokines and growth factors via HIF signaling pathways, causing
hyperglycemia, cancer, atherosclerosis, and rheumatoid arthritis [56]. Rap1 signaling path-
way: macrophage Rap1 enhanced IKB and p65 phosphorylation, allowing NFkB binding to
DNA kB sites and influencing pro-inflammatory gene transcription. Rap1 in inflammatory
macrophages may promote atherosclerosis [57]. Calcium signaling pathway: channels
in endothelial cells are opened when inflammatory mediators such as vasoactive amines,
peptides, protease thrombin, and eicosanoids interact with receptors on these cells [58].

These 10 signaling pathways were shown to have direct involvement in the initiation of
inflammation. However, there was a much higher enrichment level for the HIF-1 signaling
pathway than for other similar rich factors. Significantly, the largest enrichment occurs
at the highest rich factor [59]. In a mechanistic sense, the hypoxia caused a significant
reduction in the activity of the HIF hydroxylase enzyme. In addition, HIF activation by
TLRs and the EGFR downstream channel stabilized HIF, allowing dimerization with HIF-1
and attachment to p300 co-activators following nucleus accumulation. In addition, hypoxia-
induced downregulation of IKK2 results in phosphorylation and degradation of IkB and
activation of NFkB. The sensitivity of several variables involved in angiogenesis, nitric
oxide synthase, and inflammation is influenced by HIF signaling because of this enriched
and downstream route [60]. Ultimately, “TLR4” controls the synthesis of inflammatory
cytokines via regulating the activation of the NFkB pathway’s RelA/p50 transcription
factor complexes [6]. Consistently activated NFkB perpetuates an invasive phenotype by
upregulating cell cycle regulators, anti-apoptotic, proteolytic factors, and pro-inflammatory
cytokines [53]. The EGFR gene also activates downstream pathways, including the MAPK
and PI3K-Akt signaling pathways that regulate HIF-1 upon hypoxia. Nitric oxide (NO)
production caused by the activation of nitric oxide synthases (NOS2) triggers several pre-
cancerous and malignant lesions, such as Barrett’s mucosa [61]. In addition, the aberrant
expression of the iNOS/eNOS enzymes can induce inflammation-related cardiomyocyte
mortality and protein nitration disorder [62]. The elevated expression of FLT1 may also
pertain to the development of rheumatoid arthritis inflammation [63]. These findings
support the hypothesis that the HIF-1 signaling pathway is associated with inflammatory
illnesses such as rheumatoid arthritis, inflammatory bowel disease, chronic renal disease,
atherosclerosis, and asthma [64]. As a result, inhibiting NFKB activation and HIF-1’s
downstream pathways may be a viable therapeutic strategy for treating inflammation
(Figure 9). Five targets in the HIF-1 signaling pathway were rigorously docked with the
essential molecule discussed here to ascertain the sensitivity of this pathway.
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The docking assay concluded that FLT1, NOS3 and NOS2 demonstrated superior
binding interaction to the key essential component N-(3-chlorophenyl)naphthyl carbox-
amide compared to either reference medicine (Aspirin, Indomethacin). TLR4 and EGFR
transcribed protein’s binding energy and stability were almost identical to Aspirin, In-
domethacin and co-crystallized ligands. Conversely, FLT1 and NOS2 had indistinguishable
compound docking complex stability in response to corresponding co-crystallized docking
affinity, but NOS3 had the best stability. Quantum chemical analysis at the DFT (Density
Functional Theory) level has confirmed the compound’s chemical reactivity. The kinetic sta-
bility and chemical reactivity of a molecule are largely determined by its HOMO and LUMO
energy gaps [65]. The high kinetic stability and low chemical reactivity may be attributed to
a sizable HOMO-LUMO gap which helps to explain the chemical function descriptors like
hardness and softness [66–68]. The softness of a chemical boosts the reactivity and our ex-
plored hub compound “N-(3-chlorophenyl)naphthyl carboxamide” demonstrated a greater
degree of softness energy than Aspirin, suggesting that the compound had strong bind-
ing affinity to the targets. Overall, these findings imply that N-(3-chlorophenyl)naphthyl
carboxamide could block key molecular targets that support inflammatory escalation.

5. Conclusions

In conclusion, we used a computer-assisted network pharmacology prediction to
explore the molecular pathway process by which MEWE can act against inflammation, in
order to learn more about how the HIF-1 signaling pathway and other important pathways
influence inflammation. The docking simulation showed that “N-(3-chlorophenyl)naphthyl
carboxamide” successfully inhibited hypoxia-induced HIF-1α activation through down-
regulation of downstream NFKB, MAPK, mTOR, and PI3K-Akt signaling channels related
to inflammation in the HIF-1 signaling pathway. The low HOMO-LUMO energy gap of
the compound confirmed its robust chemical reactivity behavior with potential targets.
In spite of this, more pharmacodynamic and mechanistic research studies are required in
order to obtain a complete understanding of the intricate synergistic activities that unite
the pharmacological effectiveness of WE on inflammation, as described in this work.
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