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Abstract: Exponential growth in data storage and computational power is rapidly narrowing the gap
between translating findings from advanced clinical informatics into cardiovascular clinical practice.
Specifically, cardiovascular imaging has the distinct advantage in providing a great quantity of data for
potentially rich insights, but nuanced interpretation requires a high-level skillset that few individuals
possess. A subset of machine learning, deep learning (DL), is a modality that has shown promise,
particularly in the areas of image recognition, computer vision, and video classification. Due to a low
signal-to-noise ratio, echocardiographic data tend to be challenging to classify; however, utilization
of robust DL architectures may help clinicians and researchers automate conventional human tasks
and catalyze the extraction of clinically useful data from the petabytes of collected imaging data. The
promise is extending far and beyond towards a contactless echocardiographic exam—a dream that is
much needed in this time of uncertainty and social distancing brought on by a stunning pandemic
culture. In the current review, we discuss state-of-the-art DL techniques and architectures that can be
used for image and video classification, and future directions in echocardiographic research in the
current era.

Keywords: deep learning; artificial intelligence; echocardiography

1. Introduction

Artificial intelligence (AI) has facilitated our capabilities of handling large-scale multi-
faceted data. AI is involved in several scientific and non-scientific fields of life for data
processing, and it has transformed our lives fundamentally in many fields such as image
processing, voice recognition systems, and complex strategy games [1]. In the clinical arena,
AI has the potential to outperform conventional analyses with reduction of cost, cognitive
errors, and the intra- and inter-observer variability. In medicine, AI can help us in two
complementary directions towards a medical and clinical paradigm shift: first, automation
of labor-demanding conventional human tasks; and, second, disease phenotyping and
big data modelling for better personalized risk stratification and newer classification of
disease. Although any medical data are virtually fit for training AI algorithms, and efforts
to apply machine learning (ML) to medical imaging in particular, have shown promise
in computer-assisted diagnosis. Deep learning (DL) is a subset of ML suitable for large
datasets and particularly images by automatically learning and constructing variables
and feature representations of a set of data. DL has paved the path for breakthroughs

Life 2023, 13, 1029. https://doi.org/10.3390/life13041029 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13041029
https://doi.org/10.3390/life13041029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-4515-8090
https://doi.org/10.3390/life13041029
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13041029?type=check_update&version=1


Life 2023, 13, 1029 2 of 20

in the way we handle medical imaging data [2–7]. DL involves more complex levels of
data handling and processing than traditional ML (Figure 1), making it more suitable for
image and video analytics (Table 1). In the heart of medical imaging in cardiovascular
medicine, echocardiography is a uniquely well-suited approach for the application of DL
in cardiology. We have previously shown how data retrieved from echocardiography are
well suited for training DL algorithms in a manner that is not any different from any data
currently used to train DL algorithms in other fields of computer science [8,9].
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Figure 1. Machine learning (ML) as a part of artificial intelligence applications. Artificial intelligence
(AI) is the ability of a computer to perform tasks commonly associated with intelligent beings. ML
is a diverse and rich field of science designed to imitate human capabilities. The types of machine
learning include ML and DL algorithms that can perform tasks in supervised and unsupervised
fashions, and reinforcement learning algorithms can be incorporated to refine model outputs using
reward and punishment systems.

Table 1. Comparison between machine learning and deep learning.

Machine Learning Deep Learning

Description

Automated algorithms that progressively
learn from data feed to make decisions

and build predictive models
ML can undertake tasks such as

classification but it may be better in the
context of a clinical review to avoid any

statement that might be misinterpreted as
implying that it can make decisions that

relate to management

Interpretation of data relationships and
features using multilayered data

processing of neural network systems
inspired from the human brain

Amount of data needed A few thousand A few million

Need for intervention by analyst Need to examine variables within the
data

Not needed as algorithms are
self-directed towards relevant

Overfitting Less likely with suitable amount of data
(usually small amount of data)

More likely given the rarity of big data
composed of millions of points

Outputs Numerical (score, class)
Numerical (score, class) or non-numerical
(various forms including elements, free

text, sound, etc.)
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DL has attracted attention recently in the field of echocardiography and cardiovascular
imaging. The concepts of video classification are well known to researchers in the computer
science field but are relatively new in medicine. Recent studies have examined the appli-
cations of DL in echocardiography, specifically addressing diagnosis and classification in
the assessment of cardiac anatomy [10], diastolic dysfunction [11], left ventricular chamber
size, strain and function, wall thickness [12–16], global and regional function [17], mitral
regurgitation (MR) severity [18], congenital heart disease detection in the fetus [19], and
shunt detection in pediatrics [20], as well as automatic detection of myocardial speckle
patterns [21], among others. In addition, studies have examined the applications of DL
in echocardiography in the pediatric population [22,23] and congenital heart disease [24].
Most importantly, recent studies have demonstrated that DL could be used in echo-assisted
advanced heart failure intervention (e.g., real-time detection of aortic valve opening in
LVAD patients, and post-operative right ventricular failure) [25,26]. However, the terms
used in the field of computer science, namely ‘pattern recognition’, ‘computer vision’,
‘video classification’, ‘YOLO algorithm’, ‘supervised and unsupervised learning’, ‘artificial
neuron’, ‘layer’, ‘pooling’, and ‘convolution’, are still foreign for most clinicians. The aims
of the current review are twofold: firstly, to introduce the basic concepts of DL and to
explain its relevance to echocardiographic imaging. Secondly, to provide examples of
DL applications in the echocardiographic laboratory for clinicians and scientists. In the
post-pandemic era and the next emerging pandemic, we explore the promise DL holds for
the future of the echocardiographic laboratory where contactless echocardiographic exams
are becoming more and more necessary.

2. Core Fundamental Concepts of DL

DL, as a subdivision of ML, uses layered structure algorithms inspired from the human
brain called neural networks [27]. Briefly, neural networks consists of a series of layers of
nodes and edges representing data entering and the complex interactions between them.
Layers of nodes within a neural network are not physical structures but successive steps in
an analytical algorithm. Neural networks are trained by identifying patterns in the input
dataset to produce useful predictions in the output layer. During the training process,
certain patterns are attempted to be captured from input data and the other hidden layers
before reaching output. The parameters are progressively tuned via a loss function in
each hidden layer until the process results in as good predictions as possible. Once a
model is trained it then is subsequently used to make predictions on new, unseen data. An
artificial neural network (ANN) as a concept has led to tweaks of newer algorithms that
have leveraged the field of DL in image processing and video classification (Table 2), and
variants and combinations of these algorithms (hybrid models) are occasionally used to
establish refined results [28,29].

In the process of introducing clinicians to DL to facilitate the usability of these re-
sources in medicine, one should be familiar with terms and frameworks commonly used in
computer science. In this section we aim to introduce a simplified framework of the core
concepts used in the field of DL and take the reader on a journey from defining the building
blocks of an algorithm all the way towards the complete model and the processing codes
that are used to handle data. This section is not intended to be an exhaustive explanation
of these concepts but rather just an oversimplified introduction intended for clinicians to
break the illiteracy.
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Table 2. Basic deep learning algorithms, their optimal tasks, and their application in echocardiography.

Algorithm Description Optimal Task(s) Examples in Echo

MLP

- Supervised classifications
- Unit for other algorithms
- Input and output vectors are

not the same

Binary Classification Assessing the presence of
diastolic dysfunction

AE
- Unsupervised classifications
- Feed forward only (no memory loops)
- Input and output vectors are the same

Feature learning

- LV segmentation
- LV end-systolic/diastolic

volumes and EF
- myocardial speckle patterns

CNN

- MLPs with convolutional layers
- Feed forward only (no memory loops)
- Most commonly used in clinical

research
- Transfer learning: output of one model

can be applied to similar conditions

Spatial detail data recognition

Differentiation between normal
and abnormal myocardial
patterns (e.g., pathological and
physiological hypertrophy)

RNN

- MLPs with memory loops
- Memory loops (can loop data forward

and backward compared with
forward-only CNN)

Sequence classification
Automatic characterization of
cardiac cycle phases in
echocardiographic images

Hybrid
models

Combinations of different DL algorithms
used to refine results compared with single
algorithms

Assessment of chamber size, wall
thickness, regional LV function,
and RV systolic pressure

2.1. What Are the Components of a DL Model?

DL models are composed of two main building elements: neurons and layers. The
most basic structure in DL (the unit) is the artificial neuron. Artificial neurons usually
have several incoming and outgoing connections. The term ‘artificial neuron’ implies an
anatomical and functional similarity to neurons in biology in the way they process new
information and generate outputs (Figure 2).
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Figure 2. The basic structure of ‘artificial neurons’. The ‘artificial neuron’ (units, right panel) is similar
in structure to the neuron in neurobiology in that it can receive input information, process it, and
forward it as output information for further processing.

Neurons, as the most basic building units, are then organized and rearranged in form-
ing layers of neurons. A layer within DL is the unit container that receives weighted input
and transforms it into an output, which is usually passed to the next layer. Neurons within
each layer are uniformly processed in terms of activation function, pooling, convolution,
etc. (Figure 3). The most basic DL algorithm consists of three layers of neurons: one initial
layer (input layer) composed of neurons carrying raw data variables, and one middle layer
(hidden layer) that is composed of neurons whose function is to process the incoming data
and pass them to the final layer (output layer), which contains the final data and reduced
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variables that represent the final model output. Most importantly, the middle “hidden”
part of the algorithm can be composed of one or more layers based on the sophistication of
the model and the nature of the data, and, as the name implies, hidden layers are much
less interpretable, unlike the input and output layers.
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Figure 3. Deep learning layers. A layer is the building block in DL and is composed of neurons that
receive weighted input and transform it into an output, which is usually passed to the next layer.
In each layer, several processing functions and filters can be applied; however, each layer should
be uniform in terms of these functions (e.g., pooling and convolution). The first layer of a model is
called the input layer, and the last layer is called the output layer, and all layers in between are called
hidden layers (the processing layers).

In summary, a layer is the building block in DL and is composed of multiple neurons
being processed uniformly in each layer. The basic DL model is composed of three layers
(Figure 3): the first layer of a model is called the input layer, the last layer is called the
output layer, and all layers in between are called hidden layers (the processing layers)
where tasks are performed on the incoming data and passed to the next layer.

2.2. How Are the Data Processed from Layer to Layer?

There are several stages of processing once the data are fed into the algorithm. These
stages range from simple mathematical tasks, such as calculating weights and biases, to
handling the direction of processing (forward and backward), untwining several aspects
in the complicated raw data such as medical images (convolution), allowing for separate
processing of each element, and potentially reducing these elements to the most important
ones (pooling). Here we provide simple explanations on each of these aspects of the DL
algorithm processing journey.

Weight, bias, and activation functions: the mathematical journey of information within
and between units of neural networks from input to output includes calculation of weight
and bias, and application of activation functions. If a unit has more than one input, a
“weight” that represents the importance of each of these inputs for the neuron is assigned.
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These weights are updated as the model learns the data until, finally, a higher weight is
assigned to inputs that are more important compared with the ones that are considered less
important. The result of all weights is then multiplied by the input, and then another linear
function called “bias” is added to change the range of weights to produce the final linear
outcome. Finally, a non-linear function is added to the final component by applying the
“activation function”. Activation functions from a sigmoid function (generates a smooth
output between 0 and 1 suitable for binary data) [30] and rectifies linear units (ReLU) [31]
to Softmax for output prediction (similar to sigmoid function but it is more suitable for
multinomial classification problems) [32]. In general, modern approaches use a main
function choice for the entire neural network. Now, there are several purposed robust
activation functions, but ReLU appears to be the most commonly used [33,34].

Forward and backward propagation: as the name implies, in forward propagation (or
forward feed) the information travels in a single direction, that is from the input layer
through the hidden layers to the output layer, until a final output is generated without
any backward movement through the model. In backward propagation, the output of
a specific layer can be back fed to the same or previous layers after calculation of error
to update the weights of the network and reduce the error. In addition, backward feed
can be used to study temporal events, a property that makes it suitable for assessment of
echocardiographic videos, and the events and values, which significantly vary with time.

Convolution: convolution (i.e., building up complex features that can be derived via
sliding across kernels—very good for edge detection) is one of the most important concepts
in DL and a major differentiator from traditional ML algorithms. Simply, the concept of
convolution deals with mixed information of different significance and meaning within
the same dataset. For example, convolutional methods are commonly used to untwine
different elements of an image for purposes of model learning. Convolution is used heavily
in the fields of physics and engineering to simplify complex equations. In the field of
imaging, convolution can be used to separate elements of the image or to identify dis-
tracting information in images. For example, in an echocardiographic image, convolution
can identify and avoid artifacts during the training process of a DL model (Figure 4A).
There is a multitude of complex mathematical methods available for convolution, and
it remains unknown which interpretation of convolution fits best for DL. However, the
cross-correlation interpretation method is considered currently the most useful method.
The simple matrix is a digital representation of the pattern for detection of a specific feature.
The output of the simple matrix is the altered image, which is often called a feature map.
There will be one feature map for each element in the image. This process can be done by
patching the image and panning this patch throughout the image until further processing
is not possible.

Pooling: pooling is a DL function that is interpolated between convolution layers
with the purpose of reducing the amount of data being processed, preventing overfitting,
and focusing on desired variables. There are several types of pooling; however, the most
commonly used one is called ‘max pooling’. For example, if a 4 × 4 kernel matrix was
derived from a source image, pooling would simply divide the 4 × 4 matrix into four
2 × 2 matrices and then take the largest number in each of these 2 × 2 matrices to produce
a final 2 × 2 matrix with the largest numbers only. As the result, the output image would
be smaller and would carry only the largest numbers from that specific piece within the
image (Figure 4B).
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Figure 4. Convolution and pooling. (A) Convolution can separate intertwined information within
the echocardiographic images by producing matrix kernels with specific features within the image.
With repetition and model learning, the model can differentiate and separate several features within
the image. For example, the kernels can distinguish left ventricular wall, cavity, and artifacts.
(B) Pooling is a function that can be introduced in DL layers to reduce the processed data and
prevent overfitting. Max pooling is a common type of pooling that reduces the convolution kernels to
2 × 2 matrices that contain the largest values in each part of the kernel. As a result, the output image
is smaller and carries only the largest numbers from that specific piece within the image.

2.3. Examples of DL Models and Their Usability for Echocardiography

In echocardiography, examples of applications of MLPs include presence and severity
of diastolic dysfunction (present or absent, and grade I, II, and III), estimation of left
ventricular ejection fraction (preserved or reduced), and wall motion score index. More
importantly, an MLP can be used as a unit for building more sophisticated DL algorithms.

Another popular DL algorithm is an autoencoder (AE). An AE is an unsupervised
neural network that can reduce data dimensions by removing the noise in the data. The
structure of the AE is based on MLP design (input, output, and hidden layers that function
in a feedforward fashion); however, the AE generates an output that is as close as possible
to its original input in an unsupervised manner. As such, the AE is suitable for feature
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learning, dimension reduction, and outlier detection. In echocardiography, an AE can be
used for identification of LV end-systolic/diastolic frames in a moving echocardiographic
video. It can also be used to identify myocardial speckle patterns. An AE can be also
used with CNN and RNN (described below) in a hybrid model [35]. In one study, an AE
was used for left ventricular segmentation, identification of end-systolic and end-diastolic
volumes, and ejection fraction calculation based on 3D echocardiographic images [36].

The most popular DL algorithm in clinical research is the convolutional neural network
(CNN, Figure 5), which is also an MLP design; however, the CNN represents an enhanced
extension of an MLP achieved by inserting convolution layers at the level of the hidden
layers. Such a design makes a CNN suitable for recognition of spatial data within the
image [37,38]. A CNN can use spatial and anatomical echocardiographic data inputs to
differentiate normal from abnormal patterns found in myocardial conditions that can be
visually perceived similar, such as pathological and physiological LV hypertrophy. A
pre-trained model is a model trained from one dataset followed by use of the parameters
from this model to train another model on a different dataset. The pre-trained model can
be applied for differentiation of other conditions (such as hypertrophic cardiomyopathy,
infiltrative cardiomyopathy, or hypertensive heart disease) without the need to build a new
model from scratch [39]. This method is an example of “transfer learning” [40]. However,
transfer learning ultimately requires some degree of retraining or fine-tuning. Hybrid
models composed of CNN architectures combined with other DL algorithms may be needed
to capture spatial and acoustic information effectively within echocardiographic images,
and, more importantly, to model temporal dynamics [41]. Recent studies used a modified
CNN model to detect of wall motion abnormalities in both 2D and 3D images [42,43].

Madani et al. [44] utilized CNN architecture to classify 15 echocardiographic views,
and found that DL can recognize these views with high accuracy (91.7%) compared with
board-certified echocardiographers (70.2–84.0% accuracy). Zhang et al. [45] utilized CNN
architecture to diagnose several cardiac conditions (i.e., hypertrophic cardiomyopathy, car-
diac amyloidosis, and pulmonary arterial hypertension) using different echocardiographic
views, and reported high c-statistics (0.85–0.93). Gao et al. [46] used CNN architecture
for video classification of echocardiographic images that yielded classification accuracy
up to 92.1%. Despite the impressive results, there are issues due to data and population
differences. Strain analysis in echocardiography can be challenging [16]. Wang et al. used
DL to perform strain analysis and found no significant difference relative to the traditional
method in GLS measurement, but, even if a good performance was reached, the approach
presented some limitations (e.g., most supervised methods heavily relied on large-scale
synthetic datasets) [15]. Instead, Grenne et al. tried to overcome such limitations using
custom-built DL-based ANNs specifically trained for motion estimation as an alternative
to traditional speckle-tracking-based measures of strain. They found that, without any
operator input, AI could perform motion estimation and measure GLS [14].

Recurrent neural networks (RNNs) represent another example of DL algorithms that
have been used for sequence classification and video classification [47–49]. RNNs are
unique compared with previously described algorithms since they have recurrent memory
loops that can continuously process time series data, which allows sequencing inputs and
events, while time series data may be difficult to process by MLP, AE, and CNN. This makes
an RNN a suitable algorithm for analyzing temporal events within the echocardiographic
images. In one study, a DL framework of RNNs was used for automatic characterization of
cardiac cycle phases in echocardiographic images [50]. In another study, Abdi et al. [51]
proposed a DL framework using RNNs to estimate the quality of echo cine videos from five
different views and to provide feedback to the user in real time, with an average accuracy
of 85%. The quality of the cine loop in the study was estimated from echo videos without
pre-labeling [51]. Pandey et al. used a DeepNN classifier to assess diastolic dysfunction
in patients with HFpEF who had elevated left ventricular filling pressures; however, even
if good performance was reached, the authors did not perform external validation [52].
Instead, Tromp et al. tried to overcome such limitations using DL to assess diastolic function
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parameters. Most importantly, they performed external validation from different countries
and healthcare systems, suggestive of generalizability [11].

Figure 5. Convolutional neural networks (CNNs). (A) CNN algorithms are a feed forward neural
network architecture, which is considered a significantly enhanced extension of an MLP, accomplished
by inserting convolution layers. (B) An example of the application of a deep neural network in
echocardiography, highlighting image processing to identify hypertrophic cardiomyopathy (HOCM)
and differentiate it from normal.

Neural networks still need validation cohorts to calibrate the results, and clinical trials
are needed before implementing in routine clinical practice. A generative adversarial net-
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work (GAN) is a particularly interesting application used for what is known as generative
modeling. Generative modeling involves using a model to generate new examples from
an existing distribution of samples. To achieve that, the model is trained using two neural
network models, namely the “generator” and the “discriminator”. The generative network
model learns to generate new plausible samples while the discriminative network model
learns to differentiate generated examples from real examples. Both models continuously
compete against each other in a process where the generator model seeks ‘to fool’ the
discriminator. GANs have been used to generate photographs of non-existing human faces,
to predict face aging, and to predict incidents and actions in videos. In echocardiography,
GANs can help mitigate important problems of ultrasound images such as ultrasound
dropouts and low-quality images. GANs can be also used for better and more realistic
visualization in 3D echocardiography.

3. Supervised, Unsupervised, and Reinforced Deep Learning as Echocardiographic Solutions

Both DL and ML involve extraction of complex patterns within large datasets in su-
pervised or unsupervised fashions [1]. In supervised learning, algorithms learn directly
from large quantities of pre-labeled examples, i.e., the values of the output variable are
known [8]. In the field of echocardiography, supervised algorithms have been used in 2D
echocardiography to classify patterns of LV hypertrophy (physiological versus pathological
hypertrophy) [44,53] and to identify constrictive pericarditis vs. restrictive cardiomyopa-
thy [54]. Supervised algorithms have also been used for development of automatic systems
for echocardiographic view classification [55–57], pediatric echocardiography classifica-
tion [58], wall motion analysis [59], mitral valve leaflet segmentation [60], valvular heart
disease classification [61], and ventricular function assessment [62].

Unsupervised learning, on the other hand, derives patterns from unlabeled data, i.e.,
the values of the output variable are not known. A common example of unsupervised
learning is cluster analysis, where a dataset, without a priori knowledge of its true labels, is
partitioned into clusters of ‘similar’ objects. Cluster analysis in medicine is a promising
tool for mapping disease phenotypes (phenomapping) [63,64]. Unsupervised algorithms
have also been introduced in echocardiographic research for discovering new disease sub-
classes [65]. Cluster analysis, or phenomapping, has been used to identify new groupings
in several conditions such as coronary artery disease [65], left ventricular hypertrophy [66],
acute heart failure [67], diabetes treatment [68], HfpEF [69], obesity [70], hypertension [71],
and obstructive sleep apnea [72]. Recently, we have used cluster analyses for the diag-
nosis and characterization of subclasses of diastolic dysfunction from conventional and
deformational echocardiographic variables (Figure 6) [73].

Reinforcement learning is another concept that can also be used in AI. In human
psychology, learning by reinforcement focuses on promoting specific behaviors using re-
ward (positive reinforcement) and punishment (negative reinforcement). In reinforced
learning, software programs can act in a pre-specified environment to identify an ap-
propriate behavior using “reward criteria” to influence the outcome of DL or ML mod-
els [27,74]. Based on decisions, these algorithms are penalized or rewarded, and by doing
so they can maximize the accuracy of a model using trial and error. As such, reinforce-
ment learning algorithms perform progressively better with training in ambiguous, real-
life environments when choosing from an arbitrary number of possible actions, making
them potentially fit for several clinical problems, including complex clinical imaging
data. However, to date, reinforcement learning algorithms have not had much success in
echocardiographic research.
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Figure 6. Supervised and unsupervised machine learning. (A,B) Supervised learning: (A) the com-
puter is presented with pre-labeled data, and (B) the machine uses the a priori classification to separate
the data so that they can be applied to unseen data without human interaction. (C,D) Unsupervised
learning: (C) the computer is presented with unlabeled data and analyses the intrinsic structure and
finds patterns used for re-grouping and reclassification, and (D) example of unsupervised clustering
of patients using several conventional and deformational variables yielding three different clusters
with distinct diastolic and LV functional properties.
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4. Computer Vision and Video Classification

Computer vision operationalizes machines to recognize and analyze still images and
videos. Recent advances in DL and computational capabilities have improved software
abilities in video classification problems [75].

Video is an interesting classification problem because it includes both spatial (each
frame holds important information) and temporal (the context of a frame relative to the
frames before it in time) features. There are two main research areas on the comprehen-
sion of videos: video classification and video captioning. Video classification focuses on
automatically labeling videos based on a collection of frames [76]. Basically, the algorithms
dissect and classify video contents frame by frame as images and connect them together [77].
Video captioning generates short descriptions for videos and captures dynamic information
such as human actions and car trajectories [78]. Unlike image classification, video classifica-
tion has sequential frame input. The basic elements of echocardiographic data are similar to
any ordinary video, making the application of video classification and captioning possible.
In echocardiographic language, video classification and captioning are responsible for
identification and labeling of different structures in motion (with time as a parameter) and
their outlines within the image in different frames (e.g., the left ventricle and the left atrium,
endocardial borders, etc.), as well as capturing different geometrical and deformational
properties of these dynamic structures (e.g., the LV in relation to other structures as it
contracts and relaxes).

Echocardiographic videos pose a simpler learning problem relative to many other
video classification tasks because all structures are the same within subsequent frames.
To simplify this further, one can imagine a video that captures moving people on the
street. With changing frames, the existing people continue to change and the positional
relationship of each person to others is also continuously changing. If the recording camera
position is also dynamic, the structures around the moving people, like buildings, street
signs, traffic lights, etc., also change. Such layered and complex changes within the video
makes predictions of subsequent events extremely difficult. In an echocardiographic video,
however, the same structures continue to exist with fixed anatomical relationships and
have repeated dynamic movements throughout fixed recorded frames in fixed time frames,
and, as such, are predictable throughout the recorded video.

5. The Promised Future of the Echocardiographic Laboratory Is (Somewhat) Already Here

Hypothetically, DL algorithms that can replace almost all ordinary tasks preformed
in an echocardiographic laboratory already exist (Figure 7). The frontier has already been
pushed for echocardiographic view recognition and echocardiographic variable quantifi-
cation. For example, a DL-based algorithm that provides fully automated clip selection
and calculation of the LV ejection fraction has been developed and validated. Recent
studies have even tested the use of DL for complete automated interpretation of echocar-
diographic images [79,79,80]. Such a big step paves the way for other algorithms in equally
needed, yet more debatable and variable areas of, echocardiographic interpretation that
have long been dependent on subjective methods such as assessment of regional myocardial
function and calculation of the wall motion score index at rest and at peak exercise. Auto-
matic speckle tracking algorithms can also help to calculate differential strain measures,
which is a task requiring high levels of human training and expertise both in acquisition
and interpretation.
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Figure 7. Ability of machine learning and deep learning to preform ordinary tasks of the echocardio-
graphy laboratory. Deep learning algorithms promise a great relief in preforming everyday ordinary
tasks in an echocardiography laboratory, from image acquisition to diagnostic output. First, DL
algorithms can be used to assist the use of handheld machines as well as the upcoming robotic ultra-
sound arms for both automatic and remote image capture. DL algorithms can assist novice learners
in identifying whether the captured image is sufficient both in its quality and anatomic position.
Second, DL algorithms can help in automatic identification of appropriate views and frames needed
for calculation of specific measures such as the ejection fraction. Once these views are identified, the
computer can automatically perform tasks such as endocardial border detection and speckle tracking
for the production of parameters of volume and ejection fraction, and myocardial mechanics such
as strain and strain rate. Hypothetically, DL algorithms can also be applied to obtain and calculate
Doppler-derived parameters. After all parameters are obtained, other machine learning algorithms
can be used to generate visual outputs such as curves, bull’s eyes, and measurement reports. At
this stage, AI can help standardize subjective tasks such as wall motion analysis. The magnitude
of the data output can be next used to generate other supervised and unsupervised AI algorithms
suitable for diagnosis and classification, such as cluster analysis and neural networks. At this stage,
AI algorithms promise exploration of new, previously unknown, disease subclasses.

DL can also serve as a diagnostic tool to differentiate physiological from pathological
patterns, aid in deferential diagnosis, and help separate the “look-alike” diseases, and
to classify, grade, and stratify disease processes. Examples include the appreciation of
the presence and severity of diastolic dysfunction (present or absent, and grade I, II, and
III); grading of the left ventricular ejection fraction (preserved, mid-range, or reduced);
differentiation between constrictive versus restrictive pathology patterns; pathological and
physiological LV hypertrophy diagnosis; assessment of hypertrophic cardiomyopathy, infil-
trative cardiomyopathy, or hypertensive heart disease; and the diagnosis and assessment
of severity of similar forms of vascular diseases.

Importantly, DL can serve as an add-on diagnostic tool in handheld and point-of-care
ultrasound examinations and for medical robotic arms aimed at automated and remote



Life 2023, 13, 1029 14 of 20

acquisition and interpretation of echocardiographic images. DL can also be used as a
powerful teaching tool aiding novice echocardiographers and imaging fellows, helping to
mitigate learning curves and standardize the teaching process.

Moreover, while most of the previous application examples are based on the current
understanding and knowledge of cardiovascular diseases, perhaps the most important
future promise of ML and DL is their ability to detect hidden patterns within the data
and images that are not yet known (e.g., DL analysis for retinal images). Such discoveries
will operationalize the field of phenomapping and discovery of new disease subclasses.
This advancement is especially important in cardiovascular diseases that carry a great
deal of complexity in both understanding their pathophysiological attributes as well as
their therapeutic options. One clear example of this need is heart failure with preserved
ejection fraction.

6. A “No-Contact” Echocardiographic Laboratory Model in the Next Emerging Pandemics

The technological revolution in medicine is probably more needed now than ever for
future outbreaks. The cardiac patient of the future, wired with a network of biosensors,
wearable monitors, and implantable miniature devices, investigated with robotic imaging
arms and analyzed by computers, will be extremely different from our current patients.
The tremendous amount of personalized data and clinical responses to daily stimuli will
be processed using personalized software built by DL and beyond to direct the patient or
even act independently towards the next appropriate action.

As such, one can now envision the future of the echocardiography laboratory in a
no-contact environment from both a patient side and the healthcare provider side. It is not
hard any more to imagine patients walking in the echocardiographic laboratory where they
are scanned by a device for personalized information and data, collected by all the wired de-
vices, followed by complete no-contact echocardiographic procedures done autonomously
by AI algorithms with minimal human interaction (Figure 7). First, AI algorithms are used
to assist a robotic ultrasound arm for both automatic and remote image capture. Second, AI
algorithms automatically identify the appropriate views and frames needed for calculation
of specific measures. Once these views are identified, the computer automatically performs
tasks such as endocardial border and wall speckle tracking to produce parameters of vol-
ume, ejection fraction, and myocardial mechanics such as strain and strain rate. After all
parameters are obtained, ML algorithms are used to generate visual outputs such as curves
and bull’s eyes, as well as measurement reports. The magnitude of generated data can be
used in validated supervised and unsupervised AI algorithms for personalized diagnosis
and classification of new disease subclasses. The final outcome is production of a definite
personalized answer for a disease presence or absence, and its specific severity, and the
suggestion of specific personalized therapeutic options. Importantly, this no-contact model
would be applied in other areas of cardiac inpatient and outpatient services.

7. Current Challenge and Future Directions

The implementation of robust DL in echo software could potentially augment clinical-
decision making using a reliable automated assessment of video clips, static images,
Doppler recordings, and speckle-tracking-derived information [27,41,81]. Although DL
holds great promise in automating medical diagnosis, several challenges do exist and must
be addressed and resolved before DL-based diagnostic algorithms can be applied in clinical
practice. First, the currently available DL techniques remain poorly explored in echocardio-
graphy. More importantly, while many proposed architectures of DL exist for the use with
public databases, not many of these are suitable for echocardiography. CNN, RNN, GRU, or
LSTM (RNN variants) are commonly used but their practicality depends on optimization,
activation functions, and features in the architectures. More studies are needed to test the
feasibility and accuracy of the commonly used DL algorithms in echocardiography and to
identify the algorithms more fit to be used with echocardiographic data. It is important to
highlight that efforts to leverage DL algorithms fit for the field of echocardiography may
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not be exclusively the job of data scientists and programmers. There have been several
efforts to introduce ML and DL platforms that are non-coder friendly and that can be
immediately used without high-level training or detailed understanding of data science.
Although clinicians are allowed to experiment with such platforms to uncover clinically
relevant concepts, they should realize the complexities of applications of these pre-fetched
platforms and work closely with data engineers to find specific solutions.

Second, DL requires massive amounts of pre-labeled data for training computers in
the quest to achieve human-level classification performance. This is a clear distinction
in performance between DL and traditional ML techniques as both differ as the scale of
data increases: when using small datasets, DL algorithms tend to perform poorly com-
pared with traditional ML algorithms. Although this leaves the field open for traditional
ML techniques in echocardiography research, it is important to note that the type and
amount of data suitable for training DL algorithms exist but frequently face the obsta-
cle of healthcare privacy laws and medical data regulations, making medical data less
available compared with other fields of computer science. The development of a homoge-
nous nationwide echo database using standardized measures (e.g., the same vendors,
protocol, and enhancer agents) and calibrated algorithms can be useful in that regard. In
addition, a nationwide echo database in collaboration with echo vendors/software compa-
nies could promote research for algorithms suitable for heterogeneous echocardiographic
databases and could potentially address these challenges, facilitating the application of
DL in clinical decision-making.

Third, another set of challenges include the ability to process such massive amounts of
data resulting from the variability of vendors, operators, software versions, and acquisition
techniques, which can confound image processing. There is a need for high computational
powers (e.g., quantum computation) to classify image details and moving images [82,83].

Fourth, technical aspects such as multiple variable optimization [84], artifact prob-
lems [85,86], poor acoustic window [45], focal feature localization evaluation method-
ology [87], or multiple focal feature detection [88] can be challenging in image recogni-
tion. There are proposed methodologies to address these problems (e.g., attention mech-
anisms) [89,90]. Moreover, further improvements in image segmentation algorithms are
needed [91–94].

Fifth, lack of standardized approaches to DL challenge routine implementation of
DL techniques. Examples include the choice of the learning rates [95] or differences
in the results between max pooling and average pooling [96]. Along the same lines,
the implementation of DL in echocardiography requires the identification of a univer-
sal clear stepwise workflow, from acquiring the image towards achieving a diagnostic
or predictive output.

Sixth, although DL as an application of AI that can be of most value in classification
problems and pattern recognition, cognition problems are not exclusively classification
problems. For example, DL or any other AI application has limited abstract reasoning.
Connecting the dots in a picture drawn by a computer, and understanding and reasoning
around the findings from a computer algorithm remain largely a human task. In a clinical
universe, specifically in an echocardiographic world, and particularly in the next emerging
pandemics, this may translate into less hand work, such as “image acquisition, parameter
measurement, output exporting, etc.”; less human error and variability associated with
these tasks; more patient and physician comfort; “less travel time, and fewer busy clinics,
hospital schedules, and no-contact exams”; faster learning curves of novice cardiologists
through dedicated DL educational algorithms; and more effective use of the human intellect
to understand disease processes through observations and hypothesis generation. Finally,
there is a significant potential bias in DL in healthcare. Thus, we need more representation
of people of all backgrounds in clinical practice to train on such data.



Life 2023, 13, 1029 16 of 20

8. Conclusions

In the era of advance computational power, utilization of big data analytics and DL
in echocardiographic research promises reduction in cost, cognitive errors, and the intra-
and inter-observer variability. Most importantly, the application of these techniques is
of maximum importance in a projected “no-contact” medical service in future infectious
outbreaks. However, several challenges still exist in both the clinical arena and the com-
puter science field for the application of computer vision and DL in echocardiography.
Overall, three key components are required to implement DL in echocardiographic imaging
successfully: (1) improved architecture design for algorithms to be more compatible with
echocardiographic data, (2) increased computational powers (e.g., quantum computation)
to shorten the analytical process and improve predictive ability, and (3) generation of large
amounts of echo data from individuals of all backgrounds with the ability to homogenize
the data and alleviate variability.

Author Contributions: Conceptualization, C.K.; methodology, C.K.; writing—original draft prepara-
tion, C.K.; writing—review and editing, C.K., A.M.S.O., P.P.S., S.N., E.A. and B.S.G.; supervision, E.A.
and J.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The review lacks patient data. Therefore, this study was ex-
empt from Institutional Review Board (IRB) approval as per guideline put forth by our
institutional IRBs.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: Krittanawong discloses the following relationships—Member of the Amer-
ican College of Cardiology Solution Set Oversight Committee, the American Heart Association
Committee of the Council on Genomic and Precision Medicine, and the American College of Cardiol-
ogy/American Heart Association (ACC/AHA) Task Force on Performance Measures, the ACC/AHA
Joint Committee on Clinical Data Standards, The Lancet Digital Health (Advisory Board), European
Heart Journal Digital Health (Editorial board), Journal of the American Heart Association (Editorial
board), JACC: Asia (Section Editor), The Journal of Scientific Innovation in Medicine (Associate
Editor), and Frontiers in Cardiovascular Medicine (Associate Editor). Other authors declare no
conflict of interest.

References
1. Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations. N. Engl. J. Med.

2017, 376, 2507–2509. [CrossRef] [PubMed]
2. Ehteshami Bejnordi, B.; Veta, M.; van Diest, P.J.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.; Hermsen, M.;

Manson, Q.F.; Balkenhol, M.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases
in Women With Breast CancerMachine Learning Detection of Breast Cancer Lymph Node MetastasesMachine Learning Detection
of Breast Cancer Lymph Node Metastases. JAMA 2017, 318, 2199–2210. [CrossRef]

3. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;
Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus PhotographsAccuracy of a Deep Learning Algorithm for Detection of Diabetic RetinopathyAccuracy of a Deep Learning
Algorithm for Detection of Diabetic Retinopathy. JAMA 2016, 316, 2402–2410. [CrossRef]

4. Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A.
Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med.
2018, 24, 1559–1567. [CrossRef] [PubMed]

5. Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.G.; Venugopal, V.K.; Mahajan, V.; Rao, P.; Warier, P. Deep
learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet 2018, 392, 2388–2396.
[CrossRef] [PubMed]

6. Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [CrossRef]
7. Krittanawong, C.; Virk, H.U.H.; Kumar, A.; Aydar, M.; Wang, Z.; Stewart, M.P.; Halperin, J.L. Machine learning and deep learning

to predict mortality in patients with spontaneous coronary artery dissection. Sci. Rep. 2021, 11, 8992. [CrossRef] [PubMed]
8. Omar, A.M.S.; Krittanawong, C.; Narula, S.; Narula, J.; Argulian, E. Echocardiographic Data in Artificial Intelligence Research:

Primer on Concepts of Big Data and Latent States. JACC Cardiovasc. Imaging 2020, 13, 170–172. [CrossRef]

https://doi.org/10.1056/NEJMp1702071
https://www.ncbi.nlm.nih.gov/pubmed/28657867
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1038/s41591-018-0177-5
https://www.ncbi.nlm.nih.gov/pubmed/30224757
https://doi.org/10.1016/S0140-6736(18)31645-3
https://www.ncbi.nlm.nih.gov/pubmed/30318264
https://doi.org/10.1038/s41591-022-01981-2
https://doi.org/10.1038/s41598-021-88172-0
https://www.ncbi.nlm.nih.gov/pubmed/33903608
https://doi.org/10.1016/j.jcmg.2019.07.017


Life 2023, 13, 1029 17 of 20

9. Vaid, A.; Argulian, E.; Lerakis, S.; Beaulieu-Jones, B.K.; Krittanawong, C.; Klang, E.; Lampert, J.; Reddy, V.Y.; Narula, J.;
Nadkarni, G.N.; et al. Multi-center retrospective cohort study applying deep learning to electrocardiograms to identify left heart
valvular dysfunction. Commun. Med. 2023, 3, 24. [CrossRef]

10. Beetz, M.; Corral Acero, J.; Banerjee, A.; Eitel, I.; Zacur, E.; Lange, T.; Stiermaier, T.; Evertz, R.; Backhaus, S.J.; Thiele, H.; et al.
Interpretable cardiac anatomy modeling using variational mesh autoencoders. Front. Cardiovasc. Med. 2022, 9, 983868. [CrossRef]

11. Tromp, J.; Seekings, P.J.; Hung, C.L.; Iversen, M.B.; Frost, M.J.; Ouwerkerk, W.; Jiang, Z.; Eisenhaber, F.; Goh, R.S.M.; Zhao, H.; et al.
Automated interpretation of systolic and diastolic function on the echocardiogram: A multicohort study. Lancet Digit. Health 2022, 4,
e46–e54. [CrossRef]

12. Liu, X.; Fan, Y.; Li, S.; Chen, M.; Li, M.; Hau, W.K.; Zhang, H.; Xu, L.; Lee, A.P. Deep learning-based automated left ventricular
ejection fraction assessment using 2-D echocardiography. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H390–H399. [CrossRef]

13. Jian, Z.; Wang, X.; Zhang, J.; Wang, X.; Deng, Y. Diagnosis of left ventricular hypertrophy using convolutional neural network.
BMC Med. Inform. Decis. Mak. 2020, 20, 243. [CrossRef]

14. Salte, I.M.; Østvik, A.; Smistad, E.; Melichova, D.; Nguyen, T.M.; Karlsen, S.; Brunvand, H.; Haugaa, K.H.; Edvardsen, T.;
Lovstakken, L.; et al. Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography. JACC
Cardiovasc. Imaging 2021, 14, 1918–1928. [CrossRef]

15. Deng, Y.; Cai, P.; Zhang, L.; Cao, X.; Chen, Y.; Jiang, S.; Zhuang, Z.; Wang, B. Myocardial strain analysis of echocardiography
based on deep learning. Front. Cardiovasc. Med. 2022, 9, 1067760. [CrossRef]

16. Krittanawong, C.; Maitra, N.S.; Hassan Virk, H.U.; Farrell, A.; Hamzeh, I.; Arya, B.; Pressman, G.S.; Wang, Z.; Marwick, T.H.
Normal Ranges of Right Atrial Strain: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2023, 16, 282–294.
[CrossRef]

17. Vaid, A.; Johnson, K.W.; Badgeley, M.A.; Somani, S.S.; Bicak, M.; Landi, I.; Russak, A.; Zhao, S.; Levin, M.A.; Freeman, R.S.; et al.
Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram.
JACC Cardiovasc. Imaging 2022, 15, 395–410. [CrossRef] [PubMed]

18. Zhang, Q.; Liu, Y.; Mi, J.; Wang, X.; Liu, X.; Zhao, F.; Xie, C.; Cui, P.; Zhang, Q.; Zhu, X. Automatic Assessment of Mitral
Regurgitation Severity Using the Mask R-CNN Algorithm with Color Doppler Echocardiography Images. Comput. Math. Methods
Med. 2021, 2021, 2602688. [CrossRef]

19. Morris, S.A.; Lopez, K.N. Deep learning for detecting congenital heart disease in the fetus. Nat. Med. 2021, 27, 764–765. [CrossRef]
[PubMed]

20. Liu, J.; Wang, H.; Yang, Z.; Quan, J.; Liu, L.; Tian, J. Deep learning-based computer-aided heart sound analysis in children with
left-to-right shunt congenital heart disease. Int. J. Cardiol. 2022, 348, 58–64. [CrossRef]

21. Azarmehr, N.; Ye, X.; Howes, J.D.; Docking, B.; Howard, J.P.; Francis, D.P.; Zolgharni, M. An optimisation-based iterative approach
for speckle tracking echocardiography. Med. Biol. Eng. Comput. 2020, 58, 1309–1323. [CrossRef] [PubMed]

22. Reddy, C.D.; Lopez, L.; Ouyang, D.; Zou, J.Y.; He, B. Video-Based Deep Learning for Automated Assessment of Left Ventricular
Ejection Fraction in Pediatric Patients. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2023. [CrossRef]

23. Edwards, L.A.; Feng, F.; Iqbal, M.; Fu, Y.; Sanyahumbi, A.; Hao, S.; McElhinney, D.B.; Ling, X.B.; Sable, C.; Luo, J. Machine
Learning for Pediatric Echocardiographic Mitral Regurgitation Detection. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr.
2023, 36, 96–104.e104. [CrossRef]

24. Jone, P.-N.; Gearhart, A.; Lei, H.; Xing, F.; Nahar, J.; Lopez-Jimenez, F.; Diller, G.-P.; Marelli, A.; Wilson, L.; Saidi, A.; et al. Artificial
Intelligence in Congenital Heart Disease. JACC Adv. 2022, 1, 100153. [CrossRef]

25. Fetanat, M.; Stevens, M.; Hayward, C.; Lovell, N. Aortic Valve Status Detection for Heart Failure Patient with LVAD Using Deep
Neural Networks. J. Heart Lung Transplant. 2021, 40, S178. [CrossRef]

26. Shad, R.; Quach, N.; Fong, R.; Kasinpila, P.; Bowles, C.; Castro, M.; Guha, A.; Suarez, E.E.; Jovinge, S.; Lee, S.; et al. Predicting
post-operative right ventricular failure using video-based deep learning. Nat. Commun. 2021, 12, 5192. [CrossRef]

27. Krittanawong, C.; Zhang, H.; Wang, Z.; Aydar, M.; Kitai, T. Artificial intelligence in precision cardiovascular medicine. J. Am. Coll.
Cardiol. 2017, 69, 2657–2664. [CrossRef] [PubMed]

28. LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten digit recognition with
a back-propagation network. Adv. Neural Inf. Process. Syst. 1990, 2, 396–404.

29. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

30. Ranka, S.; Mohan, C.K.; Mehrotra, K.; Menon, A. Characterization of a Class of Sigmoid Functions with Applications to Neural
Networks. Neural Netw. Off. J. Int. Neural Netw. Soc. 1996, 9, 819–835. [CrossRef]

31. Hinton, G.E.; Ghahramani, Z. Generative models for discovering sparse distributed representations. Trans. R. Soc. Lond. Ser. B
Biol. Sci. 1997, 352, 1177–1190. [CrossRef] [PubMed]

32. Lan, H. The Softmax Function NNOaP, and Ensemble Classifiers. Available online: https://towardsdatascience.com/the-softmax-
function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932 (accessed on 20 November 2021).

33. Vargas, V.M.; Gutierrez, P.A.; Barbero-Gomez, J.; Hervas-Martinez, C. Activation Functions for Convolutional Neural Networks:
Proposals and Experimental Study. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1478–1488. [CrossRef] [PubMed]

34. Yuen, B.; Hoang, M.T.; Dong, X.; Lu, T. Universal activation function for machine learning. Sci. Rep. 2021, 11, 18757. [CrossRef]

https://doi.org/10.1038/s43856-023-00240-w
https://doi.org/10.3389/fcvm.2022.983868
https://doi.org/10.1016/S2589-7500(21)00235-1
https://doi.org/10.1152/ajpheart.00416.2020
https://doi.org/10.1186/s12911-020-01255-2
https://doi.org/10.1016/j.jcmg.2021.04.018
https://doi.org/10.3389/fcvm.2022.1067760
https://doi.org/10.1016/j.jcmg.2022.06.022
https://doi.org/10.1016/j.jcmg.2021.08.004
https://www.ncbi.nlm.nih.gov/pubmed/34656465
https://doi.org/10.1155/2021/2602688
https://doi.org/10.1038/s41591-021-01354-1
https://www.ncbi.nlm.nih.gov/pubmed/33990805
https://doi.org/10.1016/j.ijcard.2021.12.012
https://doi.org/10.1007/s11517-020-02142-8
https://www.ncbi.nlm.nih.gov/pubmed/32253607
https://doi.org/10.1016/j.echo.2023.01.015
https://doi.org/10.1016/j.echo.2022.09.017
https://doi.org/10.1016/j.jacadv.2022.100153
https://doi.org/10.1016/j.healun.2021.01.522
https://doi.org/10.1038/s41467-021-25503-9
https://doi.org/10.1016/j.jacc.2017.03.571
https://www.ncbi.nlm.nih.gov/pubmed/28545640
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/0893-6080(95)00107-7
https://doi.org/10.1098/rstb.1997.0101
https://www.ncbi.nlm.nih.gov/pubmed/9304685
https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
https://doi.org/10.1109/TNNLS.2021.3105444
https://www.ncbi.nlm.nih.gov/pubmed/34428161
https://doi.org/10.1038/s41598-021-96723-8


Life 2023, 13, 1029 18 of 20

35. Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Huang, Z.; Yuille, A. Deep captioning with multimodal recurrent neural networks (m-rnn).
arXiv 2014, arXiv:1412.6632.

36. Dong, S.; Luo, G.; Sun, G.; Wang, K.; Zhang, H. A left ventricular segmentation method on 3D echocardiography using deep
learning and snake. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14
September 2016; pp. 473–476.

37. Diba, A.; Fayyaz, M.; Sharma, V.; Karami, A.H.; Arzani, M.M.; Yousefzadeh, R.; Van Gool, L. Temporal 3D ConvNets: New
Architecture and Transfer Learning for Video Classification. arXiv 2017, arXiv:1711.08200.

38. Ng, J.Y.-H.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets: Deep networks for
video classification. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 4694–4702.

39. Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.H.W.; Halperin, J.L.; Narayan,
S.M. Deep learning for cardiovascular medicine: A practical primer. Eur. Heart J. 2019, 40, 2058–2073. [CrossRef]

40. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
41. Picard, M.H.; Adams, D.; Bierig, S.M.; Dent, J.M.; Douglas, P.S.; Gillam, L.D.; Keller, A.M.; Malenka, D.J.; Masoudi, F.A.;

McCulloch, M. American Society of Echocardiography recommendations for quality echocardiography laboratory operations. J.
Am. Soc. Echocardiogr. 2011, 24, 1–10. [CrossRef]

42. Omar, H.A.; Domingos, J.S.; Patra, A.; Upton, R.; Leeson, P.; Noble, J.A. Quantification of cardiac bull’s-eye map based on
principal strain analysis for myocardial wall motion assessment in stress echocardiography. In Proceedings of the 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1195–1198.

43. Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for Assessment of
Regional Wall Motion Abnormality from Echocardiographic Images. JACC Cardiovasc. Imaging 2020, 13, 374–381. [CrossRef]

44. Madani, A.; Ong, J.R.; Tibrewal, A.; Mofrad, M.R.K. Deep echocardiography: Data-efficient supervised and semi-supervised deep
learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 2018, 1, 59. [CrossRef]

45. Zhang, J.; Gajjala, S.; Agrawal, P.; Tison Geoffrey, H.; Hallock Laura, A.; Beussink-Nelson, L.; Lassen Mats, H.; Fan, E.; Aras
Mandar, A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation 2018, 138, 1623–1635.
[CrossRef]

46. Gao, X.; Li, W.; Loomes, M.; Wang, L. A fused deep learning architecture for viewpoint classification of echocardiography. Inf.
Fusion 2017, 36, 103–113. [CrossRef]

47. Koutnik, J.; Greff, K.; Gomez, F.; Schmidhuber, J. A clockwork rnn. arXiv 2014, arXiv:1402.3511.
48. Yang, Y.; Krompass, D.; Tresp, V. Tensor-train recurrent neural networks for video classification. arXiv 2017, arXiv:1707.01786.
49. Ur Rehman, A.; Belhaouari, S.B.; Kabir, M.A.; Khan, A. On the Use of Deep Learning for Video Classification. Appl. Sci. 2023, 13,

2007. [CrossRef]
50. Dezaki, F.T.; Dhungel, N.; Abdi, A.H.; Luong, C.; Tsang, T.; Jue, J.; Gin, K.; Hawley, D.; Rohling, R.; Abolmaesumi, P. Deep

Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms. In Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Cardoso, M.J., Arbel, T., Carneiro, G., Syeda-Mahmood,
T., Tavares, J.M.R.S., Moradi, M., Bradley, A., Greenspan, H., Papa, J.P., Madabhushi, A., et al., Eds.; Springer International
Publishing: Cham, Switzerland, 2017; pp. 100–108.

51. Abdi, A.H.; Luong, C.; Tsang, T.; Jue, J.; Gin, K.; Yeung, D.; Hawley, D.; Rohling, R.; Abolmaesumi, P. Quality Assessment of
Echocardiographic Cine Using Recurrent Neural Networks: Feasibility on Five Standard View Planes. In Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2017; Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S., Eds.;
Pringer International Publishing: Cham, Switzerland, 2017; pp. 302–310.

52. Pandey, A.; Kagiyama, N.; Yanamala, N.; Segar, M.W.; Cho, J.S.; Tokodi, M.; Sengupta, P.P. Deep-Learning Models for the
Echocardiographic Assessment of Diastolic Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 1887–1900. [CrossRef]

53. Narula, S.; Shameer, K.; Salem Omar, A.M.; Dudley, J.T.; Sengupta, P.P. Machine-Learning Algorithms to Automate Morphological
and Functional Assessments in 2D Echocardiography. J. Am. Coll. Cardiol. 2016, 68, 2287–2295. [CrossRef]

54. Sengupta, P.P.; Huang, Y.M.; Bansal, M.; Ashrafi, A.; Fisher, M.; Shameer, K.; Gall, W.; Dudley, J.T. Cognitive Machine-Learning
Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circ.
Cardiovasc. Imaging 2016, 9, e004330. [CrossRef]

55. Park, J.H.; Zhou, S.K.; Simopoulos, C.; Otsuki, J.; Comaniciu, D. Automatic cardiac view classification of echocardiogram. In
Proceedings of the 2007 IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 14–21 October
2007; pp. 1–8.

56. Ebadollahi, S.; Chang, S.-F.; Wu, H. Automatic view recognition in echocardiogram videos using parts-based representation.
In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004),
Washington, DC, USA, 27 June–2 July 2004; p. II.

57. Zhou, S.K.; Park, J.; Georgescu, B.; Comaniciu, D.; Simopoulos, C.; Otsuki, J. Image-based multiclass boosting and echocardio-
graphic view classification. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17–22 June 2006; pp. 1559–1565.

58. Gearhart, A.; Goto, S.; Deo, R.C.; Powell, A.J. An Automated View Classification Model for Pediatric Echocardiography Using
Artificial Intelligence. J. Am. Soc. Echocardiogr. 2022, 35, 1238–1246. [CrossRef] [PubMed]

https://doi.org/10.1093/eurheartj/ehz056
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.echo.2010.11.006
https://doi.org/10.1016/j.jcmg.2019.02.024
https://doi.org/10.1038/s41746-018-0065-x
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1016/j.inffus.2016.11.007
https://doi.org/10.3390/app13032007
https://doi.org/10.1016/j.jcmg.2021.04.010
https://doi.org/10.1016/j.jacc.2016.08.062
https://doi.org/10.1161/CIRCIMAGING.115.004330
https://doi.org/10.1016/j.echo.2022.08.009
https://www.ncbi.nlm.nih.gov/pubmed/36049595


Life 2023, 13, 1029 19 of 20

59. Chykeyuk, K.; Clifton, D.A.; Noble, J.A. Feature extraction and wall motion classification of 2D stress echocardiography with
relevance vector machines. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, Chicago, IL, USA, 30 March–2 April 2011; pp. 677–680.

60. Costa, E.; Martins, N.; Sultan, M.S.; Veiga, D.; Ferreira, M.; Mattos, S.; Coimbra, M. Mitral Valve Leaflets Segmentation
in Echocardiography using Convolutional Neural Networks. In Proceedings of the 2019 IEEE 6th Portuguese Meeting on
Bioengineering (ENBENG), Lisbon, Portugal, 22–23 February 2019.

61. Elalfi, A.; Eisa, M.; Ahmed, H. Artificial neural networks in medical images for diagnosis heart valve diseases. Int. J. Comput. Sci.
Issues (IJCSI) 2013, 10, 83.

62. Genovese, D.; Rashedi, N.; Weinert, L.; Narang, A.; Addetia, K.; Patel, A.R.; Prater, D.; Gonçalves, A.; Mor-Avi, V.; Lang, R.M.
Machine Learning-Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation
Against Cardiac Magnetic Resonance. J. Am. Soc. Echocardiogr. 2019, 32, 969–977. [CrossRef] [PubMed]

63. Frades, I.; Matthiesen, R. Overview on techniques in cluster analysis. Methods Mol. Biol. 2010, 593, 81–107. [CrossRef]
64. McLachlan, G.J. Cluster analysis and related techniques in medical research. Stat. Methods Med. Res. 1992, 1, 27–48. [CrossRef]

[PubMed]
65. Guo, Q.; Lu, X.; Gao, Y.; Zhang, J.; Yan, B.; Su, D.; Song, A.; Zhao, X.; Wang, G. Cluster analysis: A new approach for identification

of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci. Rep. 2017, 7, 43965. [CrossRef]
[PubMed]

66. Duffy, G.; Cheng, P.P.; Yuan, N.; He, B.; Kwan, A.C.; Shun-Shin, M.J.; Alexander, K.M.; Ebinger, J.; Lungren, M.P.; Rader, F.; et al.
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning. JAMA Cardiol.
2022, 7, 386–395. [CrossRef]

67. Horiuchi, Y.; Tanimoto, S.; Latif, A.; Urayama, K.Y.; Aoki, J.; Yahagi, K.; Okuno, T.; Sato, Y.; Tanaka, T.; Koseki, K.; et al. Identifying
novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int. J. Cardiol. 2018, 262, 57–63. [CrossRef]

68. Oikonomou, E.K.; Suchard, M.A.; McGuire, D.K.; Khera, R. Phenomapping-Derived Tool to Individualize the Effect of
Canagliflozin on Cardiovascular Risk in Type 2 Diabetes. Diabetes Care 2022, 45, 965–974. [CrossRef]

69. Peters, A.E.; Tromp, J.; Shah, S.J.; Lam, C.S.P.; Lewis, G.D.; Borlaug, B.A.; Sharma, K.; Pandey, A.; Sweitzer, N.K.; Kitzman, D.W.;
et al. Phenomapping in heart failure with preserved ejection fraction: Insights, limitations, and future directions. Cardiovasc. Res.
2023, 118, 3403–3415. [CrossRef] [PubMed]

70. Green, M.A.; Strong, M.; Razak, F.; Subramanian, S.V.; Relton, C.; Bissell, P. Who are the obese? A cluster analysis exploring
subgroups of the obese. J. Public Health 2016, 38, 258–264. [CrossRef]

71. Krittanawong, C.; Bomback, A.S.; Baber, U.; Bangalore, S.; Messerli, F.H.; Wilson Tang, W.H. Future Direction for Using Artificial
Intelligence to Predict and Manage Hypertension. Curr. Hypertens. Rep. 2018, 20, 75. [CrossRef]

72. Bailly, S.; Destors, M.; Grillet, Y.; Richard, P.; Stach, B.; Vivodtzev, I.; Timsit, J.F.; Levy, P.; Tamisier, R.; Pepin, J.L. Obstructive Sleep
Apnea: A Cluster Analysis at Time of Diagnosis. PLoS ONE 2016, 11, e0157318. [CrossRef] [PubMed]

73. Omar, A.M.S.; Narula, S.; Abdel Rahman, M.A.; Pedrizzetti, G.; Raslan, H.; Rifaie, O.; Narula, J.; Sengupta, P.P. Precision
Phenotyping in Heart Failure and Pattern Clustering of Ultrasound Data for the Assessment of Diastolic Dysfunction. JACC
Cardiovasc. Imaging 2017, 10, 1291–1303. [CrossRef] [PubMed]

74. Shameer, K.; Johnson, K.W.; Glicksberg, B.S.; Dudley, J.T.; Sengupta, P.P. Machine learning in cardiovascular medicine: Are we
there yet? Heart 2018, 104, 1156–1164. [CrossRef]

75. Howard, J.P.; Tan, J.; Shun-Shin, M.J.; Mahdi, D.; Nowbar, A.N.; Arnold, A.D.; Ahmad, Y.; McCartney, P.; Zolgharni, M.; Linton,
N.W.F.; et al. Improving ultrasound video classification: An evaluation of novel deep learning methods in echocardiography. J.
Med. Artif. Intell. 2019, 3, 4. [CrossRef] [PubMed]

76. Huang, P.-Y.; Yuan, Y.; Lan, Z.; Jiang, L.; Hauptmann, A.G. Video Representation Learning and Latent Concept Mining for
Large-scale Multi-label Video Classification. arXiv 2017, arXiv:1707.01408.

77. Wahlang, I.; Maji, A.K.; Saha, G.; Chakrabarti, P.; Jasinski, M.; Leonowicz, Z.; Jasinska, E. Deep Learning Methods for Classification
of Certain Abnormalities in Echocardiography. Electronics 2021, 10, 495. [CrossRef]

78. Yu, H.; Wang, J.; Huang, Z.; Yang, Y.; Xu, W. Video paragraph captioning using hierarchical recurrent neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
4584–4593.

79. Ghorbani, A.; Ouyang, D.; Abid, A.; He, B.; Chen, J.H.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; Zou, J.Y. Deep learning
interpretation of echocardiograms. NPJ Digit. Med. 2020, 3, 10. [CrossRef]

80. Labs, R.B.; Vrettos, A.; Loo, J.; Zolgharni, M. Automated assessment of transthoracic echocardiogram image quality using deep
neural networks. Intell. Med. 2022. [CrossRef]

81. Krittanawong, C.; Tunhasiriwet, A.; Zhang, H.; Wang, Z.; Aydar, M.; Kitai, T. Deep learning with unsupervised feature in
echocardiographic imaging. J. Am. Coll. Cardiol. 2017, 69, 2100–2101. [CrossRef] [PubMed]

82. Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural
networks. Nat. Commun. 2020, 11, 808. [CrossRef]

83. Huang, H.-Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine
learning. Nat. Commun. 2021, 12, 2631. [CrossRef]

https://doi.org/10.1016/j.echo.2019.04.001
https://www.ncbi.nlm.nih.gov/pubmed/31174940
https://doi.org/10.1007/978-1-60327-194-3_5
https://doi.org/10.1177/096228029200100103
https://www.ncbi.nlm.nih.gov/pubmed/1341650
https://doi.org/10.1038/srep43965
https://www.ncbi.nlm.nih.gov/pubmed/28266630
https://doi.org/10.1001/jamacardio.2021.6059
https://doi.org/10.1016/j.ijcard.2018.03.098
https://doi.org/10.2337/dc21-1765
https://doi.org/10.1093/cvr/cvac179
https://www.ncbi.nlm.nih.gov/pubmed/36448685
https://doi.org/10.1093/pubmed/fdv040
https://doi.org/10.1007/s11906-018-0875-x
https://doi.org/10.1371/journal.pone.0157318
https://www.ncbi.nlm.nih.gov/pubmed/27314230
https://doi.org/10.1016/j.jcmg.2016.10.012
https://www.ncbi.nlm.nih.gov/pubmed/28109936
https://doi.org/10.1136/heartjnl-2017-311198
https://doi.org/10.21037/jmai.2019.10.03
https://www.ncbi.nlm.nih.gov/pubmed/32226937
https://doi.org/10.3390/electronics10040495
https://doi.org/10.1038/s41746-019-0216-8
https://doi.org/10.1016/j.imed.2022.08.001
https://doi.org/10.1016/j.jacc.2016.12.047
https://www.ncbi.nlm.nih.gov/pubmed/28427588
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-021-22539-9


Life 2023, 13, 1029 20 of 20

84. Probst, P.; Bischl, B.; Boulesteix, A.-L. Tunability: Importance of hyperparameters of machine learning algorithms. arXiv 2018,
arXiv:1802.09596.

85. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

86. Uesato, J.; O’Donoghue, B.; Oord, A.V.D.; Kohli, P. Adversarial risk and the dangers of evaluating against weak attacks. arXiv
2018, arXiv:1802.05666.

87. Rahman, M.A.; Wang, Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In International
Symposium on Visual Computing; Springer: Cham, Switzerland, 2016; pp. 234–244.

88. Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 3212–3232. [CrossRef]

89. Medina, J.R.; Kalita, J. Parallel Attention Mechanisms in Neural Machine Translation. In Proceedings of the 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 547–552.

90. Yan, S.; Wu, F.; Smith, J.S.; Lu, W.; Zhang, B. Image Captioning Based on a Hierarchical Attention Mechanism and Policy Gradient
Optimization. arXiv 2018, arXiv:1811.05253.

91. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

92. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

93. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7 December 2015; pp. 91–99.

94. Turner, J.; Gupta, K.; Morris, B.; Aha, D.W. Keypoint density-based region proposal for fine-grained object detection and
classification using regions with convolutional neural network features. arXiv 2016, arXiv:1603.00502.

95. Blier, L.; Wolinski, P.; Ollivier, Y. Learning with Random Learning Rates. arXiv 2018, arXiv:1810.01322.
96. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TNNLS.2018.2876865

	Introduction 
	Core Fundamental Concepts of DL 
	What Are the Components of a DL Model? 
	How Are the Data Processed from Layer to Layer? 
	Examples of DL Models and Their Usability for Echocardiography 

	Supervised, Unsupervised, and Reinforced Deep Learning as Echocardiographic Solutions 
	Computer Vision and Video Classification 
	The Promised Future of the Echocardiographic Laboratory Is (Somewhat) Already Here 
	A “No-Contact” Echocardiographic Laboratory Model in the Next Emerging Pandemics 
	Current Challenge and Future Directions 
	Conclusions 
	References

