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Abstract: Future missions to Mars will expose astronauts to several physical and psychological
challenges, including exposure to space radiation (SR) and periods of social isolation (SI). Each of
these stressors, in addition to mission demands, can affect physical and mental health and potentially
negatively impact sleep. The effects of inflight stressors may vary with duration and time course,
may be additive or compounding, and may vary with individual differences in stress resilience and
vulnerability. Determining how individual differences in resilient and vulnerable phenotypes respond
to these mission-related stressors and their interactions with sleep will be crucial for understanding
and mitigating factors that can impair performance and damage health. Here, we examined the
single and compound effects of ground-based analogs of SI and SR on sensorimotor performance
on the balance beam (BB) in rats. We also assessed emotional responses during testing on the BB
and assessed whether sensorimotor performance and emotion varied with individual differences
in stress resiliency using our established animal model in which stress produces different effects on
sleep. Results showed differential motor performance and emotion in the BB task between SI and
SR, and these varied based on resilient and vulnerable phenotypes. These findings demonstrate
that identifying individual responses to stressors that can impact sensorimotor ability and behavior
necessary to perform mission-related tasks will be of particular importance for astronauts and
future missions. Should similar effects occur in humans, there may be considerable inter-individual
variability in the impact that flight stressors have on the mental health of astronauts and their ability
to perform mission-related tasks.

Keywords: sensorimotor performance; sleep; space radiation; social isolation; stress resilience;
stress vulnerability

1. Introduction

During the long durations of the proposed NASA Mars missions, astronauts will be
exposed to several physical and psychological challenges, including exposure to space
radiation (predicted~13 cGy/Yr (SR)) and periods of social isolation (SI). Individually,
SI and SR have been reported to alter behavior [1,2], spatial working memory [2], and
sensorimotor functions [3–5]. However, the synergistic effects of SI and SR combined are
all but unknown. Astronauts must maintain the ability to conduct tasks that require both
gross movements and fine motor coordination, which could include performing basic
routine assignments as well as potentially performing mission critical repairs. Any of these
tasks requires proper processing of sensory information, cognitive integration and decision
making, and performing the appropriate motor task (i.e., sensorimotor integration).

Stress can disrupt sleep [6–8] and can have negative effects on tasks that require atten-
tion, decision making, and memory, which impedes performance [9] and the latter of which
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can also be impacted by disrupted sleep [10–12]. An additional important consideration
for understanding the effects of inflight stress is that both humans and animals can be
differentially resilient or vulnerable to the effects of stress [13–15]. Studies in humans have
characterized the protective effect of stress resilience on high- and low-strain conditions [16],
and previous studies by our lab have shown that circulating BDNF [17] and stress-induced
changes in sleep [18,19] can vary between resilient and vulnerable rats. Therefore, the
effects of SI and SR on performance metrics may also change based on differences in stress
resilience and vulnerability.

In our work, we focused on sleep to delineate differential stress responses. Vulnerable
rats show decreases in rapid eye movement sleep (REM) after training with inescapable
footshock, whereas resilient rats show no decreases, or even increases, in REM [18,19]. The
vulnerable and resilient phenotypes are also differentially responsive to other stressors
(e.g., novel chamber [17] and simulated space radiation [20]) indicating the differences
are not limited to footshock stress. At a conceptual level, animals that sleep normally or
have increased sleep after stress have a more adaptive response that is less likely to lead
to long-term stress-related problems than do animals with disrupted sleep. This rationale
is consistent with literature that emphasizes roles for disrupted sleep in stress-related
pathology [21–23] and with a restoration of homeostasis as the stress responses end [24].

Determining how individual astronauts respond to mission-related stressors, and how
inflight stress can impair performance and health, is essential for our understanding and
necessary to ensure successful and safe missions. In this study, we used ground-based
analogs of SI and SR to examine the single and compound effects of SI and SR on motor
learning sensorimotor performance on the balance beam (BB) task in rats. We also assessed
emotional responses during testing on the BB and assessed whether learning ability, senso-
rimotor performance, and emotion varied with resilient and vulnerable phenotypes using
our established animal model of stress resilience and vulnerability [18,19].

2. Materials and Methods
2.1. Subjects

Male, outbred, Wistar strain rats (8–9 months old at time of study) were obtained from
Hilltop Lab Animals, Inc. (Scottdale, PA, USA) and randomly assigned to SI (visual barriers
between cages, n = 21) or individual housing (as a Control group, n = 20). SI began at least
eight weeks prior to experimentation and was maintained throughout the study. Separate
groups of rats received a single dose of SR (15 cGy simplified 5-ion GCRsim, Brookhaven
National Laboratory; Long Island, NY, USA) treatment and were randomly assigned to
either individual housing (n = 15) or to SI (n = 16).

A Sham group traveled with SR-treated groups as a control to account for any potential
negative effects on the animals’ sleep and behavior caused by the transit required for the
experiment and either individually housed (n = 5) or subjected to SI (n = 3). No significant
differences in behavior or sleep parameters between animals maintained in house and
Sham groups (either Control or SI) were observed (Supplementary Figures S1 and S2).
Therefore, Sham rats were incorporated into respective Control or SI groups (depending
on treatment received) for subsequent analyses moving forward (updated sample sizes:
n = 25 and n = 24 for Control and SI groups, respectively). Food and water were available
ad libitum. Housing rooms were kept on a 12:12 light:dark cycle, and ambient temperature
was maintained at 24.5 ◦C ± 0.5◦. All procedures were conducted in accordance with the
National Institutes of Health Guide for the Care and Use of Experimental Animals and
were approved by Eastern Virginia Medical School’s Institutional Animal Care and Use
Committee (Protocol#: 19-018).

2.2. Surgery

At least three weeks prior to behavioral testing, all rats were implanted intraperi-
toneally with telemetry transmitters (ETA F10, Data Sciences International; Minneapolis,
MN, USA) for recording EEG activity, gross body activity, and whole-body temperature.
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Leads from the transmitter body were led subcutaneously to the head, and the free ends
were placed into holes drilled in the dorsal skull to allow for recording. All surgeries
were conducted under isoflurane (inhalant: 5% induction; 2–3% maintenance) anesthesia.
Ibuprofen (30 mg/kg, oral) was continuously available in each animal’s drinking water
for 24–48 h pre-operatively and for a minimum of 72 h post-operatively for pain relief.
All animals received prophylactic procaine penicillin (22,000–100,000 IU/kg), gentamicin
(5–8 mg/kg), and dexamethasone (0.5–2 mg/kg) subcutaneously on the day of surgery.

2.3. Balance Beam Procedures

BB assesses fine and gross motor function through the animals’ ability to traverse the
beam. We utilized a modified version of the BB paradigm based on previous studies [25–27]
where rats were trained to traverse a 2 cm wide by 1 m long beam suspended 90 cm over
soft padding for 5 trials a day for 7 consecutive days (35 trials in total). Motivation to
cross was provided by white noise proximal to the start platform and the presence of a
treat (Lucky Charms® cereal) in the goal box. The beam was marked lengthwise from 1–3
in equivalent sections from the goal box. Training began on at the start of the fifth hour
of lights on. For training, the animal was placed at position 1 (closest to the goal box)
on the beam. If they succeeded in entering the goal box, the next trial began at the next
farthest location (i.e., position 2, then position 3). If they succeeded at position 4 (the start
platform), the animal remained at position 4. The trial was considered over when the rat
either reached the goal box, fell off the beam, or 2 min elapsed. If the rat fell or timed out,
they were moved to one location closer to the goal box. If this occurred as position 1, the
animal remained at position 1. Between each trial, the rats were returned to their home
cage for a 5 min rest period. Visual barriers between cages were maintained for rats in the
SI and concurrent SI and SR exposure (DFS) groups for all testing periods.

Criterion for successful learning was determined by an individual animal reaching
the goal box starting at position 4. The learning period (LP) was considered to be all
trials up to the first trial that the animal reached criterion (position 4). Once criterion was
reached, subsequent trials were considered to be the post-learning period (PLP). During
the PLP, animals’ performance was recorded as meeting criterion (success from position 4),
as well as “pass” for success from any other position (1–3). However, regardless of reaching
criterion or not, animals were tested for the entirety of the 7 days for assessment of learning
and the ability to maintain performance rates following learning. Latency to complete the
task or fall off the beam was recorded in seconds (s). The average number of trials to reach
criterion per group was recorded. Percent of animals that learned (reached criterion) in
each treatment group was calculated based on the number of animals that were successful
from position 4 over the total number of animals in the group (%Learned = # of Animals
that Reached Criterion/Total # of Animals within the Group × 100). Percent pass rates
for each position during LP and PLP were calculated based on the number of trials where
animals within each treatment group reached the goal box from a respective position (1, 2,
or 3) over the total number of trials that animals spent at that position (%Pass Rates = #
of Passed Trials at a Position/Total # of Trials at a Position × 100). Overall percent pass
rates during LP and PLP were calculated based on the number of successful trials that
animals within each treatment completed over the total number of trials available during
the BB task (i.e., 35) (Overall %Pass Rates = # of Successful Trials/Total # of Trials × 100).
Criterion success rates were measured based on an animals’ entering of the goal box after
successfully crossing from position 4. Percent success was calculated for the animals within
a group that reached criterion based on the number of successful trails from position 4
over the total number of trials attempted at position 4 (%Success = # of Successful Trials at
Criterion/Total # of Trials at Criterion × 100).

To further delineate potential differences in the groups, we assessed additional behav-
iors observed during each trial, which we categorized as exploratory, disequilbrium, fear,
and maintenance behaviors. Exploratory behaviors included observations of vacillation,
spinning, and rearing. Disequilibrium behaviors included compromised ambulation, im-
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paired gait, balance issues, and disorientation. Fear behavior was identified as observations
of freezing. Maintenance behavior included grooming.

2.4. Determination for Resilient and Vulnerable Subgroups

Following completion of BB testing, the rats were trained in a conditioned fear
paradigm and classified as either resilient or vulnerable based on percent change in REM
amounts following footshock training shock compared to baseline (%Change = Total REM
post-shock/Total REM Baseline × 100) using an established procedure [18,19]. Briefly,
following shock, vulnerable rats were determined based on a 50% or greater decrease in
REM during the first 4 h of recording compared to baseline. Resilient rats were determined
based on smaller decreases (≤50%), no change, or increases in REM compared to baseline.
Sleep recording occurred within the same room the animals were housed. For recording,
individual cages were placed on a telemetry receiver, and the transmitter was activated
with a magnet. When the animals were not on study, the transmitter was inactive. Teleme-
try signals were processed and collected and then visually scored by a trained individual
blinded to treatment condition in 10 s epochs using the Neuroscore sleep analysis program
(Data Sciences International; Minneapolis, MN, USA). Epochs were scored based on EEG
and whole-body activity. Specifically, REM was scored by the presence of high-frequency,
low-amplitude EEG with the presence of theta rhythms and body inactivity.

2.5. Statistical Analyses

Percent change in sleep data was analyzed using an ordinary one-way analysis of
variance (ANOVA) test. Tukey’s post hoc multiple comparisons test was performed when
indicated by a significant ANOVA.

Performance data on the BB task was either analyzed with an ordinary one-way
ANOVA (without phenotype separation) or a two-way mixed factor ANOVAs with Pheno-
type(resilient and vulnerable) as between factors and Test Day as a within subject factor
when appropriate. Tukey’s post hoc multiple comparisons test was performed when in-
dicated by a significant ANOVA. All ANOVAs were generated using GraphPad PRISM
software (Version 9.4.1).

3. Results

There were minimal differences between each treatment group’s ability to learn
the BB task when resilient and vulnerable phenotypes were not considered separately
(Figure 1A–C). However, one-way ANOVA revealed significant differences between groups
(F3,77 = 4.002; p = 0.01), and Tukey’s post hoc revealed the SI group had worse overall pass
rates during the LP compared to the other groups (p < 0.05 compared to Control and
DFS) (Figure 1A). Despite this, all groups ended their LP in in a similar number of trials
(F3,77 = 0.5610; p = 0.6424) (Figure 1B). When measuring performance rates of animals that
reached criterion, thereby ending their LP, overall pass rates during the PLP were not
significantly different (F3,78 = 2.491; p = 0.0664) (Figure 1C). Percentage plots showing
the time course of each group’s average number of trials to reach and complete criterion
demonstrate clear deficits in the SR and DFS groups compared to the Control and SI groups
(Figure 2A,B). By the end of the BB task, 66.7% of the total animals in the SR group (p < 0.001
compared to SI) and 60% of the animals in the DFS group were able to reach criterion.
The same percentage of SR animals also could successfully complete a trial into the goal
box from criterion (p < 0.001 compared to SI), but only 53.3% of the animals in the DFS
group could successfully complete a trial from criterion. Contrastingly, 88.5% of the total
animals in the SI group were able to reach criterion and successfully complete a trial from
criterion by the end of the BB task. The Control group demonstrated 82.1% of the total
animals within the group reach criterion by the end of the BB task, but only 78.6% of the
group successfully completed a trial from criterion. However, this was not due to any
observable impairment, but once these animals learned, they engaged in more off-task
behaviors unrelated to completing the BB task.
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Figure 1. Lack of Phenotypic Separation Reveals Minimal Differences in the Balance Beam Task
During the Learning Period (LP) and Post-Learning Period (PLP). Graphs plotting differences
between groups for (A) the percent pass rates ± SEM of each group during the LP, (B) the average
number of trials ± SEM needed to end the LP for each group, and (C) the percent pass rates ± SEM
of each group during the PLP. Compared to SI: * p < 0.05.
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Figure 2. Irradiation Reduces the Number of Animals Able to Reach Criterion. Line graphs
showing the percentage of animals within each group that (A) attempted to cross the beam from
position 4 in a given number of trials and (B) animals that successfully completed criterion (success
from position 4) in a given number of trials. Compared to SI: *** p < 0.001 for both graphs.

To further delineate potential performance differences across groups, we assessed
additional categories of behavior (Exploratory, Disequilbrium, Fear, and Maintenance)
during the LP and PLP (Tables 1 and 2, respectively). Overall, during the LP, the Control
group exhibited more exploratory and maintenance behaviors unrelated to completing the
BB task. The SI, SR, and DFS groups exhibited instances of disequilibirum, which resulted
in increased difficulty to complete the BB task. Furthermore, the SR and DFS groups also
exhibited fear behaviors during the task, which, in certain intences, led to an apparent
unwillingness to attempt the task. During the PLP, the behaviors exhibited within each
group persited or increased. Thus, the behaviors in the Control group were categorically
different from those of the SI, SR, and DFS groups in ways that standard assessments on
the BB do not detect.
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Table 1. Observable Behaviors During the Learning Period (LP) of the Balance Beam Task Dif-
fered Between Treatment Groups. Table showing the percent occurrence of the total behavioral
categories exhibited during the LP of the balance beam task. Behaviors within each category include
the following: Exploratory—vacillation, spinning, and rearing; Disequilibrium—compromised ambu-
lation, impaired gait, balance issues, and disorientation; Fear—freezing; and Maintenance—grooming.
Compared to Control: ++ p < 0.01, +++ p < 0.001.

LP Exploratory Disequilibrium Fear Maintenance Total
Instances

Control 97.48% 0.00% 0.00% 2.52% 119
SI 57.14%, +++ 42.86% 0.00% 0.00% 14
SR 10.64%, +++ 79.79%, +++ 6.38% 3.19% 94

DFS 18.87%, +++ 73.58%, ++ 5.66% 1.89% 53

Table 2. Observable Behaviors During the Post-Learning Period (PLP) of Balance Beam Task Dif-
fered Between Treatment Groups. Table showing the percent occurrence of the total behavioral
categories exhibited during the PLP of the balance beam task. Behaviors within each category include
the following: Exploratory—vacillation, spinning, and rearing; Disequilibrium—compromised ambu-
lation, impaired gait, balance issues, and disorientation; Fear—freezing; and Maintenance—grooming.
Compared to Control: + p < 0.05, ++ p < 0.01, +++ p < 0.001.

PLP Exploratory Disequilibrium Fear Maintenance Total
Instances

Control 75.62% 0.00% 0.00% 24.38% 201
SI 56.45% 40.32%, +++ 0.00% 3.23%, + 124
SR 9.03%, ++ 71.61%, +++ 12.90% 6.45%, + 155

DFS 13.37%, ++ 81.28%, +++ 4.81% 0.53%, + 187

Rats were divided into resilient and vulnerable groups based on REM responses to
footshock stress as described in a previously published work [18,19]. This provided distinct
resilient and vulnerable responses and forms the basis for the remaining comparisons in
this report. Overall, no differences in total REM or NREM sleep between resilient and
vulnerable animals maintained in house and Sham groups were observed (F3,46 = 2.297;
p = 0.0901 and F3,46 = 0.9601; p = 0.4196, respectively) (Supplementary Figure S1A,B), so
Sham rats were incorporated into respective Control or SI groups (depending on treatment
received and phenotype) for subsequent analyses. The following comparisons were made
with these new groups moving forward: differences between Control resilient (n = 16) and
treatment resilient groups (SI, n = 16; SR, n = 13; and DFS, n = 11), differences between
Control vulnerable (n = 10) and treatment vulnerable groups (SI, n = 8; SR, n = 2; and DFS,
n = 3), and differences between resilient and vulnerable phenotypes within each group.
Differences in resilient and vulnerable phenotypes were observed in the effects of shock on
sleep (Figure 3A,B). When measuring % change in total NREM and REM amounts following
shock compared to baseline within the first 4 h of recording, ANOVA revealed significant
differences between groups (F7,68 = 2.392; p = 0.03), but post hoc analysis did not reveal
significant differences observed in the % change of NREM, though vulnerable animals
within each group did show slight decreases in NREM compared to resilient animals.
ANOVA revealed significant differences between Groups when measuring percent change
in REM (F7,68 = 14.29; p < 0.0001), and Tukey’s post hoc revealed Control (p < 0.0001), SI
(p < 0.0001), and DFS (p < 0.01) vulnerable rats exhibited a greater percent decrease in total
REM sleep following shock compared to resilient rats. This was not significant within the
SR group due to a low sample size within the vulnerable phenotype (p = 0.232) (Figure 3B).
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imals. Graphs plotting the first 4 h of sleep recording during baseline and after shock training
(post-shock) of resilient (R) and vulnerable (V) animals within each treatment group for (A) the
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Following separation of resilient and vulnerable phenotypes within each treatment
group, clear differences in performances in the BB sensorimotor tasks were also observed.
When measuring the number of trials to complete their first successful crossing or “pass”
from position 1, ANOVA revealed significant differences between Groups (F1,73 = 4.452;
p = 0.03) and Treatment (F3,73 = 7.299; p < 0.001) but not between Group × Treatment
interaction Rats subjected to SI required a higher number of trials to complete their first
successful pass (from position 1) compared to other groups, and this was amplified in the SI
vulnerable group (p < 0.01 for all significant comparisons) (Figure 4A), The SR resilient and
DFS resilient and vulnerable groups completed their first successful crossing in a similar
number of trials as the Control group. The initial delay in the SI group did not appear
to be a persisting impediment, as once learned, they appeared to have no further deficits
and performed similarly to the Control group, regardless of the resilient or vulnerable
phenotype. Despite no differences in percent pass rates between the treatment group or
phenotype during the LP being observed (p > 0.24) (Figure 4B), and all resilient and vulner-
able animals within each group ending their LP within a similar number of trials (p > 0.91)
(Figure 4C), differences in the percentage of animals within each group that were able to
appropriately perform the BB task and reach criterion were found. SR and DFS groups had
the lowest percentage of animals to reach criterion, and this was different between resilient
and vulnerable phenotypes (SR: ~75% for resilient and ~50% for vulnerable, DFS: ~60%
for resilient and ~78% for vulnerable). Control and SI groups had a higher percentage of
animals within each group, regardless of resilient and vulnerable phenotype, that could
successfully reach criterion (Control: ~80% for both resilient and vulnerable phenotypes; SI:
~90% for both resilient and vulnerable phenotypes) (F1,22 = 0.3121; p = 0.582) (Figure 4D).
Interestingly, all animals within each group that learned the task were able to complete
their first successful crossing PLP from criterion (position 4) in 1 trial. When measuring suc-
cessful crossing rates of animals that learned within each group, there were no differences
between the resilient and vulnerable phenotypes, and ANOVA did not reveal significant
differences in Group × Treatment interaction (F3,54 = 0.8704; p = 0.4622), but the Control
group had the lowest overall pass rates, and Tukey’s post hoc analysis revealed significant
differences in the Control resilient group (p < 0.01 for all comparisons) (Figure 4E). When
measuring success rates from criterion, there were no differences between the resilient
and vulnerable phenotypes, and ANOVA did not reveal significant differences in Group
× Treatment interaction (F3,54 = 1.127; p = 0.3463), but the Control group had the lowest
percent success rates from criterion than any other treatment group, and Tukey’s post
hoc analysis revealed this was significant in the Control resilient group (p < 0.001 for all
comparisons) (Figure 4F). This was not due to an observable lack of ability or impairment,
but attributed to the exploratory and maintenance behaviors these animals engaged in
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after learning. Interestingly, Control resilient rats had lower success rates compared to
Control vulnerable rats. When comparing the instances of additional behaviors exhibited
between resilient and vulnerable phenotypes within each group, it was found that resilient
animals on average exhibited a higher instance of the off-task behaviors mentioned above
compared to vulnerable animals (Supplementary Table S1).
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Figure 4. Differences in the Ability to Complete the Balance Beam Task are Seen with Phenotype
Separation During the Learning Period (LP) and Post-Learning Period (PLP). Graphs plotting
differences between resilient (Res) and vulnerable (Vul) phenotypes within each treatment group
for (A) the average number of trials ± SEM for a group to complete their first successful crossing or
“pass” (from position 1), (B) the percent pass rates ± SEM of each group during the LP, (C) the average
number of trials ± SEM needed to end the LP for each group, and (D) the percent of animals ± SEM
that reached criterion (position 4). (E) The percent pass rates (regardless of position) ± SEM of each
group during the post-learning period (PLP), and (F) the percent success rates of animals ± SEM
from criterion (position 4). Compared to Control: a, p < 0.05; SI: d, p < 0.05.

Additionally, when measuring the average time to complete a trial during LP and PLP,
the Control and SI resilient and vulnerable groups had relatively similar completion times
for each. The SR and DFS groups had longer completion times than the Control and SI
groups during the LP, but the SR reduced their completion time from LP by ~40 s and ~30 s,
respectively. During the LP, 100% of animals in each group failed a trial at least once. Of the
total number of fails in each group, most were due to the animal falling off the beam rather
than the animal timing out during the trial (Table 3). During the PLP, the total number of
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failures in each group increased. Interestingly, most failures in the SI and DFS groups were
due to falling off the beam rather than the animal timing out, indicating they attempted
to traverse the beam but were unable due to higher instances of disequilibrium; however,
Control and SR group failures were due to the animal timing out during the trial rather
than falling off the beam (Table 4). Comparing their behaviors during the PLP, the Control
group’s timing out was due to increased exploratory and maintenance behaviors, while the
SR group’s timing out appeared to be related to increased fear and disequilibrium, which
was associated with them not moving from their start position.

Table 3. Performance in the Balance Beam during the Learning Period (LP). Table showing the
average time to complete a trial, the percentage of animals that failed a trial, the percentage of total
failures that occurred due to falling off the beam, the percentage of total failures that occurred due to
timing out, and the total number of fails that occurred during the learning period LPof resilient (R)
and vulnerable (V) animals within each treatment group during the balance beam task.

LP
Time to

Complete a
Trial

Animals that
Failed

Failed Due
to Falling

Failed Due
to Timing

Out

Total
Number of

Fails

Control-R 46.79 s 100% 92.31% 7.69% 78

Control-V 44.72 s 100% 79.66% 20.34% 59

SI-R 30.83 s 100% 98.87% 1.13% 89

SI-V 30.25 s 100% 100% 0% 71

SR-R 71.81 s 100% 96.88% 3.12% 64

SR-V 73.40 s 100% 100% 0% 11

DFS-R 59.94 s 100% 68.42% 31.58% 19

DFS-V 51.96 s 100% 100% 0% 3

Table 4. Performance in the Balance Beam is altered from the LP to Post-Learning Period (PLP).
Table showing the average time to complete a trial, the percentage of animals that failed a trial, the
percentage of total failures that occurred due to falling off the beam, the percentage of total failures
that occurred due to timing out, and the total number of fails that occurred during the PLP of resilient
(R) and vulnerable (V) animals within each treatment group during the balance beam task.

PLP
Time to

Complete a
Trial

Animals that
Failed

Failed Due
to Falling

Failed Due
to Timing

Out

Total
Number of

Fails

Control-R 54.97 s 78.57% 36.67% 63.33% 150

Control-V 42.63 s 100% 29.62% 70.37% 81

SI-R 37.11 s 82.35% 92.30% 7.70% 91

SI-V 27.56 s 16.67% 100% 0% 41

SR-R 33.01 s 45.45% 21.50% 78.50% 107

SR-V 28.11 s 100% 29.73% 70.27% 37

DFS-R 27.01 s 66.67% 52.94% 47.06% 119

DFS-V 21.60 s 66.67% 77.78% 22.22% 9

4. Discussion

In this study, we assessed the effects of SI and SR on motor learning, sensorimotor
function, and behavior during the BB task, and how these effects may vary with stress
resilience and vulnerability based on stress-induced changes in sleep. We found both
sensorimotor and behavioral deficits associated with SR and unexpected positive effects
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of SI on performance in the BB task, and these interactions differed depending on sleep-
related stress resilience and vulnerability. However, the interactions among stressors and
individual differences in stress responsivity are complex and involve more than simple
alterations in motor ability that may affect performance. Performance on the BB task
requires the use and integration of multiple neural systems, including those subserving
sensorimotor function, learning and memory, cognition (including attention, perception,
understanding, and decision making), emotion, and likely others. In this study, we also
showed that performance in the BB task was heavily influenced by learning ability and
behavioral sensitivity and/or flexibility.

The consequences of single or compound inflight stressors on one or more of these
systems varied with stress resilience and vulnerability. For example, SI appeared to have a
greater effect on learning new gross motor skills, as both SI resilient and vulnerable animals
exhibited a temporary blunted ability to learn in the beginning of the BB task, and this effect
was exacerbated in SI vulnerable rats. Previous reports in mice [28,29] and fish [30] have
shown that SI can impair hippocampal neurogenesis and learning skills, and long-term
SI can result in morphological changes in the hippocampus, specifically atrophy of the
CA1 area [31]. Social interaction appears to be linked to learning and is evolutionarily
conserved across taxonomic classes. The hippocampus is a key region for both memory
and sleep [32,33], and stress and/or stress-induced changes in sleep, can both alter the
processing of new information [34] and the retrieval of previously acquired memories [35].
This evidence supports our observed learning impairment in the SI animals during the
beginning of the BB task, and it is plausible that the increased stress sensitivity of the SI
vulnerable animals led to a greater learning impairment, as stress can alter hippocampal
morphology and induce synapse loss within the hippocampus [36,37]. These animals did
exhibit increased disequilibrium compared to Controls, but this did not hinder SI animals’
successful learning and completion of the BB task from criterion, regardless of resilient or
vulnerable classification, as nearly 100% of animals of each phenotype learned the task with
almost 100% accuracy. Overstimulation of adrenergic components in brain, specifically
those connecting the hippocampus, hypothalamus, and brainstem is implicated in inducing
disequilibrium [38]. This neural circuit is also intimately related to sleep regulation [39].
While little is known about the neural consequences of SI, this work suggests that neural
regions that regulate sleep can also modulate sensorimotor function, potentially through
hippocampal pathways.

Contrastingly, SR impaired gross motor performance needed for the BB task in some
individuals that hindered their ability to traverse the beam and required the highest num-
ber of trials to reach criterion. These sensorimotor problems are consistent with previous
reports [3–5,40] and were exacerbated in the vulnerable phenotype. Combined, this re-
sulted in one of the lowest percent of animals that reached criterion of any treatment group.
SR animals also displayed a high frequency of fear behavior not seen in Control and SI
animals, including fearful or anxious and freezing behaviors. This was greater in vulnerable
animals, suggesting SR may increase sensitivity to stress, leading to an exaggeration of
fear and related behaviors that may also impair initial learning, as SR vulnerable, but not
resilient, animals exhibited learning impairments similar to SI animals during the beginning
of the BB task. Motor skills needed for the BB task may also be hindered by the ability
to appropriately cope with stress [34], or conversely, impaired motor skills may impact
emotion. Several studies have characterized the negative effects of SR on hippocampal
functionality [41–43], while others have shown that SR can affect the hypothalamus, specif-
ically monoamine metabolism—for example, dopamine. Recent evidence has shown that
dopamine is important for motor learning in multiple species, and dopamine-dependent
learning mechanisms are only active during sensorimotor adaptation [44]. Therefore, it is
possible that sensorimotor deficits induced by SR also act through similar neural systems
to those discussed above for SI, possibly through dopaminergic signaling pathways.

Interestingly, when exposed to DFS, the initial learning deficits observed in the groups
that received SI or SR alone were ameliorated. This was unexpected, as we hypothesized
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this combination would exacerbate any deficits or complications observed in SI or SR
exposure alone. To our knowledge, these interactions have not been reported before.
The effects of SI alone are somewhat understood, but acute and chronic SI appear to
have differential outcomes, namely on responses to stimuli and alterations in neural
circuits [45,46]. However, a deficit in social interactions, acute or chronic, have been shown
to increase seeking/craving of future interactions that may alter other behaviors [45,46],
leading some to suggest shorter periods of SI can be beneficial and lead to an increased
ability to focus. Our findings suggest that this putative beneficial effect on learning and
memory may occur even with chronic SI, and these effects can change when in combination
with SR. DFS animals still exhibited high levels of disequilibrium and fear, causing them
to fail to complete the task, or not even attempt the task altogether, leading to similar
percent success rates as SR animals, suggesting that SR has a greater impact on systems
that regulate motor ability and emotional processing compared to SI, and that SI is not
able to ameliorate the effects of SR on these systems that were observed for learning and
memory. Alterations in freezing associated with irradiation, including increases, have
been previously reported [47]. Thus, it is possible that greater freezing in these groups
reflects less behavioral flexibility, rather than greater actual fear (or perhaps a combination
of reduced behavioral flexibility and increased fear). Additional work will be required
to determine whether and how SR differentially impacts neural activity in resilient and
vulnerable rats and its relevance.

The Control group’s behaviors and approach to the BB task were categorically different
from those of the SI, SR, and DFS groups. Following learning, their engagement in more
exploratory and maintenance off-task behaviors later in the BB task was associated with
higher rates of timing out and an unwillingness to continue to do the task required of them.
Executive functions play an important role in regulating behavior and impulses, and in
processing and regulating affect, motivation, and arousal [48]. It is possible these animals
may have reduced motivation to continue the repetitive BB task and take advantage of
opportunities to engage in other behaviors over time. Exposure to SI or SR may alter
executive functions, which might reduce the behavioral flexibility or modify motivation
when given a task. This likely is also influenced by changes in emotion and motor ability.
Control vulnerable animals exhibited off-task behaviors, though they were less frequent
than in their resilient counterparts, leading to a higher percent success rate. This may be
attributed to the increased emotional sensitivity in vulnerable animals that made them less
behaviorally flexible and more focused on completing the task compared to the resilient
Control animals. Thus, differences between resilient and vulnerable rats may reflect
complex interactions between motivation and emotion that impact cognitive and behavioral
flexibility in ways that would be important for astronaut performance.

Overall, our study demonstrated the single and compound effects of SI and SR on
learning and memory and sensorimotor performance, and that SI and SR interactions can
be assessed behaviorally. Because we found that standard behavioral measures on the
BB test were inadequate to fully assess the effects of SI and SR, we developed additional
assessments of the animals’ behavioral repertoires. These assessments demonstrated both
motor deficits/changes and interactions between motor performance and emotion and
also illustrated that motor responses do not provide a full explanation for altered BB
performance effects. Moreover, we found that resilient and vulnerable rats maintain their
phenotypes under SI and SR, and that vulnerable rats showed greater deficits on some
measures. Unfortunately, the resilient and vulnerable phenotypes can vary across cohorts;
thus, it is virtually impossible to ensure equal distributions across groups. This led to low
power in some of our statistical analyses; however, differences can still clearly be observed
and suggest that this model may be useful for determining the role of individual differences
in the effects of SI and SR.

The need to understand individual differences in the ability to cope with stress and
also the effects of heterogeneous stressors is being widely recognized [49]. In addition to
the present finding on the greater impact of SR on emotion and sensorimotor function,
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individual differences in the impact of SR on performance have been demonstrated in exec-
utive function and attention in rats, with 32–36% (attentional set-shifting test performance)
and 40% (rodent psychomotor vigilance test) of rats performing the tasks poorly [40,50].
This suggests multi-system effects of SR and potentially other stressors can vary with
individual resilience and vulnerability. The unexpected outcomes of SI and SR interactions
also highlight the need for more detailed mechanistic studies that reveal the neural conse-
quences of the single and compound stressor exposure. However, understanding both the
effects of stressors and how they differ across individuals will be of particular importance
for astronauts who will be subjected to chronic and/or intermittent stressors in a unique
environment that can impact their mental and physical health, as well as their ability to
perform mission related tasks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life13030826/s1, Figure S1: Sleep Does Not Differ between Control and Sham Groups.
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Summary of Results.
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