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Abstract: Methodological biases are common in observational studies evaluating treatment effec-
tiveness. The objective of this study is to emulate a target trial in a competing risks setting using
hospital-based observational data. We extend established methodology accounting for immortal
time bias and time-fixed confounding biases to a setting where no survival information beyond
hospital discharge is available: a condition common to coronavirus disease 2019 (COVID-19) research
data. This exemplary study includes a cohort of 618 hospitalized patients with COVID-19. We
describe methodological opportunities and challenges that cannot be overcome applying traditional
statistical methods. We demonstrate the practical implementation of this trial emulation approach
via clone–censor–weight techniques. We undertake a competing risk analysis, reporting the cause-
specific cumulative hazards and cumulative incidence probabilities. Our analysis demonstrates that
a target trial emulation framework can be extended to account for competing risks in COVID-19
hospital studies. In our analysis, we avoid immortal time bias, time-fixed confounding bias, and
competing risks bias simultaneously. Choosing the length of the grace period is justified from a
clinical perspective and has an important advantage in ensuring reliable results. This extended trial
emulation with the competing risk analysis enables an unbiased estimation of treatment effects, along
with the ability to interpret the effectiveness of treatment on all clinically important outcomes.

Keywords: competing events; COVID-19; methodology; observational data; target trial emulation

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respira-
tory syndrome coronavirus 2, triggered unprecedented speed in generating evidence on
treatment effectiveness through the use of real-world data [1–3]. However, estimating treat-
ment effects from observational data is challenging and demands careful consideration [4].
Due to the lack of randomised treatment exposure assignment in an observational data
context, two main limitations should be considered. First, treatment indication differences
due to imbalanced prognostic characteristics between treatment groups can lead to baseline
confounding bias [5,6]. Second, varied treatment initiation times can lead to immortal time
bias [4,7]. Furthermore, competing risks need to be considered in survival data analysis. By
definition, a competing risk is an event that prevents the occurrence of the primary outcome
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of interest [8]. Failure to account for one or several methodological biases yields inaccurate
results and flawed conclusions [3,4,6,9]. For example, misclassification of immortal time,
that is, when patients are classified as treated, from the study beginning leads to a survival
advantage for the exposed group [4,10]. Ignorance of competing events and application
of the naïve Kaplan–Meier method often results in overestimating the risk of a primary
event [11–13].

Methodological biases are common in observational studies when assessing the effec-
tiveness of treatment in hospitalised patients with COVID-19 [3,6]. A review of COVID-19
studies published in high-impact journals showed that immortal time, confounding, and
competing risk biases were only partially controlled for or entirely ignored [3]. In particular,
only 1 out of 11 evaluated studies addressed competing risk bias [3]. In-hospital mortality
or the so-called ‘undesirable’ or ‘negative’ outcome is often considered as a primary event of
interest in COVID-19 studies. In these studies, hospital discharge prevents the observation
of in-hospital death. Similarly, in research investigating discharge alive or the so called ‘de-
sirable’ or ‘positive’ outcomes, in-hospital death events prevent observing discharge alive.
Therefore, competing events must be properly taken into account in time-to-event analyses
involving hospital mortality or recovery-based end points to avoid flawed results [9,14–16].
However, naïve methods for survival analysis ignore competing risks.

During the COVID-19 pandemic, observational data from electronic records has been
increasingly used to emulate target trials. This design framework can be applied to mimic
a hypothetical trial or contribute to existing knowledge, especially when data from ran-
domised controlled trials are unavailable [17]. During the COVID-19 pandemic, this
framework was used in a wide range of evaluations, i.e., drug therapies [18–24], extracor-
poreal membrane oxygenation [25,26], vaccine effectiveness [27,28], non-pharmaceutical
interventions, and policy evaluations [29]. To emulate a trial, there are two common meth-
ods: the cloning approach and the sequential trial approach [17,30]. The cloning approach
involves creating two duplicates of each patient and distributing them to the two treatment
arms, while the sequential trial approach mimics a sequence of time zeros [31]. Both ap-
proaches address potential immortal time bias but also require that weighting methods be
adapted to account for selection and confounding biases [30,31]. This framework can also
be extended in the presence of competing risks.

In this paper, we aim to emulate a trial and conduct an extended competing risk
analysis. We present the methodology in the context of implementing the framework on
real-world data from patients with COVID-19 hospitalized at the Medical Center Isfahan,
Iran, during the pandemic’s first wave in 2020. By using a common example of data in our
case study, we aim to describe the advantages and limitations of longitudinal observational
patient data. For demonstration, we chose to evaluate an antiviral treatment’s effectiveness.
To avoid drawing clinical conclusions from our methodological study, we chose not to
show the pharmaceutical name of the evaluated treatment. In our analysis, we make a
simplifying assumption by setting the hazard rates to time-constant. This translates into
a closed and simplified version of the cumulative incidence function. The reason for this
assumption is to deepen understanding of the challenge of competing risks. Furthermore,
this assumption can be easily relaxed, as our study demonstrates.

The paper is organised as follows. In Section 2, we begin with a description of
our emulated trial and specify its key components. The trial is then emulated using
observational data via the three-step process of cloning, censoring, and weighting. We
introduce a competing risks model and its associated statistical methods to extend the
emulated trial. In Section 3, we present the results of the data example and compare them
with sensitivity analyses and naïve traditional survival methods. In Section 4, we discuss
the approach we proposed and compare it with other methods reported in the literature.
Our model’s limitations are described in Section 5. Finally, our summary and conclusions
are found in Section 6.
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2. Materials and Methods
2.1. Emulated Trial Specification

To emulate a target trial, a detailed protocol must be drafted that describes its un-
derlying design and analytic components [17]. In our study, the emulated trial protocol
included study questions, outcomes, eligibility criteria, treatment strategies and assignment,
follow-up times, a grace period, an estimand, and a statistical analysis plan. A summary of
our emulated trial’s key components is found in Table 1. All patients gave their written
informed consent to the treatment procedure.

Table 1. A summary of protocol components for the target trial emulation.

Protocol Component Description of Emulation

Research questions

1. Is ‘X’ antiviral treatment associated with lower in-hospital mortality among
patients hospitalized with COVID-19?

2. Does the length of in-hospital stay differ between X-treated and
non-X-treated patients?

Outcomes In-hospital death and discharge alive (competing event)

Eligibility criteria
• Adult patients aged ≥18 years
• PCR confirmed SARS-CoV-2 infection or HRCT chest findings
• Hospitalized within time period from February until May 2020

Exclusions
Any contraindication to ‘X’ antiviral treatment (e.g., liver dysfunction, kidney
injury, cardiac arrhythmias, including QT prolongation) at hospital admission that
made the patient unsuitable for receiving ‘X’ treatment

Treatment strategies
• Initiate ‘X’ treatment (‘treated’) within two days of hospital admission
• Do not initiate ‘X’ treatment (‘untreated’) within two days of hospital

admission

Treatment assignment Non-randomized ‘X’ treatment assignment

Follow-up time
Begins with hospital admission, and treatment initiation must occur within the
first two days after hospitalization and end at 60 days or in-hospital death or
discharged alive

Grace period First two days after hospital admission

Estimand Difference in the risk for in-hospital death and discharge alive

Analysis plan

• Emulation of target trial: Analysis conducted on the cloned data set
assuming random treatment assignment and with a censoring indicator
when there is a protocol deviation within the grace period; selection bias
accounted for by using inverse probability of artificial censoring weights.

• Type of primary analysis and statistical model:
o Cause-specific hazard approach is selected to account for competing risks
o Cause-specific discrete time-constant hazards for in-hospital death and

discharge alive estimated via weighted pooled logistic regression
o Cause-specific cumulative incidences estimated via weighted cumulative

incidence functions
o Differences in risk for in-hospital death and discharge alive

Adjustment variables
• Demographic: age and sex
• Clinical characteristics: oxygen saturation, respiratory rate, and creatinine

serum level measured at hospital admission

Abbreviations: COVID-19, Coronavirus disease 2019; HRCT, high-resolution computed tomography; PCR,
polymerase chain reaction.



Life 2023, 13, 777 4 of 15

Our main clinical research question was to evaluate the effect of the antiviral treatment
on the primary outcome, that is, in-hospital mortality among patients hospitalized with
COVID-19. We also aimed to examine differences in hospital-stay durations between the
two treatment groups. Discharge alive was considered as a competing event because it
prevents observing in-hospital death between the time of discharge and the end of follow-
up. All hospitalized patients experienced one of these two outcomes. The length of hospital
stay was then measured as the time from hospital admission to either in-hospital death or
discharge alive.

Patients were eligible (i) if they were 18 years of age or older, (ii) had laboratory-
confirmed severe acute respiratory syndrome coronavirus 2 infection detected by poly-
merase chain reaction or had radiological evidence using high-resolution chest computed
tomography showing lesions compatible with COVID-19, and (iii) were hospitalized from
February to April, 2020 [32]. Patients were diagnosed according to the Chinese COVID-19
diagnosis and treatment guidelines as well as World Health Organization provisional ad-
vice [33]. Inclusion and exclusion criteria of our study’s target population are in Table 1, and
a flowchart of patients eligible for a trial emulation is shown in Supplementary Figure S1.

We evaluated the effectiveness of ‘X’ antiviral treatment with the standard of care
versus the standard of care alone, in accordance with the treatment strategies used in
clinical practice. We excluded the name of the evaluated treatment to avoid a clinical
interpretation of our methodological study. Two strategies were compared, namely, initi-
ating ‘X’ treatment within the first two days after hospital admission (in the text referred
to as ‘treated’) versus no ‘X’ treatment during the first two days after admission, which
meant no antiviral treatment at all, or antiviral treatment initiation after the first two days
(‘untreated’). The decision on assigning ‘X’ treatment was based on provisional treatment
recommendations [33]. The treatment was indicated when the oxygen saturation fell below
95% and a loading dose of the drug was given twice daily for five days.

To emulate the target trial, we needed to define the start of follow-up, the so-called
baseline or time zero. In our study, baseline was defined as the time of hospital admission.
The end of follow-up was in-hospital death, discharge alive, or the end of follow-up on
day 60, whichever occurred first. A grace period designated when treatment could be
initiated after baseline. Implementing a grace period makes the treatment strategies used
in clinical practice more pragmatic [17,34]. The length of the grace period should rely on
a clinical decision and serve to reduce heterogeneity between patients [35]. Our study
defined the grace period during which patients were eligible to begin treatment as two
days after hospital admission. Consequently, patient’s ‘cloned’ data could appear in both
treatment strategies within two days [36].

In our hypothetical trial protocol, we also determined that the estimated effect is the
observational analogue of the intention-to-treat effect. Firstly, we defined that ‘X’ treatment
could be initiated within the first two days of hospital admission. We then summarized
information from the hospital records on the assigned treatment within the grace period.
Furthermore, we did not capture deviations from the protocol beyond the grace period,
similar to the intention-to-treat principle. The simplified strategy we applied required ‘X’
treatment initiation or its non-initiation within the grace period, regardless of whether
the treatment was continued. Patients who had been assigned ‘X’ treatment after the first
two days were considered to be non-X-treated. Our main estimand of interest was risk
differences for in-hospital death and discharge alive.

2.2. Practical Implementation of Cloning, Censoring, and Weighting

Emulating a target trial takes a three-step approach, namely cloning, censoring, and
the inverse probability of artificial censoring weighting [31]. Cloning attempts mimic
random allocation in that patients are assigned to both treatment strategies until their
treatment strategy is confirmed [17,31,37]. In our case, each patient’s data were cloned at
hospital admission and assigned to both the ‘X-treated’ arm and the ‘non-X-treated’ arm
independently of their later treatment status, thus increasing the initial sample size. The
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trial arms were therefore identical with respect to the patients’ demographics and clinical
characteristics at baseline. The cloning approach also enabled us to distribute patients who
experience early fatal and nonfatal outcomes to both treatment strategy arms (Figure 1).

Figure 1. A hypothetical example of target trial emulation applying cloning and censoring techniques.
Notes: In observed data (A), patients with identification (ID) numbers 1 to 6 received treatment at
some time after hospital admission. Patients with ID 7-10 were never treated during their hospital
admission. Patients with ID 1, 3, 5, 7, and 9 died, and 2, 4, 6, 8, and 10 were discharged alive. Two
clones of the observed data were created for each patient, with one clone assigned to each treatment
strategy. (B) All patients were assigned to the X-treated arm in cloned sample B, and patients were
censored when they deviated from the planned protocol. Patients with IDs 5 to 8 who were never
treated were censored at the end of the grace period. (C) All patients were assigned to the non-X-
treated arm in cloned sample C, and patients were censored when they deviated from the planned
protocol. Patients with IDs 1 to 4 treated within the grace period were censored at the time they
received treatment.

The emulated trial’s design implements artificial censoring by censoring patients when
they deviate from the planned protocol during the grace period [37]. In our study, this
meant that the patient given ‘X’ treatment within two days was censored at the treatment
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administration time point in the ‘non-X-treated’ arm. Similarly, patients in the ‘X-treated’
arm who did not start treatment within two days were censored at day two. Moreover, the
person-time of patients who experienced in-hospital death or discharge alive outcomes
within the grace period contributed to both arms (Figure 1).

The potential selection bias induced by artificial censoring can be corrected using the
inverse probability of artificial censoring weights. The goal of the weights is to up-weight
the remaining patients in the risk set so that they represent the censored patients. This
step is important to maintain the comparability and balance of the two arms throughout
the grace period [31,37]. To estimate the probability of being uncensored, we took a non-
parametric approach. First, two Cox regression models were fitted separately for each
treatment arm to assess the covariates’ (in linear form) influence on the probability of
censoring mechanism. According to clinical knowledge, prognostic predictors, such as age,
sex, oxygen saturation, respiratory rate, and creatinine serum level have influenced how
physicians have assigned treatments. All covariates included in our model were considered
by relying on the information available at baseline. Missing data on covariate values
were not imputed, and records with missing data were excluded. Second, we estimated
the probabilities of each patient remaining uncensored at day two of the grace period.
Third, subject-specific unstabilized weights were calculated, inversely proportional to the
estimated probability of remaining uncensored until the end of the grace period. Finally,
the weights were incorporated in the outcome regression model [38]. Note that censored
observations contributed to the denominator of the estimated constant hazards with the
number of days in the original state (i.e., from the study entry until artificial censoring).

2.3. Statistical Analysis of the Emulated Trial

To evaluate the treatment effect on time-to-event outcomes, we took a three-step
approach: (i) extending a composite end point survival analysis to a competing risks
model; (ii) modelling a weighted cause-specific hazards regression for each outcome;
(iii) incorporating cause-specific hazard rates to estimate cumulative incidence functions
in order to obtain parameters enabling an interpretation of the results on risk rather than
on rates. Strengthening the reporting of observational studies in epidemiology (STROBE)
recommendations and a checklist are presented in Supplementary Table S1. All analyses
described in this article were conducted using statistical software R (version 3.6.3). We used
the survival, boot, and ggplot2 packages in R.

2.3.1. Competing Risk Framework

By definition, a competing risk (e.g., hospital discharge) is an event that prevents the
occurrence of the primary outcome (e.g., in-hospital death) of interest [39]. Our emulated
framework fits a simplified three-state competing risks model to estimate transition hazard
rates (Figure 2), where in-hospital death and discharge alive are two absorbing events of the
same disease [40,41]. Each arrow represents a time-homogeneous hazard rate λij from the
initial state of hospital admission as untreated or treated (i = 0, 1) to the two terminating
end points of in-hospital death (j = 2) or discharged alive (j = 3), respectively. Hazards
are interpreted as the instantaneous risk of moving from state i to state j [42]. To obtain
a weighted version (Section 2.2), we incorporated the weights in the outcome models. In
the main analysis, we considered a parametric model and relied on a time-homogeneous
approach. We then applied our estimated constant hazard rates to calculate cumulative
incidences and average lengths of hospital stay.



Life 2023, 13, 777 7 of 15

Figure 2. A competing risk model for trial emulation. Notes: Competing risk model with counterfac-
tual (assuming all patients are treated or untreated from hospital admission) cause-specific hazards
for in-hospital death and discharged alive, assuming that hazards are time-constant.

2.3.2. Outcome Model: Cause-Specific Hazard Regression Model

The cause-specific model measures the association between a treatment exposure on
the end point of interest (i.e., in-hospital death), and other events preventing the main
outcome (i.e., discharged alive) are considered censored observations [43]. In a simple
setting with time-constant hazards, a pooled logistic regression model can be applied to
estimate the effect in the outcome model. The hazard ratios (HRs) are then approximated
from the pooled logistic regression model due to the theoretical relationship between the
odds ratio and HR. Specifically, two weighted pooled logistic regression models for the
in-hospital death and discharged-alive outcomes including adjustment for the month of
admission were fitted for each treatment arm separately according to the treatment status
defined by the end of the grace period. The treatment effect was measured by contrasting
transition-specific hazard rates, for example, λ02 versus λ12 for in-hospital death (Table 2).

Table 2. Overview of weighted treatment effect measures using the parametric model assuming
constant hazards.

Corresponding Measure a Mathematical Formulation

Constant hazards

Death hazard w/o treatment λ02
Discharge hazard w/o treatment λ03

Hazard w/o treatment λ0 = λ02 + λ03
Death hazard with treatment λ12

Discharge hazard with treatment λ13
Hazard with treatment λ1 = λ12 + λ13

Mortality

Mortality risk w/o treatment at the end of follow-up MR0 = λ02
λ02+λ03

Mortality risk with treatment at the end of follow-up MR1 = λ12
λ12+λ13

Mortality risk ratio at the end of follow-up λ12/λ02
(λ13+λ12)/(λ02+λ03)

Difference in mortality at the end of follow-up MR1 −MR0
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Table 2. Cont.

Corresponding Measure a Mathematical Formulation

Hazards and cumulative incidence functions

Hazard ratio of death (treatment vs. w/o treatment) at the end
of follow-up HR2 = λ12

λ02

Hazard ratio of discharge (treatment vs. w/o treatment) at the
end of follow-up HR3 = λ13

λ03

Cumulative risk of death w/o treatment at time t CIF02(t) = λ02
λ0
× (1− exp(−λ0t))

Cumulative risk of discharge w/o treatment at time t CIF03(t) = λ03
λ0
× (1− exp(−λ0t))

Cumulative risk of death with treatment at time t CIF12(t) =
λ12
λ1
× (1− exp(−λ1t))

Cumulative risk of discharge with treatment at time t CIF12(t) =
λ13
λ1
× (1− exp(−λ1t))

Risk differences and ratios

Risk difference functions for death at time t RD2(t) = CIF12(t)− CIF02(t)
Risk difference functions for discharge at time t RD3(t) = CIF13(t)− CIF03(t)

Risk ratios for death at time t RR2(t) =
CIF12(t)
CIF02(t)

Risk ratios for discharge at time t RR3(t) =
CIF13(t)
CIF03(t)

Length of stay

Length of stay w/o treatment LOS0 = 1
λ02+λ03

Length of stay with treatment LOS1 = 1
λ12+λ13

Difference in length of stay LOS1 − LOS0
a Inverse probability censoring weighted. Abbreviations: CIF, cumulative incidence function; HR, hazard ratio;
LOS, length of stay; MR, mortality risk, RD, risk difference; RR, risk ratio; w/o, without. Notes: λ0 = non-X-treated;
λ1 = X-treated.

2.3.3. Outcome Model: Cumulative Incidence Function

In the presence of competing risks, each event’s probabilities are described in terms of
cumulative incidence functions [8]. In the competing risk model (Figure 2), the estimated
overall risk of moving from the initial state to state two at the end of follow-up (τ = 60 days)
is related to the cause-specific rate. As shown, cumulative incidence functions can be
obtained directly when the hazard rates for each transition are known (Table 2). We can
estimate the absolute risk of experiencing an event by time t by relying on the cause-
specific cumulative incidence function by considering the individuals who experienced
competing events [40]. Assuming that hazards are time constant, cause-specific cumulative
probabilities for in-hospital death (1) and discharged alive (2) in the untreated group are
estimated as follows:

CIF02(t) =
λ02

λ02 + λ03
× (1− exp(−(λ02 + λ03)× t)) (1)

CIF03(t) =
λ03

λ02 + λ03
× (1− exp(−(λ02 + λ03)× t)) (2)

where t is the time since hospital admission.
In the final step, we evaluated cumulative incidences by comparing the cumulative

risk of each outcome between treated and untreated patients. We also calculated the risk
differences and risk ratios to quantify the treatment effect on the risk scale (Table 2). In the
result section below, we relied on the 30-day cut-off point to visualize our results, while
final estimates were obtained according to the 60-day follow-up period. This cut-off point
was chosen because there were no significant differences in the results after 30 days. In
addition, 95% confidence intervals were calculated by bootstrapping with 500 replicates.
The code for the trial emulation was adapted according to the Maringe et al. tutorial [31].
The extended competing risk analysis statistical code is available upon request from the
corresponding author. The data on this exemplary study are sensitive and not accessible to
the public.
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2.3.4. Additional and Naïve Statistical Analyses

To evaluate our result’s robustness we conducted non-parametric estimation of the
cumulative probabilities using the Aalen-Johansen approach. This estimator is used to
study more complex transition probabilities, and it generalizes the Kaplan-Meier estimator
in a competing risk setting. A detailed description and mathematical background of the
non-parametric Nelson-Aalen and the Aalen-Johansen approach is found elsewhere [44].
We conducted additional analyses to assess the influence of the grace period’s choice, with
one- and three-day grace periods. To demonstrate the potential impact of competing risks
bias, we performed a naïve survival analysis using the standard Kaplan-Meier estimator.
The Kaplan-Meier analysis (one minus the survival function) was used to calculate the
cumulative probability of in-hospital death. The analysis was conducted using the original
dataset (n = 618) without cloning.

3. Results

Among 655 hospitalized patients, 618 (94.4%) patients with complete information on
the prognostic covariates were included in our original cohort. Baseline characteristics
of the included patients are available in Supplementary Table S2. Following the protocol,
a total of 618 patients were cloned in the treated arm (338 patients were categorized as
X-treated and 280 censored), and 618 patients were cloned in the untreated arm (280 were
categorized as non-X-treated and 338 censored) according to the two-day grace period
(Supplementary Figure S1). Of treated patients, 318 (94.1%) received ‘X’ treatment within
the first day of their admission. Baseline patient characteristics were well-balanced between
treatment groups (Supplementary Figure S2).

3.1. Cause-Specific Cumulative Hazards, Cumulative Incidence Functions, and Risk Differences
Taking the Constant Hazards Approach

During the 60-day follow-up period, there were 40 in-hospital deaths, whereas 578 patients
were discharged alive. We detected no significant differences in the risk of hospital death or
discharge between treated and untreated patients in our sample: HR: 0.79 (95% confidence
interval (CI): 0.34 to 1.18) and HR: 1.03 (95% CI: 0.91 to 1.14), respectively (Supplementary
Table S3). The cumulative in-hospital mortality rates were low during the 30-day cut-off period
(Figure 3).
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Our two treatment group’s estimated 60-day mortality risks were similar, for treated
5.8% and for untreated patients 7.4% (Supplementary Table S3). Since there was no right
censoring, the corresponding discharge probabilities of each treatment arm were one minus
the respective probability of in-hospital death (Supplementary Table S3).

The risk differences were clinically negligible between treatment arms over time
(Figure 4).

The 60-day risk difference for in-hospital death was −0.016 (95% CI: −0.048 to 0.015)
and 0.016 (95% CI:−0.015 to 0.048) for discharged alive outcomes (Supplementary Table S3).
The estimated risk ratio for in-hospital death was 0.79 (95% CI: 0.34 to 1.17) and 1.02 (95%
CI: 0.98 to 1.05) for discharged alive (Supplementary Table S3). The mean duration of
hospital stay was 8 days in both treatment groups (Supplementary Figure S3 and Table S3).
‘X’ treatment did not prove to be significantly associated with a shorter length of hospital
stay at the 5% level. All summarised results of the corresponding measures presented in
Table 2 are provided in Supplementary Table S3.
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3.2. Additional and Naïve Analyses

In the additional analyses, the weighted cause-specific cumulative hazards obtained from
the Nelson–Aalen estimator and the weighted cause-specific cumulative incidences using
the Aalen–Johansen estimator revealed similar patterns (Supplementary Figures S4 and S5).
Subsequently, the risk differences were similar to the differences obtained from the parametric
model (Supplementary Figure S6). Our results were also compared with the grace period’s
different choices, that is, the one- and three-day grace periods, which revealed no significant
differences (Supplementary Tables S4 and S5). In the naïve survival analysis using the Kaplan–
Meier method, the cumulative probability of in-hospital death at 30-days was overestimated
but did not significantly differ between treated (49.9%) and untreated (44.7%) patients (p > 0.05,
differences: 7.1%) (Supplementary Figure S7).

4. Discussion

In our study, the trial emulation with a competing risks model is proposed and
applied to a setting where hospital data are available by adapting the step-by-step tutorial
presented by Maringe et al. [31]. Taking the cloning approach allowed us to address the
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limitations associated with observational data, that is, immortal time bias and time-fixed
confounding bias. The weighted version of the analysis enabled us to address the selection
bias introduced by artificial censoring. Extending the framework to a competing risks
model allowed us to account for competing risks and gain additional information on the
effects of treatment.

The importance of recognising competing events in both randomised trials and ob-
servational studies has been emphasized previously [8,9,45]. Our study highlights how
essential it is to also account for competing risks in emulated target trials. In studies
relying on routine clinical data, the follow-up of COVID-19 patients often ends with either
in-hospital death or discharge alive. In our study, we assumed that hospital discharge
would serve as a valid proxy for recovering from the disease. This assumption is based
on hospital readmissions and post-discharge mortality rates in COVID-19 patients being
relatively low [46]. Using a demonstrative data example, we estimated the treatment effects
on in-hospital death by considering the effects on the competing event of hospital discharge
rather than eliminating it. At the analysis stage, we provided cause-specific hazards and
cumulative event probabilities according to previous recommendations [8,47]. We must ad-
mit that discharge might not present a methodological issue in COVID-19 studies in which
survival data beyond hospital discharge is available. If such information was available
in our data, our statistical methods could have been simplified because discharge would
no longer have been a competing event for death. In that case, for example, discharged
patients remain in the risk set until a pre-specified time (e.g., date of last follow-up) [21].

Lin et al. compared three different analytical approaches to estimate survival probabil-
ities in hospitalised patients with COVID-19 who received convalescent plasma therapy
using observational data. They confirmed that the naïve (unweighted) Kaplan–Meier
method yields biased results [48]. Similarly, in our naïve analysis, we showed that censor-
ing patients at the time of the competing event leads to an overestimation of cumulative
incidence probabilities for the primary outcome of both treatment groups. Therefore,
applying standard survival analysis methods in the presence of competing risks is inap-
propriate [6,9,45,49]. Lin et al. also described two alternative approaches to account for
competing events. Their first method assumed that the patients who were discharged
would be alive until a pre-specified date. Their second method entailed an inverse prob-
ability weighted Kaplan–Meier estimator that accounted for the eliminated (censored)
competing event of discharge alive [48]. We believe that acknowledging the treatment
effects on discharge alive is more meaningful: the interest may be to examine not only how
treatment prevents death, but also how treatment affects the probability of recovering from
the infection [41]. We showed that a competing risks analysis provides important insights
on treatment effects on all clinically meaningful and heterogeneous end points [11,50].

In conclusion, we suggest that different approaches could be considered to estimate
treatment effects in the presence of competing events. This choice naturally depends on the
research question of the investigation. The choice of approach may also depend on whether
the outcome of interest is undesirable (e.g., in-hospital death) or desirable (e.g., discharge
alive, recovery) [15]. The article by Young et al. provides detailed guidance on defining
competing events and on analytical approaches, as well as on the required assumptions [51].
Finally, to estimate treatment effects consistent with those from randomised controlled
trials, rigorous methodology is necessary. Thus, the contribution of observational data
to the effectiveness of treatment evaluations using the trial emulated framework is only
feasible when the target trial is appropriately emulated [36,52].

5. Limitations

Our study has important limitations. First, our main analysis relied on a straight-
forward estimation of time-constant hazards enabling basic understanding of the data,
the concept of a competing risks approach, and statistical quantities [32]. However, the
assumption of time-constant hazards limited our knowledge of fluctuations in the treat-
ment effect during the observational period. Second, time-varying confounding remained
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underestimated due to the lack of information on time-updated prognostic covariates.
This is despite our attempt to reduce the potential of time-varying confounding bias by
choosing a grace period of two days and by considering as untreated those patients who
initiated treatment later after the grace period. Furthermore, we assumed that our baseline
confounders remained fixed within the grace period. Third, our simplified strategy was to
compare initiators versus non-initiators, regardless of whether or not patients adhered to
the treatment strategy to which they had been assigned after the grace period. This implied
the estimation of an intention-to-treat effect. Evaluating dynamic treatment exposures and
per-protocol effect estimation requires information on adherence, data availability on time-
updated covariates, and the application of complex analytical approaches for time-varying
confounders, such as g-estimation-based methods [53,54]. Due to these shortcomings, we
were unable to interpret treatment effects as per-protocol effects [35].

6. Conclusions

We emulated this trial via an extended competing risk analysis applicable for evaluating
the effectiveness of a treatment for hospitalised patients with COVID-19 by relying on routine
register-based observational data. Our findings demonstrate that this methodology can
overcome three major methodological challenges: immortal time bias, confounding bias,
and competing risks. Our approach enables potential treatment effects to be evaluated on
all clinically relevant outcomes and heterogeneous end points. We recommend avoiding
application of the naïve Kaplan–Meier survival analysis method in the presence of competing
events, as that can lead to exaggerated estimates. This paper and its supporting materials
provide technical guidance for trial emulations involving competing risks analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13030777/s1, Figure S1: Study cohort and emulated target
trial flowchart; Figure S2: Balance in demographic and clinical characteristics for the emulated cohort
based on standardized mean differences in the unweighted and weighted clone samples; Figure S3:
Effect on hospital length of stay in X-treated (A) and non-X-treated (B) patients; Figure S4: Weighted
cause-specific cumulative hazards estimated from the Nelson–Aalen estimator for in-hospital death
(A) and discharged alive (B) outcomes; Figure S5: Weighted cause-specific cumulative incidences
estimated using the Aalen–Johansen estimator for in-hospital death (A) and discharged alive (B);
Figure S6: Risk differences for in-hospital death and discharged alive outcomes over the follow-up
period using the Aalen–Johansen approach; Figure S7: Kaplan–Meier estimates of the cumulative
probability (%) of in-hospital death; Table S1: STROBE checklist, statistical methods for observational
data on evaluating treatment: demonstration of target trial emulation and application in COVID-19;
Table S2: Baseline characteristics of patients hospitalized with COVID-19; Table S3: Summary of the
corresponding measures of interest taking the parametric approach and estimated weighted results
at the end of follow-up (60 days); Table S4: Summary results of the sensitivity analysis with one-day
grace period at the end of follow-up (60 days); Table S5: Summary results of the sensitivity analysis with
three-day grace period at the end of follow-up (60 days). Ref. [55] is cited in Supplementary Materials.
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