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Abstract: Background: Delineating the lesion area is an important task in image-based diagnosis.
Pixel-wise classification is a popular approach to segmenting the region of interest. However, at fuzzy
boundaries, such methods usually result in glitches, discontinuity or disconnection, inconsistent with
the fact that lesions are solid and smooth. Methods: To overcome these problems and to provide an
efficient, accurate, robust and concise solution that simplifies the whole segmentation pipeline in
AI-assisted applications, we propose the BézierSeg model which outputs Bézier curves encompassing
the region of interest. Results: Directly modeling the contour with analytic equations ensures that the
segmentation is connected and continuous, and that the boundary is smooth. In addition, it offers
sub-pixel accuracy. Without loss of precision, the Bézier contour can be resampled and overlaid with
images of any resolution. Moreover, clinicians can conveniently adjust the curve’s control points to
refine the result. Conclusions: Our experiments show that the proposed method runs in real time and
achieves accuracy competitive with pixel-wise segmentation models.

Keywords: Bézier curves; deep learning; object segmentation

1. Introduction

Image segmentation is a fundamental task in medical image processing. According to
the statistics of the Grand Challenges competition in biomedical image analysis, there were
10, 14 and 13 tasks related to image segmentation in 2018, 2019 and 2020, respectively [1].
Deep learning has achieved huge success in image processing due to its accuracy and
generality [2–6]. That is why most biomedical annotation tasks employ deep learning
segmentation models such as U-Net [7], SegNet [8], DeepLab v3+ [9], etc. However, these
pixel-wise deep learning segmentation models may not fully satisfy biomedical annotation
problems due its own specialty: Firstly, most targets of the biomedical segmentation
problem are solid objects, such as skin lesions, which have continuous and confined borders.
Secondly, biomedical annotation tasks are normally not final tasks, but an intermediate step
of the whole therapy process. Further manipulations might be applied to the annotations
for down-steam tasks such as diagnosis, lesion measurement, radiotherapy, etc. As for
pixel-wise algorithms, the output may not have a clear contour, or it may have burrs along
the contour. Of course, we can do extra processing, such as binarizing the segmentation
heat map and passing it to OpenCV [10] to find the contour. However, the output might
contain multiple contours or a too complex contour for a single object. The first case needs
additional post-processing such as NMS to obtain the most possible contour, and the second
case needs a contour simplification algorithm to obtain a reasonable contour for clinicians
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to further process. These drawbacks show that the pixel-wise segmentation models might
not be suitable for biomedical annotations. Moreover, all pixel-wise segmentation models
need upsampling operations that further slow down the whole process. In application, the
model runs in a backend server, and the results are transmitted to a front-end client, such
as the web. Transmitting pixel-wise map data does not use bandwidth economically. To
overcome these problems and to provide an efficient, accurate, robust and concise solution
that simplifies the whole segmentation pipeline in AI-assisted applications, we propose a
contour-based model—BézierSeg, an end-to-end segmentation model that does not need
upsampling operations and can output a clear Bézier contour directly. The Bézier curve has
been widely used in enterprise designs because of its user-friendly properties. Therefore,
the predicted Bézier contour of the lesion area can be easily manipulated by clinicians for
further study. Our main contributions are threefold:

1. We propose to use parametric curves for shape encoding and reframe the pixel-
wise classification problem into a point coordinate autoregression problem, thus
providing convenience for many practical applications in clinical scenarios, e.g.,
manual refinement of prediction and data transmission.

2. We propose BézierSeg, an end-to-end solution that can directly output the control points
of the Bézier curves that encompass the detected object. We also devise a Bézier Differen-
tiable Shape Decoder (BDSD) that further improves the segmentation performance.

3. We validate our model on three medical image datasets. Experimental results show that
BézierSeg can reach comparable results to the mainstream pixel-based solution while
achieving 98 frames per second on a single Tesla V100 GPU for object segmentation.

The various parts of this paper are organized as follows: Section 2 provides an intro-
duction and background knowledge of related work, and discusses the current common
pixel-wise and contour-based segmentation algorithms. The definition and implementation
of the Bézier curve-based segmentation model will be given in Section 3. Section 4 includes
implementation details, experimental results and evaluation. Finally, the limitations of
BézierSeg and future work are discussed, and conclusions are drawn.

2. Related Works

In deep learning, segmentation usually includes semantic segmentation and instance
segmentation. The aim of semantic segmentation is to give pixel-wise classification results
for the whole input image, whereas instance segmentation outputs bounding boxes for the
detected objects and pixel-wise segmentation occurs within the bounding boxes.

2.1. Pixel-Wise Segmentation

Most pixel-wise semantic segmentation models are fully convolutional networks
(FCN), such as U-Net, PSPNET [11], BiSeNet [12] and DeepLab v3+. U-Net has been
widely used in biomedical segmentation problems. It consists of a contracting part and
an expanding part, forming a u-shaped architecture. The contracting path extracts con-
text information, and the expansive path recovers the resolution. To reduce the loss of
contextual information between sub-regions for scene parsing tasks, PSPNet incorporates
suitable global contextual features by the proposed pyramid pooling module, which cap-
tures contextual relationships and gathers global information in a hierarchical way. The
author of BiSeNet proposed to implement the functions of spatial information preservation
and the receptive field offered by the Spatial Path and Context Path, respectively. The
features of these two paths are fused by a Feature Fusion Module. The whole model can
reach real-time inference speeds. DeepLab v3+ is a cutting-edge semantic segmentation
model developed by Google, which employs the atrous spatial pyramid pooling (ASPP)
layer to exploit multi-scale features. Two-stage methods perform instance segmentation
by detecting bounding boxes, followed by pixel-level segmentation within each bound-
ing box; for example, the well-known Mask R-CNN is a two-stage method [13]. It first
detects objects and then uses a mask branch and RoI-Align to segment instances within the
proposed boxes. To better exploit the spatial information inside the box, PANet [14] intro-
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duces bottom-up path augmentation, adaptive feature pooling and fuses mask predictions
from fully connected layers and convolutional layers. Such two-stage approaches achieve
a state-of-the-art performance. One-stage instance segmentation methods are free of region
proposals. In these methods, models output the pixel-wise auxiliary information, and then
a clustering algorithm groups information into object instances. Deep Watershed Trans-
form [15] predicts the energy map of the whole image and uses the watershed transform
algorithm for grouping object instances. YOLACT [16] generates prototype masks and the
linear combination coefficients for each instance, and then linearly combines the prototype
masks by corresponding coefficients to predict the instance-level mask.

2.2. Contour-Based Segmentation

PolarMask [17] uses polar representation to model the object boundary. The model
is trained to simultaneously regress the object centroid as well as the length of 36 rays
emitting uniformly with the same angle interval from the object centroid. Combined with
the proposed Polar IoU Loss, several regression targets can be trained as a whole, and thus
improve the segmentation result. Instead of directly regressing the distance of the rays,
ESE-Seg [18] proposes to further convert the polar coordinates of the object boundary to
an explicit shape encoding using Chebyshev polynomial fitting, and turns the regression
target into the coefficients of the Chebyshev polynomial. Although polar coordinates are
inherently more suitable for modeling circular object boundaries, both PolarMask and
ESE-Seg model the radial distance as a single-valued function of the polar angle, which
makes it impossible to model the case of the ray having multiple points that intersect with
the object boundary for a given angle. Curve-GCN [19] is designed for assisting with the
manual annotation of class agnostic objects; it parametrizes object boundaries with either
polygons or splines, allowing annotation for both line-based and curved objects. They
use a graph convolutional network (GCN) to predict all the vertices of the polygon or
control points of the spline along the object boundary in an iterative inference scheme.
DeepSnake [20] exploits the special topology of the object boundary as prior knowledge,
and adopts circular convolution to predict the vertices along the object boundary. In order
to obtain a precise object boundary, both GCN and Deep Snake have to run inference
multiple times.

3. Proposed Approach
3.1. Parametric Representation

Parametric equations are commonly used to express the coordinates of points that
make up a geometric object, such as a curve or surface. The general form of a parametric
equation in two dimensions is shown in Equation (1):{

x = f (t)
y = g(t)

(1)

where t ∈ [0, 1] is the parameter and f (t), g(t) are any explicit function of t. To recover
the object shape, one can sample t from the domain of the equation and obtain both x and
y according to Equation (1). Different from using a single-valued function to model the
object shape, a parametric equation expresses the x and y coordinates of the object shape
independently, which allows it to mimic a multi-valued function. This property provides
much flexibility compared to the single-valued function for shape representation.

The Bézier curve is a set of parametric curves that have been widely used in many
fields as an efficient design tool. The explicit definition of a Bézier curve can be expressed
as Equation (2):

B(t) = ∑n
i=0

(
n
i

)
(1− t)n−itiPi, 0 ≤ t ≤ 1 (2)



Life 2023, 13, 743 4 of 14

where
(

n
i

)
is the binomial coefficients, Pi = (xi, yi) is the i-th control point of the Bézier

curve and n is the degree of the Bézier curve. One can construct a Bézier curve by following
these steps:

(1) Create the control polygon of the Bézier curve by connecting the consecutive con-
trol points.

(2) Insert intermediate points to each line segment, with the ratio t : (1− t).
(3) Treat the intermediate points as the new control points, and repeat step (1) and (2)

until you end up with a single point.
(4) As t varies from 0 to 1, the trajectory of that single point forms the curve.

Figure 1 shows this process for constructing a cubic Bézier curve. The use of a Bézier
curve can reduce the number of parameters for shape encoding. As shown in Figure 2,
although the curve is determined by only four control points, it can guarantee the shape
quality since the precision of the curve representation fully depends on how densely you
sample ts within the range of [0, 1], whereas the polygon representation requires more
vertices to achieve similar precision.

Figure 1. The process of constructing a cubic Bézier curve. The trajectory of the red dot forms the
curve as t varies from 0 to 1.

Figure 2. Bézier curve vs. polygon. The polygon representation requires more vertices in order to
precisely describe the shape.
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Note that one can model the object shape using a Bézier curve with polar coordinates as
well. In order to make the manual post-refinement of the segmentation result much easier,
we instead model the object shape with Cartesian coordinates. We conducted an experiment
to study the accuracy of curve regression with respect to the degree of the Bézier curve, and,
according to Table 1, we choose n = 5 for a trade-off between usability and segmentation
accuracy. To retain a higher accuracy after converting the object boundary to the Bézier
curve representation, we propose to parametrize the object shape with piece-wise Bézier
curves. Specifically, we first split the whole object boundary by its four extreme points, i.e.,
the top, the leftmost, the bottom and the rightmost points of the object. Then, for each part
of the object boundary, we parametrize it with a Bézier curve. Figure 3a gives an example of
our Bézier curve representation. We also compare our Bézier curve representation with the
Chebyshev polynomial shape encoding proposed in [18]. Using Figure 3b, we found that
our Bézier curve representation can avoid the oscillation at the end of the object boundary
in contrast to the Chebyshev polynomial shape encoding.

Table 1. Degree of Bézier curve. A higher degree of Bézier curve brings higher accuracy, while too
high of a degree degrades the performance.

Degree of Bézier Curve (n) 3 5 7 9

MIOU 0.753 0.755 0.749 0.736

Figure 3. (a) Our piece-wise Bézier curve representation, the colored points are the control points of
each corresponding curve segment. (b) Our Bézier curve representation can avoid the oscillation at
the end of the object boundary in contrast to Chebyshev polynomial shape encoding.

3.2. Model Architecture

As shown in Figure 4, we adopt ResNet-101 [21] as the backbone of our model. Since
our model is free of up-sampling layers, we simply remove the softmax activation layer
commonly used in classification tasks [22–24] and add an extra fully connected layer to
map the features extracted by the backbone network to the coordinate predictions. The
number of output nodes in the last fully connected layer matches the regression targets.
For example, if ne extreme points and nc control points are needed, the output of the
last fully connected layer should be (ne + nc) × 2 nodes, without any activation layers.
During training, the Bézier Differentiable Shape Decoder takes the predicted control point
coordinates and ground truth control point coordinates as input, and outputs two sets of
sampled point coordinates controlled by its two inputs. Reconstruction loss is built on
these two sets of sampled point coordinates; minimizing this loss term indirectly helps
in learning the control point coordinates. Note that the idea in this paper can be easily
applied to the mainstream object detection frameworks, which provide an alternative for
instance segmentation.
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Figure 4. Model architecture ext_pts and ctrl_pts are the coordinates for neextreme points and nc

control points. The colored points rendered on the images are the control points of each corresponding
curve segment. Image features extracted from the ResNet-101 are passed to the fully connected FC
layer to obtain (ne + nc)× 2 outputs. Thus, the predicted coordinates of ext_pts and ctrl_pts regress to
the target ext_pts and ctrl_pts supervised by smooth L1 loss, denoted as Lce. The Bézier Differentiable
Shape Decoder module reconstructs N predicted boundary points and N ground truth boundary
points. Lmatching is the smooth L1 distance (see Sections 3.4 and 3.5).

3.3. Ground Truth Label Generation

Given a mask of an object, we first extract the object boundary from the mask. Then,
we find four extreme points of the object and use them to split the whole shape into four
parts. If there exist multiple extreme points, such as two or more top points, we use the
top left corner point, which is the same as the bottom left one, the bottom right one and
the top right one for the leftmost, bottom and rightmost extreme point, respectively. For
each part of the object boundary, we fit it with a fifth-order Bézier curve. The first and last
control points of the Bézier curve are set to be the beginning point and end point of that
piece of the shape, which are two consecutive extreme points as well. The four intermediate
control points of the Bézier curve remain unknown. We convert Equation (2) to the matrix
form and place the coordinates of the object boundary part into the equation, as shown in
Equation (3): 

C1
1 , C2

1 , C3
1 , · · · , Cn

1
C1

2 , C2
2 , C3

2 , · · · , Cn
1

C1
3 , C2

3 , C3
3 , · · · , Cn

3
...

...
...

. . .
...

C1
m, C2

m, C3
m, · · · , Cn

m




x1, y1
x2, y2
x3, y3
...

...
xn, yn

 =


x̂1, ŷ1
x̂2, ŷ2
x̂3, ŷ3
...

...
x̂m, ŷm

 (3)

in which m represents the total number of points of the object boundary part, n repre-
sents the number of control points of the Bézier curve, (xi, yi) is the i-th control point,

(x̂i, ŷi) is the i-th points of the object boundary part and Cj
i =

(
n
j

)
(1− ti)

n−jtj
i , ti ∈ [0, 1].
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Inspired by De Casteljau’s algorithm for constructing a Bézier curve, we assume that
ti = (i− 1)/(m− 1) for the i-th point of the object boundary part. Since the first and
the last row of Equation (3) are identity expressions representing the extreme points, and
the first and last column are constant values, we remove the first and the last row from
Equation (3) and subtract the constant values from both side of Equation (3). To simplify
the notation, let the following:

A =


C2

2 , C3
2 , C4

2 , · · · , Cn−1
2

C2
3 , C3

3 , C4
3 , · · · , Cn−1

3
C2

4 , C3
4 , C4

4 , · · · , Cn−1
4

...
...

...
. . .

...
C2

m−1, C3
m−1, C4

m−1, · · · , Cn−1
m−1

,

b =



x̂2 − x1C1
2 − xnCn

2 , ŷ2 − y1C1
2 − ynCn

2
x̂3 − x1C1

3 − xnCn
3 , ŷ3 − y1C1

3 − ynCn
3

x̂4 − x1C1
4 − xnCn

4 , ŷ4 − y1C1
4 − ynCn

4
...

...
...

xm−1 − x1C1
m−1 − xnCn

m−1, ym−1 − y1C1
m−1 − ynCn

m−1


,

c =


x2, y2
x3, y3
x4, y4
...

...
xn−1, yn−1


Thus, Ac = b. By computing the pseudo-inverse of A and multiplying it by the

right side of the equation, we can obtain the coordinates of the intermediate control points
c = A−1b. Finally, we concatenate the coordinates of 4 extreme points and 16 intermediate
control points as our regression target (ne = 4, nc = 16), resulting in a 40-dimensional
vector for each input image. Similar to ESE-Seg, we also conduct a sensitivity analysis
for our Bézier curve representation. Specifically, we randomly sample some noises from
N(0, δ) and add them to the control points and the extreme points to imitate the uncertainty
behavior of the convolutional neural network. We compare our Bézier curve representation
with the polygon shape representation. To maintain the same complexity for both shape
representations, we evenly select 20 points along the object boundary for the polygon
representation. Figure 5 shows the robustness of our Bézier curve representation. As shown
in Figure 5, the Bézier curve representation always achieves a higher mean intersection-
over-union (MIOU) than the polygon representation with the same number of points. We
can conclude that the Bézier curve representation is superior to the polygon representation
because it allows us to describe a curve more precisely. The Bézier curve representation
is robust when used on the endoscopy images of upper gastrointestinal cancers (EIUGC)
dataset and the international skin imaging collaboration skin lesion challenge (ISIC) dataset,
remaining above a 0.6 MIOU even when the noise of δ = 20 was injected. For the same
perturbation, the MIOU of the nasopharyngeal carcinoma magnetic resonance imaging
(NPCMRI) dataset dropped rapidly, mainly due to its smaller average size of ROI compared
to the other two datasets.
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Figure 5. Sensitivity analysis. The result of the analysis indicated that the Bézier curve representation
is more robust than polygon representation under different noise levels.

3.4. Bézier Differentiable Shape Decoder

Similar to FourierNet [25], we devise a novel differentiable shape decoder named
the Bézier Differentiable Shape Decoder, abbreviated as BDSD. FourierNet uses Inverse
Fast Fourier Transformation as the shape decoder to convert the coefficients of the Fourier
series into contour points, whereas we apply the parametric equation of Bézier curves to
map the control points to contour points. Following Equation (2), we randomly sample
N ts from U[0, 1] and use the same ts to reconstruct N ground truth boundary points and
the corresponding predicted boundary points. In all experiments, we set N = 72. The
BDSD module is fully differentiable and allows the gradient to back propagate through the
network, thus providing extra supervision during the training phase.

3.5. Loss

The overall loss function for training our model contains two individual loss terms.
The first one, Lce, is the smooth L1 loss for the regression of control points and extreme
points, and the second one, Lmatching, is another smooth L1 loss for point-matching learning,
which measures the differences between the outputs of the BDSD module. Lce weights
each control point equally and Lmatching implicitly assigns different weights to the control
points. Equation (4) shows the overall loss function:

L = λceLce + λmatchingLmatching (4)

where λce and λmatching are balancing hyper parameters; we set both of them equal to 1 in
all experiments.

4. Experiments
4.1. Datasets and Evaluation Metric

The endoscopy images of upper gastrointestinal cancers (EIUGC) dataset is an upper
gastrointestinal endoscopy image dataset that aims to detect upper gastrointestinal cancers.
The EIUGC dataset is a collection of 38,453 endoscopy images. The border of each cancer
lesion is marked by highly experienced endoscopists from SYSUCC. We separated the
dataset into a training set, a validation set and a test set with 30762, 3845 and 3846 images,
respectively. The nasopharyngeal carcinoma magnetic resonance imaging (NPCMRI)
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dataset enrolled 375 patients at SYSUCC from January 2012 to December 2014. The NCMRI
dataset contains multi-parametric MRI sequences of nasopharyngeal carcinoma patients,
including T1w, T2w and T1c. Clinicians delineated the invasive ROIs of NPC in T1c by
referencing T1w and T2w sequences. As a result, we used the T1c sequence as source
images. In total, 2,337 images were collected.

The international skin imaging collaboration (ISIC) skin lesion challenge dataset of
2018 was released during the ISIC Challenge, with the aim of skin lesion analysis towards
melanoma detection. One of its three tasks is lesion segmentation. The dataset includes
2,576 skin images and their corresponding masks, of which 2060 are in the training set,
258 in the validation set and 258 in the test set. All ground truth data were reviewed and
curated by practicing dermatologists with expertise in dermoscopy. An image may be
associated with multiple mask annotations. In that case, we randomly selected one of the
expert annotations and used novice annotation if no expert annotation was provided. The
above three datasets are summarized in Table 2.

Table 2. Dataset overview. The MIOU and SIOU in the table represent the mean intersection-
over-union and the standard deviation of the intersection-over-union between the Bézier curve
representation and the ground truth mask, respectively.

Dataset Trainset Valset Testset MIOU SIOU

EIUGC 30,762 3845 3846 0.970 0.019
NPCMRI 1869 234 234 0.869 0.056

ISIC 2060 258 258 0.957 0.021

We use the MIOU, Hausdorff distance [26], Matthews correlation coefficient [27] (mcc),
area under the curve (auc), false-positive rate (fp) and false-negative rate (fn) to evaluate
the proposed method, a contour-based model, PolarMask ResNet101 and a pixel-wise
model, DeepLab v3+ ResNet101, on the EIUGC, NPCMRI and ISIC datasets.

4.2. Implementation Details

For training DeepLab v3+ ResNet101, we use the binary cross-entropy loss function
and initialize the model with the weights pre-trained on COCO [28] train2017, and for
training BézierSeg, we initialize the backbone of our model with the weights pre-trained on
ImageNet [29]. As for the configuration of PolarMask, we use ResNet101 as the backbone
and use 36 rays for shape representation. During training, for the EIUGC and the ISIC
datasets, we use data augmentation techniques such as random horizontal flipping or
vertical flipping [30,31] with a probability of 0.5, image rotation with a random angle of
[−20, 20], and image scaling with a random scale factor of [0.8, 1.25] followed by random
fixed size image cropping. For the NPCMRI dataset, we apply the same techniques above
except that we replace the random image scaling and cropping with the fixed image resizing
augmentation, and change the range of the rotation angle from [−20, 20] to [−10, 10].
During the inference phase, we simply resize the input images to the size of (256, 256). For
both training and inference phases, we normalize the input images by dividing their pixel
value by 255. We dynamically generate both the extreme points and the control points after
performing data augmentation.

For the ISIC dataset, we apply morphological transformations to the mask to remove
the spikes along the object boundary before fitting the Bézier curves. The initial learning rate
is set to 1× 10−3 for all experiments. We also adopt an adaptive learning rate scheduling
strategy during training. Specifically, we reduce the learning rate by half when the loss of
the validation set has stopped decreasing for 15 epochs and the monitoring threshold is set
to 1× 10−2 and 0.5 for DeepLab v3+ ResNet101 and BézierSeg, respectively. We train the
models for 100 epochs in all experiments and evaluate the performance on the validation
set at the end of each epoch. We pick up the model with the highest MIOU on the validation
set to evaluate the performance on the hold-out test set. The final results are obtained by
running the experiments three times with different random seeds and taking the average.
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5. Results and Discussion
5.1. Quantitative Evaluation

As shown in Table 3, the segmentation performance of BézierSeg 50 is slightly worse
than BézierSeg 101; therefore, we use ResNet-101 as the backbone of our model by default.
Without any bells and whistles, BézierSeg can achieve a competitive result with pixel-wise
methods. On both the EIUGC and ISIC datasets, the differences in the MIOU between these
two methods are less than 0.02. The average ROI sizes in the EIUGC, NPCMRI and ISIC
datasets are 29,337 pixels, 14,152 pixels and 745 pixels, respectively. The proposed BDSD
module effectively improves the performance, especially on datasets with a smaller ROI
size. The reason may be that objects with a small size have a greater curvature, making the
loss function give more weights to the relevant control points during training.

Table 3. Comparison of BézierSeg ResNet50 (BézierSeg 50), BézierSeg ResNet101 (BézierSeg 101),
DeepLab v3+ ResNet101 (DeepLab v3+) and PolarMask ResNet101 (PolarMask) on three datasets.
Curve MIOU is the mean intersection-over-union between the prediction and the ground truth
Bézier curve shape representation, and Mask MIOU is the mean intersection-over-union between the
prediction and the ground truth mask. The -, ◦, Xsymbols indicate that the module is not needed, the
module is not used, and the module is used respectively.

Dataset Model BDSD Curve
MIOU

Mask
MIOU Hausdorff Mcc Auc fp fn

EIUGC

DeepLab v3+ - - 0.772 14.330 0.781 0.891 0.104 0.115

PolarMask - - 0.747 16.263 0.753 0.878 0.129 0.116

BézierSeg 50 ◦ 0.750 0.745 15.473 0.752 0.876 0.118 0.129

BézierSeg 50 X 0.750 0.745 15.573 0.751 0.876 0.126 0.122

BézierSeg 101 ◦ 0.761 0.757 14.898 0.763 0.882 0.113 0.124

BézierSeg 101 X 0.762 0.758 14.818 0.763 0.882 0.119 0.117

ISIC

DeepLab v3+ - - 0.801 8.139 0.877 0.939 0.028 0.093

PolarMask - - 0.723 8.707 0.812 0.903 0.039 0.156

BézierSeg 50 ◦ 0.796 0.791 7.339 0.869 0.934 0.029 0.104

BézierSeg 50 X 0.799 0.793 7.349 0.872 0.936 0.029 0.099

BézierSeg 101 ◦ 0.797 0.792 7.414 0.866 0.934 0.031 0.102

BézierSeg 101 X 0.801 0.796 7.406 0.870 0.936 0.030 0.097

NPCMRI

DeepLab v3+ - - 0.413 9.553 0.671 0.820 0.003 0.357

PolarMask - - 0.437 5.348 0.650 0.799 0.003 0.398

BézierSeg 50 ◦ 0.482 0.467 5.285 0.685 0.840 0.003 0.317

BézierSeg 50 X 0.504 0.488 4.909 0.707 0.855 0.003 0.287

BézierSeg 101 ◦ 0.500 0.478 5.258 0.696 0.856 0.004 0.284

BézierSeg 101 X 0.520 0.499 4.886 0.717 0.866 0.003 0.265

BézierSeg outperforms DeepLab v3+ ResNet101 on the NPCMRI dataset by 21% and
behind DeepLab v3+ on EIGUC and ISIC by only 1.8% and 0.6%, respectively. In terms
of distance, BézierSeg outperforms DeepLab v3+ on both the ISIC and NPCMRI datasets.
PolarMask performs relatively poorly on all three datasets.

From Figure 6 we can see that when the ROI size is greater than 20k, DeepLab v3+
ResNet101 performs slightly better; when the ROI size is between 4k and 20k, the proposed
model and DeepLab v3+ ResNet101 perform similarly; and when the ROI size is less than 4k,
both BézierSeg and PolarMask outperform DeepLab v3+ ResNet101. The overall performance
of BézierSeg is less sensitive to the size of ROI comparing to DeepLab v3+ ResNet101.
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Figure 6. Performance comparison between BézierSeg, PolarMask and DeepLab v3+ on different
area ranges.

We also compare the FPS between BézierSeg, PolarMask and DeepLab v3+ on the
same machine equipped with one Tesla V100 graphics card. As shown in Table 4, BézierSeg,
which does not require upsampling layers, has 42.6 M parameters while DeepLab v3+
ResNet101 has 58.6M. With a simpler pipeline, BézierSeg doubles the FPS compared to
DeepLab v3+ ResNet101. Both BézierSeg and PolarMask are lightweight models with a
similar architecture, and thus, they show no significant differences when running without
post-processing. However, BézierSeg needs more time to reconstruct the smooth contour
during the post-processing stage. The speed of BézierSeg makes it more suitable for real-
time medical segmentation. A smaller size of model has more flexibility to transfer to an
edge-computing device.

Table 4. Speed comparison between DeepLab v3+ Resnet101 (DeepLab v3+), BézierSeg Resnet101
(BézierSeg) and PolarMask Resnet101 (PolarMask), including both with/without post-processing to
reconstruct the object boundary. The ◦, Xsymbols indicate that not performing this operation and
performing this operation respectively.

Model Post-Processing FPS

DeepLab v3+
◦ 48.4

X 45.6

BézierSeg
◦ 103.8

X 97.8

PolarMask
◦ 103.3

X 101.9

5.2. Qualitative Evaluation

As shown in Figure 7, BézierSeg can always output a smooth contour, whereas
DeepLab v3+ ResNet101 outputs a rugged contour and often produces multiple separated
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contours. PolarMask gives polygonal outputs that roughly ensure smoothness. However,
it is difficult to handle the dumbbell shape, and thus the model outputs a pebble shape in
most of those cases. The use of parametric shape representation allows BézierSeg to predict
object contours better than PolarMask, making BézierSeg less sensitive to local artifacts. In
summary, BézierSeg can be used as an alternative to DeepLab v3+ ResNet101 while having
a faster speed that is similar to PolarMask.

Figure 7. Qualitative result comparison between BézierSeg, DeepLab v3+ ResNet101 and PolarMask
on three datasets. The first row, second row and the last row show the results on the EIUGC dataset,
the ISIC dataset and the NPCMRI dataset, respectively. Green: ground truth label; red: DeepLab v3+
ResNet101; blue: BézierSeg; yellow: PolarMask.

6. Conclusions

We propose the BézierSeg model, which can directly output control points of Bézier
curves without post-processing. Its simple pipeline provides real-time computing speeds.
In the experiments, it was found that BézierSeg shows competitive accuracy on multiple
medical datasets. However, our model fails to handle disconnected areas such as dilated
shape contours due to the limitation of the 2D Bézier curve representation. One possible
solution in this case is to incorporate parametric surface representation, such as a level set.
We will explore the potential application of the Bézier surface for 3D object segmentation in
our future work, which is also a promising and practical segmentation solution for three-
dimensional medical data such as computed tomography (CT) and magnetic resonance
(MR) images.
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