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Abstract: Colorectal cancer is one of the most common malignancies and the leading cause of cancer
death worldwide. Wireless capsule endoscopy is currently the most frequent method for detecting
precancerous digestive diseases. Thus, precise and early polyps segmentation has significant clinical
value in reducing the probability of cancer development. However, the manual examination is a time-
consuming and tedious task for doctors. Therefore, scientists have proposed many computational
techniques to automatically segment the anomalies from endoscopic images. In this paper, we present
an end-to-end 2D attention residual U-Net architecture (AttResU-Net), which concurrently integrates
the attention mechanism and residual units into U-Net for further polyp and bleeding segmentation
performance enhancement. To reduce outside areas in an input image while emphasizing salient
features, AttResU-Net inserts a sequence of attention units among related downsampling and upsam-
pling steps. On the other hand, the residual block propagates information across layers, allowing
for the construction of a deeper neural network capable of solving the vanishing gradient issue in
each encoder. This improves the channel interdependencies while lowering the computational cost.
Multiple publicly available datasets were employed in this work, to evaluate and verify the proposed
method. Our highest-performing model was AttResU-Net, on the MICCAI 2017 WCE dataset, which
achieved an accuracy of 99.16%, a Dice coefficient of 94.91%, and a Jaccard index of 90.32%. The
experiment findings show that the proposed AttResU-Net overcomes its baselines and provides
performance comparable to existing polyp segmentation approaches.

Keywords: gastrointestinal tract; segmentation; deep learning; U-Net; WCE; colonoscopy; attention
mechanism; residual block

1. Introduction

The gastrointestinal (GI) tract is the tubular duct that connects the mouth to the anus.
It is a long, continuous tube that runs from the mouth to the anus, and is responsible for the
process of digestion. It is divided into two main regions: the upper GI tract (including the
mouth, pharynx, esophagus, stomach) and the lower GI tract (including the small intestine,
large intestine, rectum, and anus). The GI tract is lined with a mucous membrane and
muscular layers that work together to move food through the tract and break it down for
absorption and elimination [1].

The GI tract is also vulnerable to various medical disorders that may necessitate exami-
nation by medical specialists. Gastrointestinal illnesses, tissue inflammations, and irregular
growth are examples of these. Acid reflux, for example, can induce changes in the lining
of the esophagus, an unusual response can create inflammations, and proliferate cells can
cluster together to form a polyp on the colon lining. These anomalies, like ulcers or sores,
can be dangerous themselves. Another potential is that some anomalies can emerge, such
as polyps that might become cancerous. Adenomatous polyps are polyps that have the
potential to become malignant over time. Colorectal cancer (CRC) frequently begins as a
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precancerous polyp that can be benign or malignant. If left untreated, it is predicted that
30% of adenomas may progress to malignancy. Polyp cancer incidence varies based on
the kind of polyp and population, although it is usually regarded as a common disease.
According to the American Cancer Society, approximately one in every 20 persons may
acquire colorectal cancer from an adenoma over their lifetime. Polyp screening, particularly
for adenomatous polyps, is an essential method of preventing colorectal cancer.

Colonoscopy, which allows the doctor to see inside the rectum and colon, is currently
the most effective screening method for detecting precancerous polyps and early stage
colorectal cancer. Colorectal cancer (CRC) is the world’s third-most prevalent disease
in males and the second-most common cancer in women. In 2018, there were approxi-
mately 1.8 million new cases and 0.9 million deaths from CRC, according to the World
Health Organization (WHO). It is also a frequent disease in the United States, with an
expected 148,810 new cases and 53,200 deaths in 2021. It is more frequent in older persons,
with around 90% of occurrences occurring in those over the age of 50. However, due to
increased screening, early identification, and improved treatment, the incidence of col-
orectal cancer is decreasing in many industrialized nations. Hence, visual evaluation of
organs in the GI system is required by medical practitioners [1]. The most common types of
stomach issues are gastrointestinal (GI) anomalies such as bleeding, pylorus, erosion, ulcers,
and polyps, which require considerable medical treatment because stomach abnormalities
induce a variety of diseases. In 2018, stomach cancer was one of the top five most common
cancers globally, according to the World Health Organization (WHO) report.

Endoscopy traditionally gives an interior view of the GI tract. Furthermore, be-
cause the small intestine is so extensive and convoluted, this old approach cannot view
it. Furthermore, patients find this endoscopic approach unpleasant and uncomfortable.
Wireless capsule endoscopy is a medical procedure that allows users to see inside the
gastrointestinal tract. It involves ingesting a small, pill-sized capsule that contains a camera
and wireless transmitting device. The capsule takes about 60,000 images and transmits
them to a receiver worn by the patient as it travels through the digestive system. The images
are then used by a doctor to diagnose and monitor conditions such as Crohn’s disease,
ulcerative colitis, and other digestive tract disorders. The procedure is noninvasive, safe,
and does not require sedation, making it a popular alternative to traditional endoscopic
procedures [2].

The primary diseases diagnosed by the WCE include ulcers, bleeding, pylorus, erosion,
and polyps in the digestive tract. The WCE images are utilized to identify anatomical
landmarks, pathological abnormalities, and polyp removal, all of which are important GI
illnesses. Providing a range of images makes it easier to identify tumors and gastrointesti-
nal hemorrhages, especially in the small intestine, which is now more properly studied [3].
It took a long time to analyze every image taken from each patient [4]. Furthermore, there
is occasionally a high resemblance rate in distinct contextual images; this is why most
expert doctors confront obstacles that require a significant amount of time to examine
all of the data. This commonly leads to misdiagnosis due to clinician ineptitude or care-
lessness [5]. All of these challenges motivate researchers to develop a computer-aided
bleeding-detection approach in order to reduce the pressure on gastroenterologists. With its
ever-expanding uses, certain approaches for detecting bleeding images in WCE video have
been developed [6,7].

Medical image segmentation is the process of distinguishing pixels from medical
images that contain lesions. It gives details regarding the sizes and forms of areas of
interest (ROIs) [8–10]. Previously, automatic segmentation approaches were based on both,
traditional image processing and handcrafted features [11]. Deep learning techniques
have recently made substantial advances in medical imaging [12]. These techniques based
on their structure may be classified into two categories. Some models are based on the
encoder–decoder structure like U-Net, FCN, and SegNet. Although others can maintain
appropriate spatial information by employing fewer downsample operations and dilated
convolution (Deep Lab-V3) [13].
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In this study, we propose the AttResU-Net architecture for gastrointestinal image
segmentation. We tested our model by using three publicly available datasets. Our exper-
imental results show that the enhanced model is efficient and outperforms the popular
U-Net and V-Net designs. In summary, the following are the paper’s contributions.

(1) We present the AttResU-Net architecture, a semantic segmentation neural network that
uses residual blocks and attention blocks. When compared to other cutting-edge ap-
proaches, AttResU-Net markedly enhanced segmentation findings for colorectal bleeding
and polyps. Even with fewer images, the suggested architecture works effectively.

(2) We test the improved architecture on a diverse collection of datasets, including MIC-
CAI 2017, Kvasir-SEG, and CVC-ClinicDB, and compare our suggested techniques to
current state-of-the-art algorithms. Furthermore, we compared our findings to those
of other recent studies.

(3) Our approach detects tiny, flat, or sessile polyps that are typically overlooked during
colonoscopy, which is a significant advantage over previous studies.

The remainder of this paper is organized as follows. Section 2 examines a few interesting
works. Section 3 is devoted to the description of architecture. Baseline experiments are
detailed in Section 4. Finally, Section 5 brings the paper to a close and offers future directions.

2. Literature Review

During the last few decades, many efforts have been undertaken by researchers to de-
velop computer-aided frameworks to segment and detect gastrointestinal lesions [12,14–16].
Polyp segmentation has specifically been given consideration. The efficiency of the AI
algorithms has approached the degree of expertise of experienced endoscopists.

Prior works were particularly centered around handcrafted descriptor-based feature
learning. Handcrafted features that are focused on shape, texture, edges, and color are
extracted and fed to classifiers that isolate lesions from the background. Hwang and
Celebi [17] suggested an unsupervised approach for detecting polyps in VCE. Watershed
segmentation was proposed, along with an initial marker selection technique based on
Gabor texture features and K-means clustering. Curvature-based geometric information
was used to extract polyp pixels from the obtained segments. Fu et al. [18] take into consid-
eration arbitrary form automatically picked by superpixel segmentation. In this technique,
the red ratio in RGB space is used to define the attributes of each superpixel, which are
then aggregated to train a binary classifier. Ganz et al. [19] and Mamonov et al. [20] utilize
shape and contour information for polyps segmentation. Color and texture information
was employed as features by Gross et al. [21] and Bernal et al. [22] to determine the location
of polyps.

In any case, these handcrafted-based methods can perform well, only for some or-
dinary polyps with fixed features. To further develop the semantic polyp segmentation,
CNN-based architectures were adopted for the extraction of more discriminative char-
acteristics. To improve the segmentation results for the colorectal polyps, Jha et al. [23]
present the ResUNet++ architecture, a semantic segmentation neural network that employs
residual and squeeze blocks, attention blocks, and atrous spatial pyramidal pooling (ASPP).
Their architecture works effectively with a limited amount of images. The polyps in the
CVC-ColonDB dataset were segmented by using a fully convolutional neural network
(FCN-8S) by the authors of [24]. A method for image patch selection was applied in the
training phase. Otsu thresholding is also used on the probability map as a postprocessing
technique. They achieved a Dice score of 81%. Qadir et al. [25] used Mask R-CNN as a
feature extractor to segment polyp areas in colonoscopy images by using different CNN
architectures (ResNet50, ResNet101, and InceptionResNetV2). This method obtained a Dice
score of 70.42% and a Jaccard index of 61.24% on CVC-ColonDB dataset. In their study [26],
Poorneshwaran et al., utilized generative adversarial network (GAN) for the task of polyp
image segmentation. The network achieved a Dice index of 88.48% on the CVC-ClinicDB
dataset. Working also on colonoscopy images, Nguyen and Lee [27] employed a deep
encoder–decoder technique. This work’s structure is made up of atrous convolution and
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depthwise separable convolution. On the CVC-ColonDB dataset, the suggested model
received 88.9% of the Dice score and 89.35% of the Jaccard index.

On the other hand, several studies employed deep learning networks to segment diges-
tive anomalies by using images collected from WCE the novel technology.
Hajabdollahi et al. [28] suggest a simple and efficient approach for segmenting WCE bleed-
ing images. MLP structure is used to classify appropriate colon channels. The authors
proposed a quantized neural network with no multiplication which can be used as an
automated diagnostic technique within the capsule. Ghosh et al. [29] used SegNet layers
with three classes to train CNN. The training network is used to segment the endoscopic
images, and the observed bleeding areas are indicated. Among several color planes, the hue
saturation and value (HSV) color space provides the best performance. The framework
achieved 94.42% global accuracy when tested on a publicly available dataset. The paper [30]
presents a method for precise and efficient semantic calibration and refinement in convo-
lutional neural networks (ConvNets) for real-time polyp segmentation from colonoscopy
videos. The goal is to improve the accuracy of polyp segmentation, which is an important
task in the diagnosis and monitoring of colon cancer. The method involves using ConvNets
to analyze colonoscopy videos and identify polyps, and then refining the results by using
a semantic calibration and refinement process. The authors in [31] present a new deep
learning architecture for the simultaneous joint classification and segmentation of endo-
scopic images. The network consists of two parallel branches, a classification branch and
a segmentation branch, which interact with each other through a synergistic interaction
mechanism. The results show that the proposed architecture outperforms state-of-the-art
methods on the benchmark datasets for endoscopic image classification and segmentation.
The RA-UNet that was proposed by Jin et al. [32], focuses on preserving the high-level
features of the image and enhances the resolution of the feature maps by using residual
attention mechanisms in the encoding path. The AttU-Net part of the architecture focuses
on refining the segmentation results by using an attention mechanism in the decoding path.
The proposed RA-UNet architecture was tested on a public dataset of CT scans and showed
improved accuracy and robustness compared to other state-of-the-art models for liver and
tumor segmentation.

3. Materials and Methods

We present an overview of our suggested Attention Residual U-Net (AttResU-Net)
approach in this section. We begin by providing a quick overview of the data preprocessing
techniques used in this work. Then we describe the three model components: the residual
encoding module, the attention gate (AG) module, and the residual decoding module.
Finally, we describe how all of the elements are combined for further improvement. To im-
prove the depth of the network while expediting network training and enhancing network
performance, the usual convolution block in the encoder–decoder structure is replaced
with a preactivated residual block. The AG module is included to record and screen for
high-level features with additional spatial contextual information.

3.1. Data Preprocessing

The original datasets contain images of various resolutions. Some colonoscopic images
have a dimension of 574 × 500, necessitating a much higher computing cost. As a result,
the images must be resized before being fed to the segmentation models. We chose the
appropriate size of 128 × 128 based on several experiments. Recent research has proved
the benefits of data augmentation strategies in increasing the quality and size of training
data to handle all data variations. Thus, various data augmentation techniques including
vertical and horizontal flipping, rotating, and zooming are used in our case to extend the
dataset and help in the successful accomplishment of the segmentation task. For most
cases, pixel values of image data are integers with values ranging from 0 to 255. However,
because the mechanism of neural networks uses minimal weight values, inputs with large
values can slow the learning process. To that purpose, data normalization is considered to
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be a good solution, such that the value of each pixel should be between 0 and 1. That can
be obtained by dividing all pixel values by 255, the largest pixel value. Normalizing the
image can also make it more robust to changes in lighting conditions and other factors that
might affect the overall brightness and contrast of the image.

3.2. AttResU-Net Architecture

We use a U-Net like structure for our network design, inspired by Ronneberger [33],
with an encoder with numerous downsampling layers that extract features of various
sizes and a decoder with several upsampling layers that scale the feature maps to the
appropriate output resolution. To generate the skip connections, the intermediate outputs
of the downsampling layers are merged with the intermediate outputs of their respective
upsampling layers of the same size. Unlike Ronneberger work [33], we employ residual
blocks rather than typical convolutional layers, as explained in Section 3.2.2. As described
in Section 3.2.3, we also used attention modules to train the network to focus on relevant
features for segmenting bleeding lesions and polyps.

3.2.1. U-Net Architecture

U-Net is one of the most popular architectures used in image-segmentation tasks.
This method was originally proposed by Ronneberger et al. [33] for biomedical image
segmentation. Fundamentally, the U-Net is based on the fully convolutional network [34].
The UNet model is made up of two paths: contractive (encoder) and expansive (decoder).
Deep features are learned along the first path based on the learned features. The encoder
consists of a combination of convolution layers with filters of size 3 × 3 followed by ReLU
and MaxPooling layers. The decoder, on the other hand, constructs an output segmentation
map through a series of operations. This path comprises upconvolution, followed by
convolution, ReLU, and MaxPooling layers. Through a skip connection, each encoder
stage provides special features to the associated decoder stage. The key purpose of skip
connection is to ensure that the model builds an increasingly exact output.

3.2.2. Residual Units

Expanding network depth while training a deep neural network might potentially
increase overall performance. However, simply stacking the CNN layer may impede the
training process and result in exploding/vanishing gradients during backpropagation.
Residual connections allow the gradient to bypass one or more layers in the neural network
by adding the input of a layer to the output of a later layer. This allows the gradient to
flow more directly to earlier layers, reducing the chance of the gradient becoming too small
(vanishing) during backpropagation. Additionally, this structure allows the network to
learn an identity mapping, allowing the network to learn an identity mapping when the
layers are close to the identity function, making it easier to optimize [35]. A residual block
is a building block used in deep residual neural networks and it mathematically defined as
follows: Given an input tensor x, a residual block applies one or more layers of nonlinear
transformations (such as convolutional layers, batch normalization, and ReLU activation)
to produce an output tensor y. The final output of the residual block is then computed as the
elementwise sum of the input tensor x and the output tensor y, added via an elementwise
addition operation. This is represented mathematically in Equation (1) below,

y = F(x) + x, (1)

where F(x) is the nonlinear transformation applied to x. This structure allows the network to
learn the residual mapping between the input x and the output y, allowing for the network
to be much deeper and still be able to train effectively. This is because the residual block
allows for the network to learn the difference between the input and output, rather than
having to learn the entire function from scratch. This structure is also known as residual
connection, which allows the gradients to flow more easily through the deep network,
making it easier to train. Figure 1 depicts the residual coding structure.
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Figure 1. The difference between the ordinary convolutional block and the residual block.

3.2.3. Attention Units

Deep learning’s attention mechanism may be linked back to the study of human
vision. Humans communicate signals through neurons and brain processing after obtaining
external visual information, which causes human attention to focus on the regions of
interest and reduces the attention weight value of irrelevant regions. When the attention
mechanism [36] is used in the deep learning process, the processing of human visual
information is emulated by introducing the attention module. The attention to irrelevant
areas will be limited by raising the information weight of the region of interest in the
feature extraction process of the input image. Naive skip connections simply concatenate
the encoder and decoder features, wasting computing resources and producing duplicate
information. Because the encoder feature contains extensive location information, it is
preferable to concentrate on relevant regions that are useful for determining the position of
the item and determining the target structure of the object.

The attention gates as proposed by Oktay et al. [37] uses additive soft attention.
An attention gate unit combines the input feature vector with the attention vector to
produce a new, weighted feature vector. As depicted in Figure 2, the vectors xl and g are
fed into the attention gate. The vector, g, is retrieved from the network’s next lowest layer.
Because data originates from deeper in the network, the vector has lower dimensions and
greater feature representation. Vector xl in the preceding case would be Cx × Hx ×Wx
(filters × height × width), and vector g would be Cg × Hg ×Wg. Vector xl undergoes a
strided convolution, whereas vector g undergoes a 1 × 1 convolution. The two vectors
are summed elementwise. As a result of this process, aligned weights get larger while
unaligned weights become smaller. The resulting vector is subjected to a ReLU activation
layer and a 1 × 1 convolution, which reduces the dimensions to H ×W × 1. This vector is
sent via a sigmoid layer, which scales it between [0, 1], yielding the attention coefficients
(weights), with coefficients closer to 1 indicating more significant information. Using
trilinear interpolation, the attention coefficients are upsampled to the original dimensions
of the xl vector. The attention coefficients α are multiplied by the original xl vector element
by element (elementwise multiplication), scaling the vector x̂l according to significance.
This is then passed along normally in the skip connection.

Figure 2. The structure of attention gate.
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3.2.4. Our Network Structure

In this study, we present a convolution neural network called attention residual UNet
(AttResU-Net) for bleeding and polyps segmentation. The network adopts UNet as the
network’s backbone, allowing a smooth translation from the image to the segmentation
mask by combining the encoder and decoder structure with shallow semantic information.
The network’s design may be separated into three components, as illustrated in Figure 3: en-
coder, skip connection with attention mechanism, and decoder. Different from the work of
Liu et al. [38], the convolution block is replaced with an upgraded convolution residual
module in the encoder and the decoder paths to prevent the gradient vanishing and explo-
sion problem in the deep neural network and make the forward and backward propagation
of information smoother. In addition to the suggested residual structure that is shown in
Figure 4, this module contains a max pooling layer following it. The convolution kernel of
the convolution operation is 3 × 3, and it is followed by a batch normalization layer and a
ReLU. The max pooling layer reduces the size of the input image to half its original size.
The number of input feature channels will be doubled after each encoder building block,
and the image size will be half. The residual structure is not employed in the decoder path.
The maximum pooling layer is replaced with an upsampling layer. Finally, we utilize the
concatenation method to return the feature map to its original size. The upsampling rate
is set to 2 in each decoder building block to guarantee that the output is the same size as
the encoder output. To make better use of the information in the multiresolution feature
map, the attention gate is embedded in the skip connection part to strengthen the useful
features in the channel dimension and suppress the inaccurate background features, hence
improving the computational efficiency of the network model. The output of this part is
then concatenated with the output of the previous layer of the decoder and fed into the
current layer’s decoder.

Figure 3. The proposed AttResU-Net framework.

Figure 4. The proposed residual block structure.

3.3. SegNet Architecture

The SegNet concept was suggested for the first time by Badrinarayanan et al. [39] in
2017. SegNet is a deep neural network designed to simulate scene parts, similar to a road
picture segmentation tool. It uses around ten times fewer learning parameters than the
UNet model. The encoder–decoder architecture, as in VGG16, comprises 13 convolutional
layers with filters of size 3 × 3, batch normalization, ReLU, and five layers of 2 × 2 max-
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pooling. A decoder is a reflected version of the encoder, it generates the segmentation mask
by using pooling indices from the max-pooling layers of the associated encoder. Toward
the end, there is a softmax activation that produces a classified binary image that divides
pixels into two categories (abnormality/background).

3.4. V-Net Architecture

In medical image segmentation, V-Net [40] is a well-known 3D fully convolutional
neural network. It is symmetrically constructed and consists of an encoder and a decoder.
The encoder extracts relevant features from the input image, and the decoder reconstructs
those features to produce the final segmentation results. The network’s left side is a
compression path, whereas the network’s right side decompresses the signal until it reaches
its original size. The network’s left side is subdivided into stages that perform at various
resolutions. Each one of those stages has one to three convolutional layers. At every stage,
a residual function is learned. To train a residual function, the input of each stage is used
in the convolutional layers, processed via the nonlinearities, and added to the output of
the last convolutional layer of that stage. Convolutions are done in each step by using
volumetric kernels with a size 5 × 5 × 5. Convolution with 2 × 2 × 2 kernels performed
with stride 2 reduces resolution throughout the compression path.

4. Results

Our approach aims for GI tract abnormalities (bleeding and polyps) semantic seg-
mentation, in order to generate pixelwise segmentation masks for each endoscopic and
colonoscopic image. In this section, we will initially describe the three used datasets.
Then, we will introduce the evaluation metrics and the experimental setup. Finally, both
quantitative and qualitative findings will be discussed.

4.1. Datasets

The suggested approach was validated by using three publicly available datasets.
The first dataset has labeled red lesions in WCE images, whereas the second is the Kvasir-
SEG dataset, and the CVC-ClinicDB dataset, which comprises colonoscopic images. These
three datasets are briefly discussed below.

4.1.1. Red Lesion Dataset

The publicly available WCE dataset for small bowel lesions has been obtained from [41].
It contains 1131 bleeding lesions and 2164 normal images. All frames were manually
annotated by expert physicians. The images have 320 × 320 or 512 × 512 resolutions.
The dataset was created with images from various cameras, such as MiroCam, PillCam
SB1, SB2, and SB3, and with various red lesions, such as angioectasias, angiodysplasias,
hemorrhage, and others.

4.1.2. Kvasir-SEG

The Kvasir-SEG was first introduced by Jha et al., in [42]. It consists of 1000 polyp
images acquired by high-resolution electromagnetic imaging systems. It also contains the
1000 corresponding ground truth masks that were annotated by expert endoscopists from
Oslo University Hospital (Norway). The dataset includes images with resolutions ranging
from 332 × 487 to 1920 × 1072 pixels. The images contain polyps of different sizes (large,
medium, and small). All images are encoded using JPEG compression.

4.1.3. CVC-ClinicDB Dataset

The third dataset was first presented in 2012 by Bernal et al., in [22]. It is an open-
access dataset of 612 colonoscopy images of size 574 × 500 pixels. Each pixel in the
images is annotated as polyp or background. The frames are obtained from 31 polyp video
sequences collected from 23 patients. Table 1 depicts some of the three datasets details, and
Figure 5 shows some of the bleeding and polyp images from different datasets.
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Table 1. Distribution of the datasets used in our study.

Dataset Images Train/Test Imaging Type

Red Lesion in VCE 3295 2796/652 WCE
Kvasir-SEG 1000 800/200 Colonoscopy

CVC-ClinicDB 612 490/122 Colonoscopy

(a)

(b)

(c)

Figure 5. Example frames from the three publicly available datasets (a) MICCAI2017 (b) Kvasir-SEG
(c) CVC-ClinicDB.

4.2. Implementation Details

During the segmentation process, all the experiments were implemented in Python
3.6 by using the Keras framework with Tensorflow as a backend. They were conducted on
an NVIDIA GeForce GTX 1050 (4 GB GPU memory) Core i7. We worked with a Ubuntu
16.04 LTS operating system with Cuda 8.0.61 version installed. For this study, we randomly
selected 60% of each dataset for the training, 20% for the validation, and the resting 20%
for the test set. We have manually conducted different experiments with multiple sets
of hyperparameters on the same dataset and with the same model in order to get the
optimal set of hyperparameters. Those sets were chosen based on the empirical evaluation.
In the training phase of all the cases, our models performed well with the batch size
of 40, Adam as an optimizer, and 50 for the epochs. β1 and β2 were set to 0.9 and 0.99,
respectively. In addition, to prevent overfitting, we employed an early stopping mechanism.
Early stopping is a type of regularization used when training a model by using an iterative
approach like gradient descent. Because all neural networks train utilizing gradient descent,
early stopping is a strategy that can be applied to any task. With each iteration, this strategy
improves the model fit to the training data. This increases the model performance on data
from the test set to a point. However, enhancing the model’s fit to the training data after
that point leads to higher generalization error. Early stopping criteria specify how many
iterations may be performed before the model begins to overfit.

4.3. Evaluation Metrics

There are several metrics for assessing and comparing the models’ performance.
For medical image-segmentation applications, the most often utilized metrics are the Dice
coefficient, Jaccard index, also known as intersection over union (IoU), and accuracy. These
metrics are calculated as follows.
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Dice Coefficient: The Dice coefficient is a relative metric for comparing the pixel-
wise results between given ground truth and predicted segmentation. Its value range is
from 0 to 1, with 0 indicating no spatial overlap between two sets of binary segmentation
results and 1 representing total overlap. The Dice coefficient is equal to twice the number of
elements shared by both sets A and B, divided by the total number of elements in each set.

Dice Coefficient (A,B) =
2× |A∩ B|
|A|+ |B| (2)

Jaccard Index: Another typical measure for evaluating a segmentation approach is
the Jaccard index. It computes the similarity between predicted (A) and ground truth (B),
as illustrated in the equation below:

Jaccard Index (A,B) =
|A∩ B|
A∪ B

=
|A∩ B|

|A|+ |B|+ |A∩ B| (3)

Accuracy: A high accuracy indicates that the pixels were correctly classified,

Accuracy =
TP + TN

TP + FP + FN + TN
, (4)

where (TP), (TN), (FP), and (FN) represent true positive, true negative, false positive,
and false negative, respectively.

4.4. Experimental Results

To further verify the effectiveness of our method, we trained UNet, SegNet, V-Net,
AttU-Net, and AttResU-Net on the MICCAI 2017, Kvasir-SEG, and CVC-ClinicDB datasets
and tested them on the test sets. The accuracy, Dice coefficient, and intersection over union
(IoU) of each model were calculated. The test results of each model on the three different
datasets are presented in this subsection. In our experiments, we choose 80% of the images
for training and the rest images are used for testing. We compare AttResU-Net with its
baseline of U-Net, as well as two recently proposed networks including SegNet and V-Net.

4.4.1. Results on MICCAI 2017

Table 2 gives the performances of our proposed AttResU-Net and compared different
SOTA algorithms on the test set of MICCAI 2017. It can be seen that the proposed AttResU-
Net achieves the best performance in three metrics. As given in Table 2, AttResU-Net
achieves an accuracy of 99.16%, a dice coefficient of 94.91%, and a Jaccard index of 90.32% on
the MICCAI 2017 datasets, outperforming the original U-Net by 6.42%, 8.37%, and 12.35%
gains, respectively. We can clearly notice that AttResU-Net defeats the U-Net network,
which has the best outcome compared with the two other segmentation models V-Net and
SegNet. It also outperforms AttU-Net presented by Oktay et al. [37] as an attention gate
(AG) module based on the structure of the U-Net. To create the attention weight maps,
the AG module uses the feature maps from the encoder as the input signal and the related
upsampling results as the gating signal. They then multiplied the weighted feature maps
by the original feature maps and replaced the U-Net skip connections with the weighted
feature maps. The target regions were more responsive to the weighted feature maps.
This can be explained by the importance of the two powerful modules that we add to the
traditional U-Net, including the residual block and attention mechanism. On the other
hand, the running time of our proposed framework takes more than five times compared to
U-Net. We can say that this is very normal given the complexity of our network. However,
as it is well known in the medical field, the precision of the results is favored over the
running time. To further show the training process of our model, we present learning
and loss curves in Figure 6. The first figure shows the accuracy curve of the segmentation
model. The x-axis represents the number of training epochs and the y-axis represents the
accuracy of the model. As the model trains, the accuracy increases from an initial value



Life 2023, 13, 719 11 of 18

of approximately 91% to a final value of approximately 99%. This increase in accuracy
indicates that the model is improving and learning to make more accurate predictions. It
can also be seen that the accuracy levels off after approximately 40 epochs, which suggests
that the model has reached a convergence point and is no longer improving. As such,
we can consider 40 epochs to be the optimal number of training epochs for this model.
The final accuracy of 99% is relatively high, indicating that the model is making accurate
predictions most of the time. The second figure shows a loss curve of our segmentation
model. The loss curve is a graph that represents the change in the loss function over time as
the model trains. As the model trains, the loss decreases from an initial value of around 0.22
to a final value of around 0.04. This decrease in loss indicates that the model is improving
and learning to make more accurate predictions. The final loss of 0.04 is relatively low,
indicating that the model is making accurate predictions.

(a) (b)

Figure 6. The learning and loss curve of the AttResU-Net model on MICCAI 2017 dataset.

Table 2. Quantitative results on MICCAI 2017 dataset.

Architecture Mean Accuracy (%) Dice Coefficient (%) Mean IoU (%)

SegNet 78.14 83.13 75.31
V-Net 87.66 91.64 66.71

ResAttU-Net [38] 92.50 82.72 70.93
U-Net 92.74 86.54 77.97

AttU-Net [37] 94.14 89.19 80.62
AttResU-Net 99.16 94.91 90.32

In Figure 7, we demonstrate some qualitative endoscopic lesion segmentation findings
from the MICCAI 2017 test set acquired by using several approaches. The four original
images show varied lesions in regard to appearance and size, and there are no apparent
structural borders between normal and lesion areas. Furthermore, certain areas with poor
quality make data analysis difficult. All of these present challenges in distinguishing
aberrant from normal areas. However, we can observe that the segmentation of our
suggested AttResU-Net is close to the ground truth. On the contrary, other methods can
capture big abnormal regions successfully but may miss certain tiny abnormal regions.
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Figure 7. Qualitative results comparison on the MICCAI 2017 dataset.

4.4.2. Results Kvasir-SEG

Table 3 displays the results of AttResU-Net, AttU-Net, UNet, SegNet, and V-Net.
The suggested model achieved the maximum Dice coefficient, mIoU, and accuracy for
the Kvasir-SEG dataset, as shown in Table 3. AttU-Net attained a high level of accuracy.
The Dice coefficient and mIoU scores, on the other hand, are not competitive, which are
essential metrics for semantic segmentation tasks. In terms of mIoU, the suggested design
outperformed the baseline architectures by a large margin.

Table 3. Quantitative results on Kvasir-SEG dataset.

Architecture Mean Accuracy (%) Dice Coefficient (%) Mean IoU (%)

SegNet 89.62 61.68 50.47
V-Net 92.56 76.03 63.38
U-Net 93.37 78.03 67.91

AttU-Net [37] 93.74 80.90 68.18
AttResU-Net 97.55 91.76 84.78

The qualitative outcome for the polyp detection and localization task is shown
in Figure 8. It is clear that all of the algorithms can detect polyps and provide high-quality
masks. The best segmentation results are achieved for AttU-Net and AttResU-Net, espe-
cially for minor details, as seen in the first example. On basically all samples, our suggested
network yields comparatively better predictions.
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Figure 8. Qualitative results comparison on the Kvasir-SEG dataset.

4.4.3. Results CVC-ClinicDB

To make segmentation more challenging, we tested our model by using the CVC-
ClinicDB dataset, which only comprises 612 clinical digital images. We ran additional tests
to conduct an in-depth performance investigation of autonomous polyp segmentation. As a
result, we tried model generalization to test the suggested architecture’s generalizability on
a new dataset. Generalizability would be a significant step toward developing a clinically
appropriate model. Table 4 displays the outcomes for all models on the CVC-ClinicDB
dataset. The suggested model was shown to have the highest Dice coefficient, mIoU,
and accuracy. The qualitative findings for all models are shown in Figure 9. The suggested
model may attain comparable patterns to those of the ground truth, with some exceptions
for the predictions. The advantage of AttResU-Net over the baseline is demonstrated by
Table 4 and Figure 9.

Table 4. Quantitative results on CVC-ClinicDB dataset.

Architecture Mean Accuracy (%) Dice Coefficient (%) Mean IoU (%)

SegNet 91.69 53.04 51.31
V-Net (2D) 94.32 65.76 87.10

U-Net 95.15 74.39 61.84
AttU-Net [37] 97.46 90.85 83.26
AttResU-Net 97.58 91.85 84.95
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Figure 9. Qualitative results comparison on the CVC-ClinicDB dataset.

5. Discussion
5.1. Comparison with State-of-the-Art Studies

To better evaluate the performance of our models, we compare them with the state-of-
the-art methods on every single dataset. As shown in Table 5 AttResU-Net outperformed
the existing studies conducted on the WCE red lesion dataset in terms of accuracy with
a difference of 10.16%. Table 6 compares the suggested approaches’ performance to that
of [30,43]. These existing networks are based on deep learning techniques such as ResUNet,
PSP-Net, Attention-UNet, and CE-Net. ResNet-mod has the highest Dice coefficient which
is 79.09%, whereas CE-Net has the best mIoU (67.28%). The advantage of our model is
having a high Dice score and a high IoU at the same time contrary to ResNet-mod which
has a low mIoU (just 43.64%). In the Table 7, the comparison of CVC-ClinicDB is depicted.
We can see that ResNet50 achieved the best Dice score (71.6%) and the best IoU 63.9%) with
a big difference compared to our Dice coefficient (74.39%).

Table 5. Comparison of bleeding segmentation approaches on the WCE dataset.

Author Method Accuracy

Figueiredo et al. [44] Computerized method 86.9%
Liangpunsakul et al. [45] Suspected blood indicator tool 73%

Sainju et al. [46] Statistical features and region growing 87%
Our proposed method Attention residual U-net 99.16%
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Table 6. Quantitave comparison of the segmentation results with other works on the Ksavir-
SEG dataset.

Author Method Dice Coefficient (%) Mean IoU (%)

Jha et al. [43]
ResUNet 51.44 43.64

ResUnet-mod 79.09 42.87

Wu et al. [30]

PSP-Net 75.92 66.27

Attention U-Net 75.46 65.93

ResUNet++ 76.12 66.42

CE-Net 76.97 67.28

Our proposed method Attention residual U-net 91.76 84.78

Table 7. Segmentation comparison of our best-performing model with other studies on the CVC-
ClinicDB dataset.

Author Method Dice Coefficient (%) Mean IoU (%)

Qadir et al. [25]

Resnet 50 71.60 63.90

Resnet101 70.42 63.30

Resnet Inception 70.31 63.60

Jha et al. [43] ResUNet 45.10 45.70

Our proposed method Attention Residual U-Net 91.85 84.95

5.2. Limitations

The suggested architecture yields good results on the three different used datasets,
even if we are dealing with different modalities (colonoscopy/endoscopy), different types
of abnormalities (red lesions/polyps) different sizes of lesions (large, medium, tiny), and
different shapes and textures. The good performance of the proposed models can be
clearly noticed from both the qualitative and quantitative results. However, U-Net also
provided competitive segmentation findings. Based on our empirical evaluation, we
optimized our implementation as much possible by selecting the optimal hyperparameters.
However, further optimization can occur. One of the weaknesses of our architecture is that
it is computationally expensive compared to other image-segmentation models. This is
due to the complexity of the U-Net architecture, as well as the additional computational
overhead of the attention mechanism. This can make it difficult to use the AttResU-Net
in real-time applications, or in situations in which computational resources are limited.
Moreover, AttResU-Net may struggle with images that contain large variations in intensity
or texture. The attention mechanism used in the AttResU-Net is designed to focus on
the most important regions of an image, but it may not always be effective in these cases,
leading to suboptimal performance. Finally, the performance of the AttResU-Net can also
be influenced by the choice of loss function and other hyperparameters. Fine tuning these
parameters is important for achieving optimal results, but it can be time consuming and
require a significant amount of experimentation.

5.3. Future Work

To overcome the points of weakness mentioned above, we plan to work on different
strategies in the future works in order to improve the overall performance of our system.
There are several ways that we suggest to improve the AttResU-Net architecture.

• Increasing the depth of the network: This could improve the network’s ability to
capture complex features and relationships between the inputs and outputs.

• Adding skip connections: This could help improve the gradient flow and reduce the
problem of vanishing gradients.
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• Ensemble learning: Training multiple models and combining their outputs could
potentially lead to improved results.

• Hyperparameter tuning: Fine tuning the model’s hyperparameters, such as the learn-
ing rate, batch size, and weight initialization method, could potentially lead to im-
proved performance.

• Data augmentation: Adding data augmentation techniques, such as random rotations,
flips, or shifts, could help the network generalize better to new data.

• Transfer learning: Using a pretrained model as the starting point for the AttResU-Net
architecture could potentially improve the results.

• Modifying the attention mechanism: Experimenting with different attention mechanisms,
such as self-attention or multihead attention, could lead to improved performance.

6. Conclusions

In this study, we introduced a novel AttResU-Net model for the polyp and bleeding
segmentation challenge, which integrated an attention mechanism and residual units into
the traditional U-Net architecture to increase semantic segmentation performance. AttResU-
Net adaptively rescaled features by adding a sequence of attention units among matching
downsampling and upsampling processes, enhancing local responses of downsampling
residual features as well as the recovery effects of the upsampling process. Experiment
findings on three endoscopic and colonoscopic datasets benchmarks revealed that AttResU-
Net exceeded U-Net by a wide margin and achieved better performance compared to
other predominant polyp and bleeding segmentation algorithms. Nevertheless, because of
computational resource constraints, our model used 128 × 128 as input size to create the
segmentation network, resulting in additional context information loss. As a consequence,
in the future, we want to extend our AResU-Net to a 3D network with a bigger size input
image in order to get better segmentation results and apply it to additional medical image-
segmentation jobs for further testing. In addition, several more strong feature-extraction
modules will be investigated in order to get an additional performance boost.
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