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Abstract: In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE
inhibitors, and ARBs, especially if used in combination, might be the only practical way to save
the lives of patients with severe COVID-19. These drugs will already be available in all countries
on the first pandemic day. Because they target the host response to infection instead of the virus,
they could be used to save lives during any pandemic. Observational studies show that inpatient
statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show
this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the
exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic
research must include testing combination generic drug treatments that could be used in LMICs.

Keywords: host response treatment; COVID-19; generic drugs; statins; ACE inhibitors; angiotensin
receptor blockers

1. Introduction

The COVID-19 pandemic has had a devastating impact on global health. As of January
2022, estimates of excess deaths exceeded 20 million worldwide [1]. The pandemic’s impact
on social and economic life throughout the world has been enormous [2,3]. Remarkably,
the one bright spot has been the rapid development of COVID vaccines [4]. They are
estimated to have saved tens of millions of lives [5]. Despite a call for vaccine equity from
the World Health Organization (WHO) [6], vaccine nationalism has been the dominant
theme of global vaccination. Low-and middle-income countries (LMICs) have encountered
great difficulty in obtaining supplies of COVID vaccines [7]. The same problems apply to
treatments [8–10].

Most efforts to develop COVID-19 treatments have focused on antivirals [10,11]; for
the most part, these are monoclonal antibody preparations. There have been appeals
for a coordinated system for organizing and financing global pandemic research and
development [12], but no one has suggested a practical way to create such a system and
make it accountable. In the meantime, important public health issues (e.g., masking) have
become deeply polarizing and have led to highly politicized debate [13].

For more than a decade I have argued that the only practical response to a global
pandemic would be to target the host response to infection using inexpensive generic
drugs [14–28]. People who live in any country with basic healthcare would already have
these repurposed drugs on the first pandemic day. I recently wrote, “If we already knew
that these drugs could save lives, they could be used in every country that is still affected
by COVID-19” [25]. Host response treatment could be especially important for LMICs,
which have experienced great difficulty in obtaining meaningful and affordable supplies of
vaccines and antivirals.

This article will discuss several issues related to the use of generic drugs (including but
not limited to statins, ACE inhibitors (ACEis), and angiotensin receptor blockers (ARBs)) to
treat patients with COVID-19. It will focus on their ability to reduce 28–30-day mortality
(not that reducing hospitalization rates and ICU admissions is unimportant). I reviewed the
rationale for this idea in many articles written during periods when an influenza pandemic
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was anticipated (especially Refs. [15,17,19,22]). The principles outlined in these earlier
articles apply equally well to COVID-19 and, in fact, to any pandemic, regardless of cause.
They might also improve the host response to critical illness caused by any pathogen.

2. The COVID-19 Pandemic

The pathophysiology of COVID-19 has been extensively reviewed [29–40], especially
in relation to endothelial dysfunction [41–54]. The acute disease is also characterized by
extensive modification of innate and adaptive immunity, increased inflammatory cytokines,
abnormal interferon responses and immunothrombosis (Figure 1). This article will not
review the pathophysiology of acute COVID-19 in any detail, but three points deserve
emphasis. First, the many manifestations of acute COVID-19 (and probably other acute
virus infections) reflect underlying differences in subphenotypes [55]. Host response
treatment might affect only one of these many subphenotypes [56]. Second, the low
mortality of COVID-19 in children and the much higher mortality in older adults must
lie in their different evolutionary heritages [23,57–59]. The mechanisms underlying this
difference remain to be determined. Third, findings for the pathophysiology and treatment
of COVID-19 may apply to long COVID as well as the acute disease, even for those who
initially had mild illness [60–65].
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After infection, patients will be in a presymptomatic phase of the infection, which is followed by 
stage 1 with fever, malaise and other mild symptoms. Virus levels peak and then decline as patients 
exit stage I, independently of whether they will recover or progress to a severe or critical stage of 
infection. Antiviral drugs are more effective for asymptomatic individuals and patients in stage 1. 
By stages 2 and 3, the host inflammatory response drives the disease. If patients survive, the host 
inflammatory response subsides, resolution begins, and patients proceed toward recovery in stage 

Figure 1. The relationship between disease stage and treatment for patients with COVID-19. Adapted
from Ref. [66]. After SARS-CoV2 infection, the virus replicates and reaches peak levels during stage
1, after which levels steadily decline. As they decline, the host inflammatory response increases
(the hyperinflammatory phase). This response eventually decreases and recovery begins. The
relationships among these factors and the clinical course of the infection dictates which of the two
defence strategies will be more effective. Before infection, avoidance is the best defence strategy.
After infection, patients will be in a presymptomatic phase of the infection, which is followed by
stage 1 with fever, malaise and other mild symptoms. Virus levels peak and then decline as patients
exit stage I, independently of whether they will recover or progress to a severe or critical stage of
infection. Antiviral drugs are more effective for asymptomatic individuals and patients in stage 1.
By stages 2 and 3, the host inflammatory response drives the disease. If patients survive, the host
inflammatory response subsides, resolution begins, and patients proceed toward recovery in stage 4.
Drugs that treat the host response are more effective for patients in stage 4. Patients whose disease
severity peaks in stages 1 or 2 can bypass later stages and enter directly into the recovery phase.

3. Randomized Controlled Trials vs. Observational Studies

Controversies over study methods—randomized controlled trials (RCTs) versus ob-
servational studies—continue to plague the literature on COVID-19. Most existing studies
of treatments (antivirals and some of the drugs targeting the host response) are based
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on the results of RCTs, whereas much of the information on generic treatment is based
on observational studies. The advantages and disadvantages of both study methods are
summarized in Table 1.

Table 1. Strengths and limitations of RCTs and observational studies.

RCTs Observational Studies

Strengths
Randomization

balances baseline
characteristics

Rigor is enhanced by specific methods

“Prospective”
infrastructure collects

pertinent data

Observational studies and RCTs with the
same focus provide consistent results

Analytic methods
are simple and straightforward

Treatments evaluated in large populations
can be shown to be safe and effective

Limitations Individual RCTs are often
contradictory

Baseline characteristics are usually
not well balanced

Meta-analyses and large trials often
disagree Data quality can be variable

Limited
generalizability

Analytical methods can be complex
and obscure

Adapted from Ref. [67].

Strong arguments have been made for the validity of observational studies for es-
tablishing the causal effects of treatments [67–69]. These reports and others [70–73] have
criticized a sole reliance on RCTs for demonstrating treatment efficacy. Observational stud-
ies that use propensity scores have been shown to reliably mimic the results of RCTs [74].
Effectively managing the complex pathophysiology of COVID-19 probably requires using
more than one drug; i.e., combination treatments are required [75]. A “pragmatic pluralism”
is probably more suitable than a single method for establishing an effective approach to
COVID-19 treatment [76].

4. Treatments for COVID-19

Treatments for COVID-19 can be divided into those that target the virus (antiviral
agents) and those that target the host response to infection (often called immunomodula-
tors). There may be some overlap between the two; drugs that modify the host response
might also have antiviral effects. Comprehensive treatment guidelines have been issued for
the U.S. by the National Institutes of Health [77] which offer extensive advice (448 pages)
on treating non-hospitalized as well as hospitalized patients. For Europe, the European
Respiratory Society (ERS) guidelines are much more succinct [78,79]. Treatment guidelines
have also been issued by The World Health Organization (WHO) [80]. Table 2 summarizes
both sets of guidelines.

Table 2. Summary of guidelines for the use of treatments for acute COVID-19.

Treatment Guidelines NIH Guidelines ERS Guidelines

Antiviral Treatments Targeting the SARS-CoV-2 Virus

HCQ/CQ Not recommended Strongly not recommended

Remdesivir Recommended Conditionally recommended

Favipiravir Not mentioned Not mentioned

Convalescent plasma Not recommended Not recommended
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Table 2. Cont.

Treatment Guidelines NIH Guidelines ERS Guidelines

Ivermectin Not recommended Strongly not recommended

Interferon–1β Not mentioned Conditionally not recommended

Pegylated interferon-lambda Not mentioned Not mentioned

Monoclonal antibodies specific for the
anti-SARS-CoV-2 spike protein Not mentioned Recommended

Paxlovid (Ritonavir-boosted nirmatrelvir Recommended Not mentioned

Molnupiravir Weakly recommended Not mentioned

Colchicine Not recommended Strongly not recommended

Immunomodulators targeting the host response to infection

Corticosteroids Recommended, requiring O2
treatment only Strongly recommended

mAb—IL-1 receptor antagonist Not recommended * Conditionally not recommended

mAb—IL-6 receptor antagonist Recommended Strongly recommended

Fluvoxamine (SSRI) Not recommended * Not mentioned

Janus kinase inhibitors Strongly recommended Strongly recommended

Tyrosine kinase inhibitors Not recommended * Not mentioned

Anticoagulation (LMWH) Recommended Strongly recommended

Azithromycin Not recommended Not mentioned

Azithromycin + HCQ Not recommended Not mentioned

Inexpensive generic drugs targeting the host response

Metformin Not recommended * Not mentioned

PPARα, PPARγ agonists Not mentioned Not mentioned

Statins, ACE inhibitors, ARBs Not mentioned except for continuing
treatment Not mentioned

Adapted from Refs. [77–79]. Abbreviations: NIH = National Institutes of Health; ERS = European Respiratory Society;
HCQ = hydroxychloroquine; CQ = chloroquine; mAb = monoclonal antibody; Paxlovid = ritonavir-boosted nirmatrelvir;
SSRI = selective serotonin uptake inhibitor; Not recommended * = Not recommended except when used in a clinical
trial; LMWH = low molecular weight heparin; PPAR = peroxisome proliferator activator receptor; ACE = angiotensin
converting enzyme; ARB = angiotensin receptor blocker.

5. Treatments Targeting the Virus

Soon after the emergence of SARS-CoV-2, there was initial enthusiasm for treatment
with either chloroquine or hydroxychloroquine (CQ/HCQ). Although in vitro evidence
indicated these drugs might work, clinical trials and observational studies suggested they
would be ineffective [81], a finding that recalled earlier clinical trials showing that CQ/HCQ
did not work against other virus diseases (influenza and dengue) [82]. For remdesivir,
clinical trials initially showed that intravenous treatment had no effect on 28-day mortality,
although it appeared to shorten the length of hospital stay [83,84]. Two more recent
RCTs [85,86] and an observational study [87] suggest that remdesivir treatment may actually
reduce mortality by about 30–40% and prevent hospitalization but also may prolong the
hospital length-of-stay. Studies of favipiravir have shown it offers no advantages over other
ineffective antiviral agents [88,89]. The same lack of effect has been shown for ivermectin, an
anti-schistosomal drug that has attracted a great deal of controversy [90–93]. In large studies,
two other drugs that target the virus—colchicine [94,95] and convalescent plasma [96–98]—
have also been shown not to reduce COVID-19 mortality. One hallmark of COVID 19
pathophysiology is disruption of normal interferon signaling [99,100]. Nonetheless, the
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WHO Solidarity trial [101] and studies of interferon-β [102] and pegylated interferon
lambda [103] have shown interferon treatment does not reduce COVID-19 mortality.

Several monoclonal antibodies (mAbs) targeting SARS-CoV-2 have been developed [104]
and tested to determine whether they reduce the severity of COVID-19 illness and its con-
sequences [105]. A detailed Cochrane analysis of four RCTs included 9749 seropositive but
unvaccinated, pre-omicron COVID-19 patients. It showed that pre-exposure prophylaxis
with tixagevimab/ciligavimab probably reduced the number of symptoms and hospital
admissions but had no effect on mortality [105]. A smaller study of casirivimab and imde-
vimab showed that treatment with these mAbs might have reduced symptomatic infections,
but had uncertain effects on more severe symptoms and deaths. Two RCTs of post-exposure
prophylaxis showed that the same two mAbs probably reduced the number of people in-
fected but had little or no effect on mortality. A more recent study of Regdanvimab has
shown a modest reduction in mortality [106]. After the Food and Drug Administration
decided to deauthorize casirivimab and imdevimab (they were ineffective against omicron
subvariants of SARS-CoV-2), there was a slow decline in their use [107]. Although most
monoclonal antibodies are less effective against omicron subvariants, bebtelovimab ap-
peared to be the most effective mAb against these subvariants [108] but it has since been
withdrawn, because it is not effective. In addition, mAbs require parenteral administration,
a feature that mostly limits their use to hospitalized patients.

Among antiviral agents shown to be effective against COVID-19 in unvaccinated
adults, Paxlovid (nirmatrelvir/ritonavir) and molnupiravir have been shown to reduce
symptomatic infections and hospital admissions [109,110]. During the recent omicron
surge, Paxlovid reduced mortality in patients over 65 years of age, but not in younger
individuals [111]. A small proportion of patients have tested positive for SARS-CoV-2 soon
after completing a five-day course of Paxlovid treatment [112,113]. This “rebound” appears
to be a general phenomenon and is not unique to Paxlovid [114].

Although antiviral drugs are sometimes useful against COVID-19 [115], they have sev-
eral disadvantages. First, not all of these drugs are available as oral preparations; some (e.g.,
mAbs) require intravenous or subcutaneous administration, which may require hospital
care. Second, supplies of many antiviral drugs are limited. The company that manufac-
tures molnupiravir—an expensive antiviral—has negotiated agreements for supplying it to
resource-poor countries at low prices [116]. However, molnupiravir is less attractive as an
antiviral than Paxlovid because it appears to be less effective. Third, cost is still a barrier
to widespread antiviral use, especially in resource-poor countries, because many of these
drugs are still under patent.

As yet there are no descriptive data that document the global use of any antiviral
agent for COVID-19 treatment. It is doubtful that any of these drugs have been or will be
widely used in LMICs. Moreover, in patients who die of COVID-19, virus loads in the last
days of life are far lower than they were when patients first tested positive (Figure 1) [117].
Because a dysregulated host response is largely responsible for disease severity at the end
of life, treatments that target the host response to infection instead of the virus are more
likely to improve patient survival.

6. Treatments Targeting the Host Response to Infection

Dexamethasone was the first drug shown to improve survival in hospitalized COVID-
19 patients. In the RECOVERY RCT, dexamethasone reduced 28-day mortality in patients
receiving mechanical ventilation (MV; rate ratio = 0.64) and in those requiring oxygen
treatment without MV (rate ratio = 0.82), but not in those who received no respiratory
support (rate ratio = 1.19) [118]. These results were not surprising: steroid treatment had
been tested previously (with mixed results) in patients with sepsis and ARDS [119–121].
In. another RCT, intravenous dexamethasone decreased the need for MV but did not
reduce 28-day all-cause mortality [122]. A WHO-sponsored meta-analysis of seven RCTs
showed that dexamethasone and hydrocortisone decreased mortality (ORs = 0.64 and 0.69,
respectively) [123].
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Dexamethasone may work through its effects on endothelial dysfunction [124], but
treatment is not without its hazards (e.g., hyperglycemia and opportunistic infections) [125].
Unfortunately, its use in non-hospitalized adults (for which there is no evidence of efficacy)
has been considerable [126]. A recent observational study compared the results of steroid
treatment with those from RCTs. The investigators argued that both methods could obtain
similar results as long as the observational study methods were rigorous [127].

In spite of the encouraging results from RCTs, questions still remain about the role of
steroid treatment in patients with COVID-19 [128]. Are currently recommended doses of
dexamethasone immunomodulatory? Can responders and non-responders be identified
before treatment starts? Who benefits most from steroid treatment? Do patients infected
with only certain SARS-CoV-2 subphenotypes benefit from treatment? These and other
questions will require ongoing attention from clinical and laboratory-based investigators.

A small retrospective cohort study showed that anakinra, an IL-1 receptor antago-
nist, reduced 21-day mortality but an RCT with 116 patients showed it failed to improve
outcomes [129].

IL-6 is a prominent component of the “cytokine storm” seen in many seriously ill
COVID-19 patients. Two RCTs have shown that tocilizumab (an mAb) reduces COVID-19
mortality [130,131]. In a WHO-sponsored meta-analysis [132], tocilizumab was associated
with a reduction in 28-day all-cause mortality. The absolute mortality reduction (22%)
was slightly less than that seen in patients who received dexamethasone instead of other
corticosteroid preparations. In spite of the appearance of many subvariants of SARS-CoV-2,
there have been no reports of tocilizumab’s reduced efficacy, probably because it targets
IL-6, not the virus itself.

Fluvoxamine and fluvoxatine are selective serotonin uptake inhibitors (SSRIs) known
to suppress cytokine levels and reduce COVID-19 mortality [133]. In a retrospective cohort
study, both drugs reduced mortality (RR = 0.74; p = 0.04) [134]. Subsequent RCTs showed
that fluvoxamine reduced hospitalization among outpatients [135,136], but did not reduce
mortality [137].

Janus kinase inhibitors and tyrosine kinase inhibitors have also been tested for their
effects on host response. In an early study, the Janus kinase inhibitor barcitinib was shown
to dramatically reduce inflammatory cytokine levels and the need for oxygen therapy [138].
A later RCT showed that treating hospitalized adults with COVID-19 pneumonia with
another Janus kinase inhibitor (tofacitinib) reduced 28-day and 60-day mortality and 28-day
all-cause mortality (HR = 0.49) [139]. A meta-analysis of four RCTs and 11 observational
studies showed even greater mortality reduction (OR = 0.12, p < 0.001) [140]. These results
were confirmed in a critically ill group of mechanically ventilated patients (mortality
reduction HR = 0.54; p = 0.03) [141]. In addition, an RCT of imatinib, a tyrosine kinase
inhibitor that attenuates endothelial vascular leak, was shown to reduce 28-day and 90-day
COVID-19 mortality and improve ventilation [142,143]. A clinical trial is underway to
determine whether this improvement is due to attenuation of endothelial dysfunction [143].

Severe COVID-19 is often accompanied by severe coagulopathy, venous thrombo-
sis and occasional pulmonary embolization [144,145]. Several RCTs and observational
studies have sought to determine the role of anticoagulant treatment in improving pa-
tient survival [144,145]. Some RCTs have shown that therapeutic anticoagulation reduces
patient mortality [146,147], while others have been stopped for reasons of futility [148].
Observational studies have shown mixed results: some show therapeutic anticoagulation
improves mortality [149] while others do not. In ICU patients, an intermediate dose of
low molecular weight heparin offers no increase in benefits over a standard dose [150].
Anticoagulation of COVID-19 inpatients with venous thrombosis is recommended but
prophylactic anticoagulation of all inpatients is not. Long-term outpatient anticoagulation
of discharged patients is not protective. The use of direct acting oral anticoagulants is not
recommended; they have not been shown to be effective in reducing mortality. In patients
who have experienced venous thrombosis, the duration of anticoagulant treatment after
hospital discharge is uncertain.
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7. Treating the Host Response with Inexpensive Generic Drugs

Severe COVID-19 is associated with dysregulated energy metabolism [40]. Several
observational studies have shown that metformin, which acts through AMP-activated
protein kinase (AMPK) and PGC-1α to increase mitochondrial biogenesis and improve
energy metabolism, reduces COVID-19 mortality in outpatients with Type 2 diabetes
mellitus [151]. An RCT of outpatient metformin treatment, however, failed to show this
benefit [137].

Fenofibrate is a peroxisome proliferator activated receptor alpha (PPAR-α) agonist
that may help minimize the inflammatory and thrombotic consequences associated with
SARSCoV-2 infection [152]. It attenuates the interaction between SARS-CoV-2 and ACE2,
which could directly reduce infection-related inflammation. Unfortunately, an RCT has
shown that fenofibrate has no effect on COVID-19 outcomes [153]. Pioglitazone and
rosiglitazone are peroxisome proliferator activated receptor gamma (PPAR-γ,) agonists
(thiazolidinediones) that also have anti-inflammatory activities in COVID-19 patients and
have been suggested for treatment [154,155]. They too have been shown not to affect
outcomes in COVID-19 patients.

8. Treating the Host Response to COVID-19 with Inexpensive Generic Statins, ACE
Inhibitors (ACEis), and Angiotensin Receptor Blockers (ARBs)

Soon after the onset of the COVID-19 pandemic, an observational study from China
reported that inpatient statin treatment was associated with a reduction in mortality [156].
This was thought to be due to the pleiotropic effects of statin treatment on the host response.

I have reviewed the putative mechanisms for these statin effects many times [17,19,22].
and will not repeat them here. Many observational studies have reported that outpatient
statins reduce COVID-19 hospitalizations and mortality [157]. These findings also apply
to patients with coagulopathies and immunothrombosis [158] and risk conditions such as
diabetes [159].

Observational studies have also shown that chronic treatment with ACE inhibitors
or ARBs is not harmful and can be beneficial in COVID-19 patients [160,161]. A clinical
trial of telmisartan (an ARB) has yielded similar results [162]. Moreover, continuation
of ACE inhibitor/ARB outpatient treatment after hospitalization has beneficial effects on
COVID-19 outcomes [163], whereas discontinuing treatment can be harmful [164–168].
Similarly, an increase in COVID-19 mortality has been observed following withdrawal of
statin treatment [169,170]. Withdrawal of treatment with these drugs is discussed in greater
detail below.

Although the complexities of COVID-19 have been extensively reviewed, there is no
single consensus on its pathophysiology. Nonetheless, many of the biomarkers associated
with COVID-19 hyperinflammation, endothelial dysfunction and immunothrombosis are
beneficially affected by both statins and ACEis/ARBs. The effects of these drugs on several
important COVID-19 biomarkers are shown in Table 3.

Table 3. Beneficial effects of statin, ACE inhibitor or ARB treatment on biomarkers of inflammation
and endothelial barrier integrity.

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Statin ACEi ARB Statin ACEi ARB Statin ACEi ARB

Tyrosine
kinase yes yes yes PAF yes yes yes PPAR α yes yes yes

Janus kinase yes yes yes PAR-1/PAR-2 yes yes yes PPAR γ yes yes yes

IL-1 yes yes yes α7 nicotinic
aCh receptor yes yes yes

IL-4 yes yes yes ROS yes yes yes RAGE yes yes yes
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Table 3. Cont.

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Biomarker

Improve Inflammation/
Endothelial

Barrier
Integrity

Statin ACEi ARB Statin ACEi ARB Statin ACEi ARB

IL-6 yes yes yes β-arrestin yes yes yes Ferritin yes yes yes

IL-10 yes yes yes Inflammasome yes yes yes Mitochondria yes yes yes

IL-17 yes yes yes AMPK yes yes yes HO-1 yes yes yes

TNF yes yes yes MAPK/Akt yes yes yes KLF4 yes yes yes

HMBG1 yes yes yes MCP-1 yes yes yes

Lipoxin A4 yes yes yes FOXP3 yes yes yes Angpt2/
Tie2 yes yes yes

T regs yes yes yes ACE2 yes yes yes

HMBG1 yes yes yes NADPH
oxidase yes yes yes eNOS/

iNOS yes yes yes

Thrombomodulin yes yes yes Interferon yes yes yes VCAM-1/
ICAM-1 yes yes yes

Thromboxane A2 yes yes yes TGF-β1 yes yes yes VE-
cadherin yes yes yes

t-PA yes yes yes hs CRP yes yes yes Actin cytoskeleton yes yes yes

P-selectin/
E-selectin yes yes yes mTOR yes yes yes VEGF yes yes yes

PAI-1 yes yes yes Adiponectin yes yes yes Bradykinin yes yes yes

Adapted from Ref. [22] and updated. The biomarkers shown in this table are representative and do not include all
that affect inflammation or endothelial barrier integrity. Inflammatory biomarkers and endothelial barrier disrup-
tors and protectors are signaling molecules or pathways. Beneficial treatment by statins, ACE inhibitors (ACEis)
or angiotensin receptor blockers (ARBs) is defined as either up regulation or down regulation in cell signaling
pathways that reduce inflammation and/or improve endothelial barrier integrity. This is indicated by “yes in the
table. The literature for each agent on each biomarker in Table 3 is extensive and individual articles have not been
cited. Three documents showing selected citations and abstracts for these articles are available from the author
(davidsfedson@gmail.com). Abbreviations: α7 nicotinic aCh receptor = alpha7 nicotinic acetylcholinesterase receptor;
ACE2 = angiotensin converting enzyme-2; Angpt = angiopoietin; AMPK = adenosine monophosphate kinase;
C = complement; eNOS/iNOS = endothelial/inducible nitric oxide synthase; FOXP3 = fork head box P3;
HMGB1 = high mobility group box 1; hsCRP = highly sensitive C-reactive protein; HO-1 = heme oxygenase-1;
IL-1 = interleukin 1; IL-4 = interleukin 4; IL-6 = interleukin 6; IL-10 = interleukin 10; IL-17 = interleukin 17;
KLF4 = Kruppel-like factor 4; MAPK/Akt = mitogen-activated protein kinase/three members of the serine/threonine
protein kinase family; MCP-1 = monocyte chemoattractant protein-1; MMPs = matrix metalloproteinases;
mTOR = mechanistic target of rapamycin kinase; PAF = platelet activating factor; PAI-1 = plasminogen activa-
tor inhibitor-1; PAR = protease activator receptor; PPARα = peroxisome proliferative activated receptor alpha;
PPARγ = peroxisome proliferative activated receptor gamma; P-selectin = platelet selectin; E-selectin = endothelial selectin;
RAGE = receptor for advanced glycation end products; ROS = reactive oxygen species; TGF-β1 = transforming
growth factor-β1; tPA = tissue plasminogen activator; Treg = regulatory T cells; TNF = tumor necrosis factor;
VCAM-1/ICAM-1 = vascular/intercellular adhesion molecule-1; VE-cadherin = vascular endothelial cadherin;
VEGF = vascular endothelial growth factor.

Cardiologists have known for many years that combination treatment with a statin
and an ACE inhibitor are synergistic [171,172]. In 2014/2015, a statin/ARB combination
appeared to dramatically reduce Ebola mortality in Sierra Leone [21,22,173]. Combination
treatment is also discussed below.

For people who live in LMICs, COVID-19 treatments licensed in wealthy countries
may be too expensive or they are simply unavailable. Hospital beds for those with critical
illness may be few or unavailable [174]. Moreover, statin use itself might be limited [175].
(There are no data on the extent to which ACE inhibitors/ARBs or other generic drugs
are used in LMICs.) Nonetheless, in resource-poor countries inexpensive generic drugs
like statins, ACE inhibitors, and ARBs might be the only practical way to save the lives of
patients with severe COVID-19 [176]. These drugs will be available in all countries on the
first pandemic day. In addition. because they target the host response to infection, they
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could be used to save lives during any pandemic [16–19,22]. They might even be used to
save the lives of those with other forms of acute critical illness like sepsis and ARDS [177].

9. Statin and ACE Inhibitor/ARB Withdrawal

Investigators have known for many years that statin treatment is associated with
reduced mortality due to several infectious diseases [178]. Cardiovascular investigators
know that statins are clearly beneficial in preventing cardiovascular diseases in people
less than 75 years in age [179]. Moreover, research published 15–20 years ago showed
that statin treatment reduced morbidity and mortality in patients with acute myocardial
infarction [180]. It made no difference whether outpatient statins were continued after
hospital admission or were started in the hospital. Furthermore, statin withdrawal was
associated with an increase in cardiovascular mortality. The importance of statin with-
drawal and its probable mechanisms of action were extensively reviewed in 2006 [181].
For COVID-19, similar findings have been published for ACE inhibitor and ARB with-
drawal [164–168].

Most studies showing that statins are associated with reduced COVID-19 mortality
are based on outpatient treatment [27]. The point estimates for mortality reduction in
these studies (e.g., Ref. [157]) are unreliable because they do not document whether statin
treatment was continued or withdrawn after hospital admission. Thus, accurate estimates
for mortality reduction can only be obtained from evidence of inpatient statin treatment.

10. Inpatient Statin Treatment

In 2021, an observational study by Belgian investigators reported that inpatient statin
treatment was associated with reduced COVID-19 mortality [26]. At least 24 observational
studies have reported similar results [26,158,169,182–198]. The results of six RCTs of
inpatient statin treatment have also been reported [199–204]. All of these results are
summarized in Table 4.

Table 4. Twenty-two observational studies and six RCTs of inpatient statin treatment and its effective-
ness in reducing 28–30-day mortality.

Study (Ref.) Methods No. of Statin Users Adjusted OR/HR 95% CI p Value

Zhang [182] PSM (4:1), CCS 1219 0.58 0.43–0.80 0.001

Rodriguez-Nava [183] ICU only, cohort, Cox regression ns 0.38 0.18–0.77 0.008

Mallow [184] Cohort, multivariate regression 5313 0.54 0.49–0.60 <0.001

Saeed [185]

Diabetes mellitus,
multivariate regression 982

0.51 0.43–0.61 <0.001

PSM (1:1), IPTW *,
diabetes vs. no DM, 0.88 0.84–0.91 <0.001

Lala [186] Adjusted for HRC, ACEi/ARB 984 0.57 0.47–0.69 <0.001

Fan [187] PSM (1:1), cohort 250 0.25 0.07–0.92 0.037

Rossi [188]

Observational study, compares only
lipophilic/hydrophilic statins; no
adjustment for HRC or other risk

variables

42 ns - 0.025

Torres-Pena [189]
PSM (1:1), statins continued

vs. withdrawal **, mixed effect
logistic regression

1130 0.67 0.54–0.84 <0.001

Byttebier [26] PSM (1:1), CCS 297 0.56 0.39–0.93 0.020

Terleki [190] Logistic regression ns 0.54 0.33–0.84 0.008

Lohia [191] PSM (1:1), cohort 250 0.47 0.32–0.70 <0.001
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Table 4. Cont.

Study (Ref.) Methods No. of Statin Users Adjusted OR/HR 95% CI p Value

Choi [192] Cox regression, high
intensity statin 843 0.53 0.43–0.65 not

done

Davoodi [199] RCT, atorvastatin, 20 mg for 5 days 20 no deaths - -

Shen [193] PSM (1:1), logistic regression 404 0.47 0.29–0.77 <0.001

Ayeh [194] PSM (1:1), Cox regression 594 0.92 0.53–1.59 ns

Masana [195] GM (1:1) 336 0.60 0.39–0.92 0.020

Memel [169]

marginal structural Cox regression,
IPTW, statin

treatment vs. no treatment
777 0.57 0.37–0.86 0.008

statins continued vs. withdrawal *** - 0.27 0.11–0.64 0.003

Matli [200] RCT, Cox regression, atorvastatin
20 mg + other drugs 17 1.43 0.28–13.16 0.644

Ghafoori [201] RCT, Cox regression,
atorvastatin 20 mg 76

ns (multiple
outcomes

including ICU
admissions
and deaths

ns 0.27

I.S.Investigators [202] RCT, ICU, atorvastatin 20 mg 210 0.84 0.58–1.22 0.39

Gaitan-Duarte [203] RCT, rosuvastatin
40 mg + other drugs 159 0.53 0.29–0.56 0.038

Kuno [196] PSM (1:1),
statins continued vs. withdrawal 671 0.53 0.41–0.62 <0.001

Li [197] PSM (1:1) 3359 0.72 0.64–0.80 <0.001

Kouhpeikar [198] Cox regression, composite outcome
(mortality, ICU, ventilation) 162 0.57 0.33–0.99 0.048

Andrews [170] Logistic regression 26,893 0.72 0.68–0.77 <0.001

Al Harbi [158] PSM (1:1), ICU, Cox proportional
hazard regression 198 0.72 0.54–0.97 0.030

Al-Sulaiman [205] PSM (1:1), ICU, Cox proportional
hazard regression 251 0.75 0.58–0.98 0.03

Hejazi [204] RCT 26

ns
(mortality was
twice as high in
control patients)

ns ns

Adapted from Ref. [27] and updated. Abbreviations: CCS = case-control study; CI = confidence interval;
GM = genetics-matched; HR = hazard ratio; HRC = high risk conditions; ICU = intensive care unit; IPTW = inverse
probability treatment weighted; ns = not stated or not significant; OR = odds ratio; PSM = propensity score-
matched; RCT = randomized controlled trial. * The PS matched IPTW cohort analysis included demographic and
comorbidity factors, clinical and laboratory test values, and the use of ACE inhibitors and angiotensin receptor
blockers. ** Statin treatment continued after hospital admission versus statin withdrawal; conditional logistic
regression. *** Statin treatment continued after hospital admission versus statin withdrawal; marginal structural
Cox model.

A meta-analysis of five of the six RCTs of inpatient statin treatment has been pub-
lished [206]. The relative risk of death was 0.90 (95% CI = 0.73–1.11; p value = 0.33).
Daily statin treatment had no effect on mortality, but three of the six studies were very
small [199,200,204], four used what was probably too low a dose of atorvastatin (20 mg
instead of 40 mg) [199–202], and one dealt only with ICU patients [202], which may have
been too late in the course of illness. Two RCTs examined simultaneous treatment with
several drugs [200,203]. One additional RCT reported the results of statin/aspirin treat-
ment on mortality [207]. In this study, ten days of atorvastatin treatment (40 mg) reduced
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in-hospital mortality, but no statistical results were reported. An earlier meta-analysis of
“inpatient” statin treatment included eight RCTs [208]. Unfortunately, one of the eight
observational studies of statin effects on mortality in this meta-analysis reported on chronic
(i.e., outpatient) but not inpatient statin treatment.

Of the 22 observational studies of inpatient statin treatment, 12 used propensity score
matching to minimize confounding [26,158,182,185,187,189,191,193,194,196,197,205], five
reported treating >1000 patients [170,182,184,189,197], and many of the remaining studies
included hundreds of subjects. All but one observational study [194] showed that statins
significantly reduced COVID-19 mortality. Almost all observational studies recommended
that they be followed by RCTs.

Thus, as shown in Table 4, there was a distinct difference in the results of RCTs and
observational studies of inpatient statin treatment. Almost all of the observational studies
showed mortality reductions, whereas all of the RCTs failed to show these reductions. The
REMAP-CAP investigators should soon report findings from a large RCT of inpatient statin
treatment. It is hoped these widely anticipated results will help resolve this difference.

11. Combination Treatment

In 2021, Belgian investigators published an observational study showing that inpatient
treatment with a combination of a statin and either an ACE inhibitor or an ARB was
associated with a threefold reduction in 28-day COVID-19 mortality [26]. Combination
treatment was more effective in reducing COVID-19 mortality than statin treatment alone.

Combination treatment for pandemics was suggested in 2008 [17]. For COVID-19,
combinations of repurposed drugs have been very effective [209]. Earlier studies had shown
that a statin/ACE inhibitor combination was effective in reducing morbidity after coronary
artery bypass surgery [171]. A statin/ARB combination appeared effective in reducing
mortality during the Ebola outbreak in Sierra Leone [21,22,173]. Combination treatment is
not unusual; combinations of antivirals and dexamethasone had been reported earlier [210].
Combinations of baricitinib with remdesivir [211] and with dexamethasone [212] have been
reported for COVID-19.

The Belgian study is the only report of inpatient combination statin and ACEi or ARB
treatment of COVID-19, although this combination has probably been widely used by
clinicians (e.g., Ref. [169]). The success of combination polypill treatment for the preven-
tion of cardiovascular disease [21,213,214] suggests the potential for using an inexpensive
generic drug combination for treating patients affected by any pandemic. A pragmatic
combination could contain two or more generic drugs (a statin, an ACEi/ARB, metformin,
or a PPARα or PPARγ agonist). Each of these individual drugs is known to be safe
in patients with critical illness and in those requiring long-term treatment. A combina-
tion polypill-like treatment could be especially important for pandemic-affected patients
in LMICs.

12. Why Have There Been No RCTs of Combination Treatment with Statins
and ACEis/ARBs?

Other than the Belgian hospital study [26], it is surprising that no studies of combina-
tion treatment with statins and ACE inhibitor/ARB treatment have been undertaken. Other
combination studies for COVID-19 have been reported [211,212]. One can only speculate
about the reasons for the absence of these combination studies.

No pharmaceutical company would make money from advocating generic drug
treatment for COVID-19 (although the health benefits for people in LMICs could be sub-
stantial [18,25]). Leadership for the global response to the COVID-19 pandemic, especially
the rapid development of effective vaccines, has come from WHO, international institutions
and prestigious national health agencies. Many of those who have favored vaccines have
not been elected by the people in high-income countries who have benefitted most [215].
Nonetheless, global estimates of COVID-19′s excess mortality (at least 20 million excess
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deaths [1]) strongly suggest that the success of vaccine development has come too late for
most of the world’s people.

Inexpensive generic drugs like statins affect many aspects of the host response to
infection [216,217]. Three RCTs published more than a decade ago showed that statins
alone were ineffective in improving survival in patients with sepsis and ARDS, especially
in those admitted to ICUs [218]. These results may have persuaded some health officials
and investigators that it would be useless to test statins against COVID-19. In addition,
failure to understand the importance of subphenotypes in determining responses to statin
treatment may have led many to conclude that statins were ineffective [219]. Moreover,
social influences and behavioral biases may have led some to overlook or dismiss the idea
that statins might be helpful [220,221]. The advice of scientific experts about COVID-19
was generally accepted (despite uncertainties) by most people. Support for political leaders
was initially high, but distrust soon arose because political decisions often differed from
the views of scientists [222]. This lack of trust led to difficulties with vaccination programs
and might have led some to conclude that host response treatments had nothing to offer.

13. The Way Forward—The Next Pandemic

The COVID-19 pandemic might be on the decline, but the SARS-CoV-2 virus is not
going to go away [223]. Most virologists predict it will become endemic. A few regions of
the world might be able to eliminate the virus but only if herd immunity levels (induced
by vaccination or previous infection) are very high. No one can predict how the virus
will evolve, but its evolution is certain [224]. Future ‘variant waves” might be character-
ized by increased mortality or be benign like those of other coronaviruses that humans
have experienced for several decades. Whether affordable and effective treatments will
eventually be discovered and widely implemented to blunt these waves is uncertain [225].
In the meantime, the burden of the current pandemic must not be forgotten—more than
20 million excess deaths worldwide [1] and more than an estimated 10 million orphans [226].
This burden has fallen heavily on LMICs [227].

The Lancet recently published the findings and recommendations of its COVID-19
Commission [228]. The findings were predictable and unremarkable—the pandemic’s
origin remains unknown, the reactions of WHO and national governments were too slow,
public opposition to advice indicated a lack of trust, widespread inequities occurred every-
where (especially access to rapidly developed vaccines in LMICs). Social and economic
progress were set back in all countries. Many of the Commission’s recommendations
are self-evident—strengthening national health systems, expanding national pandemic
preparedness planning and improving “mass vaccination, availability and affordability
of testing, treatment for new infections and long COVID (test and treat), complementary
public health and social measures (including the wearing of face masks in some contexts),
promotion of safe workplaces, and economic and social support for self-isolation” [228].
However, other recommendations such as establishing a WHO Science Council, a World
Health Assembly-sponsored Global Health Board and a new WHO-based Global Health
Fund, if implemented, are unlikely to make a difference when the next pandemic arrives.

An agenda for pandemic research by clinicians is shown in Table 5 [16–19,22,28,229].
It is unlikely that arguments regarding the primacy of RCTs over observational studies
will be settled anytime soon, although the concept of “real world evidence” (RWE) and the
availability of electronic health records (EHRs) have allowed the utility of observational
studies (i.e., most RWE studies) to be more widely discussed [69,230–240]. In contrast, critics
of RWE have written about why they favor RCTs over observational studies [241,242]. Those
who favor RWE studies say that having to choose between the two is a ‘myth’. Although
neither method is perfect, the two are synergistic and they complement each other [233].
While “early observational studies and small randomized trials may cause spurious claims
of effectiveness”, this conclusion is based on an examination of antiviral agents, not host
response treatments [243]. Sometimes, clinicians are justified in undertaking innovative
treatment before conducting definitive research [244] as long as it is supported by other
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RWE data [238]. The goal of all research “must be actionable data—data that are sufficient
for clinical and public health—that have been derived openly and objectively and that
enable us to say, “’Here’s what we recommend and why’” [245]. As I wrote more than ten
years ago, “Sadly, the arithmetic for pandemic vaccines and antivirals is unforgiving. WHO
is focused on vaccines and antivirals that will only be available to people who can afford
them, and that’s ten percent of the world’s population. Consequently, it doesn’t matter
that arguments for their use are scientifically well grounded; in practical terms they are
pointless, in the same way that it is pointless to tell a starving man he should eat if there’s
no food in the kitchen. For pandemic vaccines and antiviral agents, the kitchen is empty.
We should stop talking about things that people in developing countries will never have,
and start talking about things they’ve already got” [246].

Table 5. A research agenda for clinicians in treating the host response to COVID-19 and other
pandemic illnesses.

Choose Drugs That Are

• Known to modify the host response to infection;
• Safe in patients with acute critical illness;
• Inexpensive generics;
• Widely available in low- and middle-income countries;
• Familiar to practicing physicians;
• Likely to affect meaningful outcomes (such as 28–30-day mortality).

Plan Clinical studies of Host Response Treatment

• Consult with investigators who understand the biology of the host response (e.g., vascular biology, mitochondrial biogenesis,
disease tolerance, immunometabolism);

• Study inexpensive generic drugs as monotherapy or in combinations;
• Undertake observational studies (using target trials methods) in patients hospitalized with COVID-19;
• Undertake prospective clinical trials in patients hospitalized with COVID-19;
• Undertake the same studies in patients hospitalized with everyday acute critical illnesses, including seasonal influenza,

community-acquired pneumonia, sepsis;
• Study outcomes in children and adults;
• Evaluate outcomes (e.g., 28–30-day mortality) following individual and combination drug treatment.

Plan What to Do with the Results

• Identify local sources of supply for potentially efficacious generic drugs;
• Determine quantities usually supplied and capacities for surge production;
• Assess patterns of distribution, needs for stockpiling, and logistics for delivery;
• Determine drug costs for public programs;
• Prepare to communicate study results to physicians, health officials, and the public.

Adapted from Ref. [25] and updated.

Research on acute and long COVID-19 [247,248] will continue. In addition to patho-
physiological studies (Figure 1) related to endothelial dysfunction, innate and adaptive
immunity, interferon and abnormal coagulation, observational studies will continue to
examine host response treatments [249,250], especially target trial studies that emulate
RCTs [127]. The unexplained “tolerance” of children compared with adults will still require
explanation [23,251–253]. In addition, energy metabolism, epigenetic changes, and the
contributions of the microbiome and circadian rhythms to COVID-19 pathogenesis will
come to the fore. New treatments and treatment combinations will receive more attention.
Moreover, clinical and epidemiological studies will begin to document outpatient drug
treatments that might influence COVID-19 hospitalizations and outcomes as much as
high-risk conditions and abnormal laboratory findings.

Research for pandemic preparedness must consider the needs of people who live in
LMICs, recognizing that every life-saving discovery will also help those who live in rich
countries. As discussed in this review, treating pandemic patients with generic drugs like
statins and ACEis/ARBs could “nudge” the host response back toward self-regulating
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homeostasis. It might not have much effect on the infection itself, but it might save lives.
There is no guarantee it would work, but good science demands it be tried. A journalist has
recently written about the challenge we face. “We should see science as something people
do: as a way of solving problems, a project that does not just describe the world but brashly
wants to change it. A science that people will follow must lead. If in the next pandemic we
want something else from our public health leaders—to save lives and not tear the country
apart in the process—we must learn to see science as a vehicle, not a dodge, for human
agency: something we are right to make demands of, right at times to get angry at, whose
terrible failures it must own along with its triumphs” [254].
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Int. J. Mol. Sci. 2021, 22, 4177. [CrossRef] [PubMed]

217. Silva, L.F.; Ravi, R.; Vangipurapu, J.; Laakso, M. Metabolite Signature of Simvastatin Treatment Involves Multiple Metabolic
Pathways. Metabolites 2022, 12, 753. [CrossRef] [PubMed]

218. Thomas, G.; Hraiech, S.; Loundou, A.; Truwit, J.; Kruger, P.; McAuley, D.; Papazian, L.; Roch, A. Statin therapy in critically-ill
patients with severe sepsis: A review and meta-analysis of randomized clinical trials. Minerva Anestesiol. 2015, 81, 921–930.
[PubMed]

219. McAuley, D.F.; Laffey, J.G.; O’Kane, C.M.; Perkins, G.D.; Mullan, B.; Trinder, T.J.; Johnston, P.; A Hopkins, P.; Johnston, A.J.;
Murphy, L.; et al. Simvastatin to reduce pulmonary dysfunction in patients with acute respiratory distress syndrome: The
HARP-2 RCT. Effic. Mech. Eval. 2018, 5, 1–80. [CrossRef] [PubMed]

220. Baddeley, M. Herding, social influences and behavioural bias in scientific research. EMBO Rep. 2015, 16, 902–905. [CrossRef]
221. Baddeley, M. Experts in policy land–insights from behavioural economics on improving experts’ advice for policy-makers. J.

Behav. Econ. Policy 2017, 1, 27–31. Available online: http://sabeconomics.org/journal/RePEc/beh/JBEPv1/articles/ (accessed on
23 September 2019).

222. Weingart, P.; van Schalkwyk, F.; Guenther, L. Democratic and expert legitimacy: Science, politics and the public during the
COVID-19 pandemic. Sci. Public Policy 2022, 49, 499–517. [CrossRef]

223. Phillips, N. The coronavirus is here to stay–here’s what that means. Nature 2021, 590, 382–384. [CrossRef]
224. Callaway, E. Beyond Omicron: What’s next for COVID’s viral evolution. Nature 2021, 600, 204–207. [CrossRef]
225. Spicer, A.J.; Jalkanen, S. Why Haven’t We Found an Effective Treatment for COVID-19? Front. Immunol. 2021, 12, 644850.

[CrossRef]
226. Hillis, S.; N’Konzi, J.-P.N.; Msemburi, W.; Cluver, L.; Villaveces, A.; Flaxman, S.; Unwin, H.J.T. Orphanhood and Caregiver Loss

Among Children Based on New Global Excess COVID-19 Death Estimates. JAMA Pediatr. 2022, 176, 1145. [CrossRef]
227. Levin, A.T.; Owusu-Boaitey, N.; Pugh, S.; Fosdick, B.K.; Zwi, A.B.; Malani, A.; Soman, S.; Besançon, L.; Kashnitsky, I.;

Ganesh, S.; et al. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public
policy implications. BMJ Glob. Health 2022, 7, e008477. [CrossRef] [PubMed]

228. Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.;
et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022, 400, 1224–1280. [CrossRef]
[PubMed]

229. Fedson, D.S. Clinician-initiated research on treating the host response to pandemic influenza. Hum. Vaccines Immunother. 2017, 14,
790–795. [CrossRef] [PubMed]

230. Angus, D.C. Fusing Randomized Trials with Big Data. JAMA 2015, 314, 767–768. [CrossRef]

http://doi.org/10.1186/s12879-022-07570-5
http://doi.org/10.1007/s43440-021-00233-3
http://doi.org/10.3389/fphar.2021.704205
http://doi.org/10.1097/FJC.0000000000000264
http://doi.org/10.1056/NEJMoa2031994
http://doi.org/10.1016/S2213-2600(22)00088-1
http://doi.org/10.1016/S0140-6736(21)01922-X
http://doi.org/10.1056/NEJMoa2208275
http://doi.org/10.1016/5140.6736(22)0.585.9
http://doi.org/10.3390/ijms22084177
http://www.ncbi.nlm.nih.gov/pubmed/33920709
http://doi.org/10.3390/metabo12080753
http://www.ncbi.nlm.nih.gov/pubmed/36005625
http://www.ncbi.nlm.nih.gov/pubmed/25690048
http://doi.org/10.3310/eme05010
http://www.ncbi.nlm.nih.gov/pubmed/29400921
http://doi.org/10.15252/embr.201540637
http://sabeconomics.org/journal/RePEc/beh/JBEPv1/articles/
http://doi.org/10.1093/scipol/scac003
http://doi.org/10.1038/d41586-021-00396-2
http://doi.org/10.1038/d41586-021-03619-8
http://doi.org/10.3389/fimmu.2021.644850
http://doi.org/10.1001/jamapediatrics.2022.3157
http://doi.org/10.1136/bmjgh-2022-008477
http://www.ncbi.nlm.nih.gov/pubmed/35618305
http://doi.org/10.1016/S0140-6736(22)01585-9
http://www.ncbi.nlm.nih.gov/pubmed/36115368
http://doi.org/10.1080/21645515.2017.1378292
http://www.ncbi.nlm.nih.gov/pubmed/29058516
http://doi.org/10.1001/jama.2015.7762


Life 2023, 13, 712 24 of 24

231. Frakt, A.B. An Observational Study Goes Where Randomized Clinical Trials Have Not. JAMA 2015, 313, 1091–1092. [CrossRef]
[PubMed]

232. Lyman, G.H.; Kuderer, N.M. Randomized Controlled Trials Versus Real-World Data in the COVID-19 Era: A False Narrative.
Cancer Investig. 2020, 38, 537–542. [CrossRef]

233. Lim, H.-S.; Lee, S.; Kim, J.H. Real-world-evidence versus randomized controlled trials: Clinical research based on electronic
medical records. J. Korean Med. Sci. 2018, 33, e213. [CrossRef]

234. Randomization versus Real-World Evidence. N. Engl. J. Med. 2020, 383, e22351. [CrossRef]
235. Forbes, S.P.; Dahabreh, I.J. Benchmarking Observational Analyses Against Randomized Trials: A Review of Studies Assessing

Propensity Score Methods. J. Gen. Intern. Med. 2020, 35, 1396–1404. [CrossRef]
236. Greenhalgh, T. Miasmas, mental models and preventive public health: Some philosophical reflections on science in the COVID-19

pandemic. Interface Focus 2021, 11, 20210017. [CrossRef] [PubMed]
237. Hernán, M.A. Methods of Public Health Research—Strengthening Causal Inference from Observational Data. N. Engl. J. Med.

2021, 385, 1345–1348. [CrossRef] [PubMed]
238. Greenhalgh, T.; Fisman, D.; Cane, D.J.; Oliver, M.; Macintyre, C.R. Adapt or die: How the pandemic made the shift from EBM to

EBM+ more urgent. BMJ Evid.-Based Med. 2022, 27, 253–260. [CrossRef] [PubMed]
239. Franklin, J.M.; Platt, R.; Dreyer, N.A.; London, A.J.; Simon, G.E.; Watanabe, J.H.; Horberg, M.; Hernandez, A.; Califf, R.M. When

Can Nonrandomized Studies Support Valid Inference Regarding Effectiveness or Safety of New Medical Treatments? Clin.
Pharmacol. Ther. 2021, 111, 108–115. [CrossRef] [PubMed]

240. Wu, Q.; E Pennini, M.; Bergmann, J.N.; Kozak, M.L.; Herring, K.; Sciarretta, K.L.; Armstrong, K.L. Applying Lessons Learned
From COVID-19 Therapeutic Trials to Improve Future ALI/ARDS Trials. Open Forum Infect. Dis. 2022, 9, ofac381. [CrossRef]
[PubMed]

241. Gerstein, H.C.; McMurray, J.; Holman, R.R. Real-world studies no substitute for RCTs in establishing efficacy. Lancet 2019, 393,
210–211. [CrossRef]

242. Collins, R.; Bowman, L.; Landray, M.; Peto, R. The Magic of Randomization versus the Myth of Real-World Evidence. N. Engl. J.
Med. 2020, 382, 674–678. [CrossRef]

243. Ioannidis, J.P. High-cited favorable studies for COVID-19 treatments ineffective in large trials. J. Clin. Epidemiol. 2022, 148, 1–9.
[CrossRef]

244. Wendler, D.; Anjum, S.; Williamson, P. Innovative treatment as a precursor to clinical research. J. Clin. Investig. 2021, 131, e152573.
[CrossRef]

245. Frieden, T.R. Evidence for Health Decision Making—Beyond Randomized, Controlled Trials. N. Engl. J. Med. 2017, 377, 465–475.
[CrossRef]

246. Fedson, D.S. The unforgiving arithmetic of pandemic. L’Osseratore Romano 2009, 28, 9.
247. Hastie, C.E.; Lowe, D.J.; McAuley, A.; Winter, A.J.; Mills, N.L.; Black, C.; Scott, J.T.; O’Donnell, C.A.; Blane, D.N.; Browne, S.; et al.

Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat. Commun. 2022,
13, 5663. [CrossRef] [PubMed]

248. Frere, J.J.; Serafini, R.A.; Pryce, K.D.; Zazhytska, M.; Oishi, K.; Golynker, I.; Panis, M.; Zimering, J.; Horiuchi, S.; Hoagland, D.A.;
et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci.
Transl. Med. 2022, 14, abq3059. [CrossRef]

249. Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-directed immunotherapy of viral and bacterial infections: Past, present and
future. Nat. Rev. Immunol. 2022, 23, 121–133. [CrossRef] [PubMed]

250. van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.;
Vlaar, A.P.J.; Shankar-Hari, M.; et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [CrossRef] [PubMed]

251. Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease Tolerance as a Defense Strategy. Science 2012, 335, 936–941. [CrossRef]
252. Yoshida, M.; Worlock, K.B.; Ni Huang, N.; Lindeboom, R.G.H.; Butler, C.R.; Kumasaka, N.; Conde, C.D.; Mamanova, L.; Bolt, L.;

Richardson, L.; et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2021, 602, 321–327.
[CrossRef]

253. Maughan, E.F.; Hynds, R.E.; Pennycuick, A.; Nigro, E.; Gowers, K.H.; Denais, C.; Gómez-López, S.; Lazarus, K.A.; Orr, J.C.; Pearce,
D.R.; et al. Cell-intrinsic differences between human airway epithelial cells from children and adults. iScience 2022, 25, 105409.
[CrossRef]

254. Schulman, A. Why Many Americans Turned on Anthony Fauci. The New York Times, 30 August 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1001/jama.2015.0544
http://www.ncbi.nlm.nih.gov/pubmed/25781429
http://doi.org/10.1080/07357907.2020.1841922
http://doi.org/10.3346/jkms.2018.33.e2313
http://doi.org/10.1056/nejmc2020020
http://doi.org/10.1007/s11606-020-05713-5
http://doi.org/10.1098/rsfs.2021.0017
http://www.ncbi.nlm.nih.gov/pubmed/34956591
http://doi.org/10.1056/NEJMp2113319
http://www.ncbi.nlm.nih.gov/pubmed/34596980
http://doi.org/10.1136/bmjebm-2022-111952
http://www.ncbi.nlm.nih.gov/pubmed/35853682
http://doi.org/10.1002/cpt.2255
http://www.ncbi.nlm.nih.gov/pubmed/33826756
http://doi.org/10.1093/ofid/ofac381
http://www.ncbi.nlm.nih.gov/pubmed/35983268
http://doi.org/10.1016/S0140-6736(18)32840-X
http://doi.org/10.1056/NEJMsb1901642
http://doi.org/10.1016/j.jclinepi.2022.04.001
http://doi.org/10.1172/JCI152573
http://doi.org/10.1056/NEJMra1614394
http://doi.org/10.1038/s41467-022-33415-5
http://www.ncbi.nlm.nih.gov/pubmed/36224173
http://doi.org/10.1126/scitranslmed.abq3059
http://doi.org/10.1038/s41577-022-00734-z
http://www.ncbi.nlm.nih.gov/pubmed/35672482
http://doi.org/10.1038/s41591-021-01643-9
http://www.ncbi.nlm.nih.gov/pubmed/35064248
http://doi.org/10.1126/science.1214935
http://doi.org/10.1038/s41586-021-04345-x
http://doi.org/10.1016/j.isci.2022.105409

	Introduction 
	The COVID-19 Pandemic 
	Randomized Controlled Trials vs. Observational Studies 
	Treatments for COVID-19 
	Treatments Targeting the Virus 
	Treatments Targeting the Host Response to Infection 
	Treating the Host Response with Inexpensive Generic Drugs 
	Treating the Host Response to COVID-19 with Inexpensive Generic Statins, ACE Inhibitors (ACEis), and Angiotensin Receptor Blockers (ARBs) 
	Statin and ACE Inhibitor/ARB Withdrawal 
	Inpatient Statin Treatment 
	Combination Treatment 
	Why Have There Been No RCTs of Combination Treatment with Statinsand ACEis/ARBs? 
	The Way Forward—The Next Pandemic 
	References

