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Abstract: Multiple microRNAs (miRs) are associated with systemic autoimmune disease suscep-
tibility/phenotype, including systemic lupus erythematosus (SLE). With this work, we aimed to
unravel the association of the miR-27a gene (MIR27A) rs11671784G/A variant with SLE risk/severity.
One-hundred sixty-three adult patients with SLE and matched controls were included. A TaqMan
allelic discrimination assay was applied for MIR27A genotyping. Logistic regression models were
run to test the association with SLE susceptibility/risk. Genotyping of 326 participants revealed
that the heterozygote form was the most common genotype among the study cohort, accounting for
72% of the population (n = 234), while A/A and G/G represented 15% (n = 49) and 13% (n = 43),
respectively. Similarly, the most prevalent genotype among cases was the A/G genotype, which was
present in approximately 93.3% of cases (n = 152). In contrast, only eight and three patients had A/A
and G/G genotypes, respectively. The MIR27A rs11671784 variant conferred protection against the
development of SLE in several genetic models, including heterozygous (G/A vs. A/A; OR = 0.10, 95%
CI = 0.05–0.23), dominant (G/A + G/G vs. AA; OR = 0.15, 95% CI = 0.07–0.34), and overdominant
(G/A vs. A/A + G/G; OR = 0.07, 95% CI = 0.04–0.14) models. However, the G/G genotype was
associated with increased SLE risk in the recessive model (G/G vs. A/A+ G/G; OR = 17.34, 95%
CI = 5.24–57.38). Furthermore, the variant showed significant associations with musculoskeletal
and mucocutaneous manifestations in the patient cohort (p = 0.035 and 0.009, respectively) and
platelet and white blood cell counts (p = 0.034 and 0.049, respectively). In conclusion, the MIR27A
rs11671784 variant showed a potentially significant association with SLE susceptibility/risk in the
studied population. Larger-scale studies on multiethnic populations are recommended to verify
the results.
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1. Introduction

Systemic lupus erythematosus (SLE; OMIM 152700) is a prototypic autoimmune
complex disease that is characterized by excessive production of autoantibodies against
a broad range of self-antigens [1,2]. Vital organs and tissues are often affected, including
the kidney, brain, cardiovascular system, joints, and skin [3]. The pathogenesis of SLE is
complex, with evidence of genetic/epigenetic–environment interplay shaping the clinical
variability of such a disorder [4,5]. Unraveling the disease susceptibility and phenotype-
associated genetic markers is a crucial step toward precision medicine in SLE [6].

MicroRNAs (miRNAs) are a family of noncoding RNAs (ncRNAs) transcribed by
RNA polymerase II into primary transcripts (pri-miRNAs) that are then cleaved to form
hairpin precursor miRNAs (pre-miRNAs) of 70–100 nucleotides, with the aid of Drosha [7].
These hairpins subsequently undergo further processing by the endonuclease enzyme
Dicer, yielding a duplex of 19–22 nt. One strand of the duplex is integrated into the RNA-
induced silencing complex and delivers mature miRNAs to the respective mRNA targets [8].
By mediating mRNA degradation and/or translation inhibition through canonical and
non-canonical mechanisms, miRNAs play central roles in gene regulation [7]. One of the
essential characteristics of miRNAs is their export and migration from their host cells, where
they are transcribed/processed into several body fluids, including the blood (circulating
miRNAs) in highly stable forms due to their inclusion in the exosomes and/or interaction
with several circulating proteins, such as argonaute 2 and nucleophosmin 1, and high-
density lipoproteins that protect them from degradations by RNases [9]. This class of
ncRNAs, as regulators of post-transcriptional gene expression, has been implicated in
several physiological process and pathological disorders, including SLE [10–22].

MicroRNA-27a (miR-27a) has been identified to be highly conserved throughout
vertebrate genomes during evolution (Figure 1) and is considered a member of the miRNA-
23∼27∼24 cluster, with several essential biological roles [23,24].

Life 2023, 13, x FOR PEER REVIEW 2 of 17 
 

 

1. Introduction 
Systemic lupus erythematosus (SLE; OMIM 152700) is a prototypic autoimmune 

complex disease that is characterized by excessive production of autoantibodies against a 
broad range of self-antigens [1,2]. Vital organs and tissues are often affected, including the 
kidney, brain, cardiovascular system, joints, and skin [3]. The pathogenesis of SLE is 
complex, with evidence of genetic/epigenetic–environment interplay shaping the clinical 
variability of such a disorder [4,5]. Unraveling the disease susceptibility and phenotype-
associated genetic markers is a crucial step toward precision medicine in SLE [6]. 

MicroRNAs (miRNAs) are a family of noncoding RNAs (ncRNAs) transcribed by 
RNA polymerase II into primary transcripts (pri-miRNAs) that are then cleaved to form 
hairpin precursor miRNAs (pre-miRNAs) of 70–100 nucleotides, with the aid of Drosha 
[7]. These hairpins subsequently undergo further processing by the endonuclease enzyme 
Dicer, yielding a duplex of 19–22 nt. One strand of the duplex is integrated into the RNA-
induced silencing complex and delivers mature miRNAs to the respective mRNA targets 
[8]. By mediating mRNA degradation and/or translation inhibition through canonical and 
non-canonical mechanisms, miRNAs play central roles in gene regulation [7]. One of the 
essential characteristics of miRNAs is their export and migration from their host cells, 
where they are transcribed/processed into several body fluids, including the blood 
(circulating miRNAs) in highly stable forms due to their inclusion in the exosomes and/or 
interaction with several circulating proteins, such as argonaute 2 and nucleophosmin 1, 
and high-density lipoproteins that protect them from degradations by RNases [9]. This 
class of ncRNAs, as regulators of post-transcriptional gene expression, has been 
implicated in several physiological process and pathological disorders, including SLE [10–
22]. 

MicroRNA-27a (miR-27a) has been identified to be highly conserved throughout 
vertebrate genomes during evolution (Figure 1) and is considered a member of the 
miRNA-23∼27∼24 cluster, with several essential biological roles [23,24]. 

 
Figure 1. GeneTree (RF00644) of human MIR27A showing conservation across vertebrates. All of 
the sequences are only involved in differences in 3′ ends, with fewer detected varied nucleotides. 
Homologous miRNAs also detect common core sequences (data source: http://asia.ensembl.org/ 
(accessed 20 December 2022)). 

Figure 1. GeneTree (RF00644) of human MIR27A showing conservation across vertebrates. All of
the sequences are only involved in differences in 3′ ends, with fewer detected varied nucleotides.
Homologous miRNAs also detect common core sequences (data source: http://asia.ensembl.org/
(accessed 20 December 2022)).

Accumulating evidence indicates miR-27a implication in the pathogenesis of SLE,
which can be identified as a potential biomarker for SLE due to its ability to regulate the
expression of genes associated with disease phenotypes [25–28]. Guttilla and colleagues

http://asia.ensembl.org/
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reported that miR-27a, along with miR-96/miR-182, downregulated the transcriptional
factor “FOXO-1”, which regulates genes implicated in apoptotic response, cell metabolism,
and cell cycle checkpoints [29]. Interestingly, FOXO-1 transcript levels were downreg-
ulated in the peripheral blood mononuclear cells (PBMCs) of SLE patients with active
disease and were inversely correlated with lupus disease activity [30]. Furthermore, Tardif
et al. observed that miR-27a could indirectly downregulate the “matrix metalloprotease-13
(MMP-13) and the insulin-like growth factor binding protein (IGFBP)”, two genes impli-
cated in osteoarthritis [31]. In an independent study, Lin and colleagues reported that
miR-27a could block PPARγ transcriptional induction [32]. This factor has been implicated
in the etiopathology of several diseases [25], including SLE, as upregulated PPAR-γ was
found to modulate monocytes into an M2-like phenotype in patients with SLE [33]. Collec-
tively, it appears that miR-27a could play essential roles in SLE pathology and phenotype
and be a novel therapeutic target.

Regarding dysregulated levels of miR-27a in SLE, Sourour et al. revealed the upreg-
ulation of miR-27a* (the passenger strand) in PBMCs and natural killer (NK)-cell subsets
collected from patients with SLE relative to healthy subjects [26]. They found that forced ex-
pression of miR-27a* through gain/loss-of-function experiments could impact the expression
of “NKG2D”, an activating receptor of NK cells, in SLE patients. Additionally, a significant
negative correlation was found between miR-27a* expression in PBMCs of SLE patients
and disease activity index (SLEDAI) scores, implying that this type of microRNA could be
involved in SLE pathogenesis [26]. By screening B-cell-related miRNAs in the plasma of SLE
patients using a customized qRT-PCR miRNA array, Zhang and colleagues demonstrated
the diagnostic value of the differential expression of miR-27a with 13 other dysregulated
miRNAs in discriminating SLE patients from healthy controls. Furthermore, they found that
miR-27a had an area under curve = 0.873, with diagnostic sensitivity = 0.867 and specificity
= 0.773 to distinguish SLE patients from patients with rheumatoid arthritis [34]. These
findings further support the possibly essential role of miR-27a in the etiopathology of SLE.

The human MiR-27a gene (MIR27A; Gene ID: 407018) is located along the short arm
of chromosome 19 (Ch:19p13.12), spanning 78 base pairs (bp) (genomic coordinates at
19:13,836,440–13,836,517) on the reverse strand within the “miRNA-23∼27∼24 cluster”,
according to the “Human Genome Assembly; GRCh38.p14” (https://www.ncbi.nlm.nih.
gov/gene/407018) (accessed 15 December 2022) (Figure 2A). This gene is transcribed
into a single 78 bp microRNA 27a (Figure 2B) and has been found predominantly in-
tracellularly in the nucleus and extracellularly in the circulating exosomes and vesicles
(Figure 2C). According to the human microRNA disease associations database (HMDD
v3.0) (http://www.cuilab.cn/hmdd) (last accessed 20 December 2022), this microRNA
can bind and downregulate several target genes, such as “tumor protein p53 (TP53), Cy-
tochrome P450 Family 1 Subfamily B Member 1 (CYP1B1), Adenomatosis Polyposis Coli
(APC), Engrailed Homeobox 2 (EN2), GATA Binding Protein 3 (GATA3), SMAD Family
Member 4 (SMAD4), Prohibitin 1 (PHB), Low Density Lipoprotein Receptor (LDLR), Nu-
clear Receptor Binding SET Domain Protein 1 (NSD1), Dihydropyrimidine Dehydrogenase
(DPYD), Thioredoxin Interacting Protein (TXNIP), Translocase Of Inner Mitochondrial
Membrane 10 (TIMM10), F-Box And WD Repeat Domain Containing 7 (FBXW7), In-
sulin Like Growth Factor 1 (IGF1), Neuroblastoma RAS Viral Oncogene Homolog GTPase
(NRAS), ALF Transcription Elongation Factor 4 (AFF4), Zinc Finger And BTB Domain
Containing 20 (ZBTB20), Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Sub-
unit Gamma (PIK3CG), Peroxisome Proliferator Activated Receptor Alpha and gamma
(PPARA/G), Cyclin D1 (CCND1), Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS),
Leukemia Inhibitory Factor Receptor (LIFR), Neurofibromin 1 (NF1), Budding Uninhibited
By Benzimidazoles 3, Yeast-Homolog Mitotic Checkpoint Protein (BUB3), Homeobox D11
(HOXD11), Epidermal Growth Factor Receptor (EGFR), ATPase Copper Transporting Beta
(ATP7B), ATP Synthase Mitochondrial F1 Complex Assembly Factor 1 (ATPAF1), Solute
Carrier Family 6 Member 8 (SLC6A8), Enhancer Of Zeste 2 Polycomb Repressive Com-
plex 2 Subunit (EZH2), and Thioredoxin Domain Containing 5 (TXNDC5)” (Figure 2E).

https://www.ncbi.nlm.nih.gov/gene/407018
https://www.ncbi.nlm.nih.gov/gene/407018
http://www.cuilab.cn/hmdd
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Many of these target genes have been implicated in several immune-related process and
disorders [27,35–54].
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Figure 2. Structural analysis of microRNA27a (gene name: MIR27A) and related targets.
(A) MIR27A is located on the short arm of chromosome 19:13,836,440–13,836,517 on the reverse
strand according to the GRCh38.p14 assembly. (B) MIR27A is transcribed into a 78bp miRNA27a-
201 transcript (ENSG00000207808). The studied noncoding transcript exon variant rs11671784G>A
(ENST00000385073.1: n.36C>T) is located at position 19:13,836,482 (highlighted) on DNA gene se-
quence and nucleotide 36 (out of 78) of miR-27a. This variant also overlaps with the host gene
MIR23AHG, which encodes long noncoding RNA (http://asia.ensembl.org/). (C) The subcellular
distribution of miR-27a. The color degree is related to its abundance (https://www.genecards.org/).
(D) Conserved secondary structure of pre-miR27a depicted from the noncoding RNA family database
(https://rfam.org/family/RF00644#tabview). (E) Gene targets of miR-27a as depicted from the
human microRNA disease association database (HMDD v3.0) (http://www.cuilab.cn/hmdd) (all
databases were last accessed 20 December 2022). Go: gene ontology; miRNA: microRNA; RISC:
RNA-induced silencing complex.

Single-nucleotide polymorphisms (SNPs) within miRNA genes were previously re-
ported to be associated with susceptibility to several diseases, including autoimmune dis-
orders [55–57], and can alter the expression and/or maturation of miRNA and ultimately
affect its functioning [58–61]. The MIR27A rs11671784G>A variant has been identified
and studied for its potential role in various diseases and cancers [62–64]. For example,

http://asia.ensembl.org/
https://www.genecards.org/
https://rfam.org/family/RF00644#tabview
http://www.cuilab.cn/hmdd
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carriers of rs11671784 A have significantly reduced gastric cancer risk and lymphatic inva-
sion [64,65], and the “G allele” has been reported to have a more substantial impact than
the A allele in promoting bladder cancer chemosensitivity [66]. Furthermore, this SNP
was significantly associated with “age-related macular degeneration” [62]. However, no
studies have explored the association between this variant and SLE. Therefore, we designed
the present study to test the association of the rs11671784 variant with SLE susceptibility
and/or phenotype.

2. Materials and Methods
2.1. Study Participants

A total of 163 adult SLE patients and 163 unrelated age- and sex-matched controls
were enrolled in this study. Patients were recruited from the Rheumatology outpatient
clinics of Suez Canal University Hospitals, Ismailia. They were diagnosed and assessed
according to the “European League Against Rheumatism/American College of Rheumatol-
ogy” diagnostic criteria for SLE [67]. A thorough review of their clinical assessment sheets
was performed to determine disease severity, therapeutic history, and comorbidities. Pa-
tients with a history of other autoimmune disorders (e.g., rheumatoid arthritis, alopecia
areata, vitiligo, psoriasis, multiple sclerosis, myasthenia gravis, and inflammatory bowel
disease) or chronic diseases (e.g., endocrine disorders or malignancies), or a history of long-
term treatment were excluded. Laboratory data, including quantification of proteinuria
in 24 h, serum creatinine and blood urea levels, type and titer of antinuclear antibodies
(ANA-anti DNA), and serum complement levels (C3 and C4), were collected at the time
of consent. Controls should have no history of autoimmune diseases or chronic disorders.
Renal involvement was defined as an increase in proteinuria (>150 mg/24 h), an increase
in serum creatinine (>1.4 mg/dL), or both [67]. The “SLE Disease Activity Index (SLEDAI)
score” was used to classify patients according to disease activity into (a) score = 0, i.e.,
no activity; (b) score = 1:5, i.e., mild activity; (c) score = 6:10, i.e., moderate activity;
(d) score = 11:19, i.e., high activity; or (E) score ≥ 20, i.e., very high activity [68].

The study was conducted in accordance with the guidelines of the Declaration of
Helsinki, and written informed consent was obtained from participants before taking part.

2.2. MIR27A rs11671784G>A Genotyping

Five milliliters of blood was collected from each participant in an EDTA tube for
hematological and molecular studies and in a plain tube for immune and biochemical
studies, as detailed previously [61]. DNA was extracted from whole blood using a QI-
Aamp DNA extraction mini kit (Cat no. 51104; Qiagen, Hilden, Germany) and assessed
for concentration/purity by a “NanoDrop ND-1000 spectrophotometer” (NanoDrop Tech-
nologies, Wilmington, DE, USA). Genotyping was carried out using real-time polymerase
chain reaction allelic discrimination technology on a StepOne real-time system (Applied
Biosystems, Waltham, MA, USA). The applied protocol was followed blindly, regard-
less of the case/control status of the samples, with a final volume of 20µL, including (a)
genomic DNA (20 ng); (b) a TaqMan SNP genotyping assay mix (1µL of the assay ID:
C_176018176_10; Cat no. 4351379, Applied Biosystems, Waltham, MA, USA) to detect
the transition substitution of the studied variant in the following context sequence: “GC-
CACTGTGAACACGACTTGGTGTG[G/A] ACCCTGCTCACAAGCAGCTAAGCCC” in
which VIC/FAM-labeled probes specify the “G” and “A” alleles, respectively; (c) a TaqMan
Universal PCR master mix (10µL); and (d) nuclease-free water. Negative controls were
applied in each run. The program was set at 10 min for an initial hold (95 ◦C), followed by
a 40-cycle, two-step 15 s denaturation (95 ◦C) and 1 min annealing/extension (60 ◦C). “SDS
software version 1.3.1” (Applied Biosystems, Waltham, MA, USA) was applied for allelic
discrimination calling [2,69]. About 10% of the total samples were regenotyped as technical
replicates, which yielded a 100% recall rate.
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2.3. Statistical Analysis

General statistical analyses were performed with Statistical Package for Social Sci-
ence (SPSS) software version 23 (IBM SPSS Statistics for Windows, Version 27.0. Armonk,
NY, USA: IBM Corp). Categorical variables were compared using chi-square or Fisher’s
exact tests. Student’s t-tests, Mann–Whitney U (MW), and Kruskal–Wallis (KW) tests
were used to compare continuous variables according to data distribution/variance ho-
mogeneity, which were checked by the Shapiro–Wilk test and Levene test, respectively, to
compare continuous variables. Data were expressed as mean ± standard deviation (SD).
SNPstats software (version 1.24.0) was applied for genotype/allele frequency estimation
as previously described [70]. Hardy–Weinberg equilibrium (HWE) testing was checked.
Logistic regression analysis was applied, and adjustment for confounding parameters was
considered. A two-tailed p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

This study included 163 SLE patients (147 females and 16 males) and 163 age- and sex-
matched controls (148 females and 15 males). The mean age of participants was 35.6± 9.6 years
for patients and 35.8 ± 9.9 years for controls. Fifty-eight (35.6%) cases had a positive family
history of SLE. The median SLEDAI score for patients was 3.0 (IQR = 0.0–6.0). Almost all
patients presented with neurological symptoms, and 76.7% of the cohort had renal involve-
ment (Figure 3). Laboratory data of patients with SLE are summarized in Supplementary
Materials Table S1.
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3.2. Allelic Discrimination Analysis

In the study population (n = 326), the minor allele frequency (G allele) was 49%
(n = 320). The heterozygote form was the most common genotype among the cohort,
accounting for 72% of the population (n = 234), while A/A and G/G represented 15%
(n = 49) and 13% (n = 43), respectively (Figure 4A). Similarly, the most prevalent genotype
among cases was the G/A genotype, which was present in approximately 93.3% of cases
(n = 152). In contrast, only eight and three patients had A/A and G/G genotypes, re-
spectively. Compared with controls, the homozygote genotypes were significantly higher
(A/A: 25.2% vs. 4.9% and G/G: 24.5% vs. 1.8%) in patients with SLE. In contrast, the G/A
genotype of MIR27A polymorphism was less prevalent in cases (50.3% vs. 93.3%, p < 0.001)
(Figure 4B).

The MIR27A rs11671784 variant conferred protection against the development of SLE in
several genetic models, including heterozygous (G/A vs. A/A; OR = 0.10, 95% CI = 0.05–0.23),
dominant (G/A + G/G vs. AA; OR = 0.15, 95% CI = 0.07–0.34), and overdominant (G/A
vs. A/A + G/G; OR = 0.07, 95% CI = 0.04–0.14) models. However, the G/G genotype was
associated with increased SLE risk in the recessive model (G/G vs. A/A+ G/G; OR = 17.34,
95% CI = 5.24–57.38) (Table 1).
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Table 1. Risk of systemic lupus erythematosus by genetic association models of miR-27 rs11671784
(G/A) genotypes.

Model Genotype Controls Cases Adjusted OR (95% CI) p-Value

Codominant

A/A 8 (4.9%) 41 (25.1%) 1.00

<0.0001G/A 152 (93.2%) 82 (50.3%) 0.10 (0.05–0.23)

G/G 3 (1.8%) 40 (24.5%) 2.56 (0.63–10.36)

Dominant
A/A 8 (4.9%) 41 (25.1%) 1.00

<0.0001G/A-G/G 155 (95.1%) 122 (74.8%) 0.15 (0.07–0.34)

Recessive
A/A-G/A 160 (98.2%) 123 (75.5%) 1.00

<0.0001
G/G 3 (1.8%) 40 (24.5%) 17.34 (5.24–57.38)

Overdominant
A/A-G/G 11 (6.8%) 81 (49.7%) 1.00

<0.0001
G/A 152 (93.2%) 82 (50.3%) 0.07 (0.04–0.14)

Log-additive — — — 1.09 (0.72–1.64) 0.68
Values are shown as numbers (%). The chi-square test was used. OR (95% CI), odds ratio, and confidence interval.
p-value < 0.05 is considered statistically significant. Adjusted covariates: age and sex. The protective association
(OR < 1) is indicated by green color, while risky association is indicated in red.

3.3. MIR27A rs11671784G/A Variant Association with Clinicolaboratory Data

Figure 5 indicates that the MIR27A rs11671784 variant is associated with muscu-
loskeletal and mucocutaneous manifestations in patients with SLE (p = 0.035 and 0.009,
respectively). It also shows an association with platelet and white blood cell counts
(p = 0.034 and 0.049, respectively) (Figure 6). Otherwise, this variant does not show
significant associations with other clinical and laboratory characteristics of the patients.

3.4. Multivariate Regression Analysis

Multivariate analysis failed to define independent predictor risk factors for the severe
disease phenotype of the studied cohort with SLE, as indicated by the confidence intervals
crossing the vertical line of 1 in Figure 7.
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Figure 5. Analysis of the association of MIR27A rs11671784 (G/A) polymorphism with disease
severity and clinical parameters. (A) Age at presentation; (B) gender; (C) family history of SLE;
(D) disease activity score; (E) clinical characteristic and organ involvement. Early onset: age at
diagnosis < 40 years; severe stage: SLEDAI score >6. The chi-square test was applied. Bold p-values < 0.05
are considered statistically significant.

Life 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. Analysis of the association of MIR27A rs11671784 (G/A) polymorphism with disease 
severity and clinical parameters. (A) Age at presentation; (B) gender; (C) family history of SLE; (D) 
disease activity score; (E) clinical characteristic and organ involvement. Early onset: age at diagnosis 
< 40 years; severe stage: SLEDAI score >6. The chi-square test was applied. Bold p-values < 0.05 are 
considered statistically significant. 

 
Figure 6. Association of the MIR27A rs11671784 (G/A) polymorphism with biochemical 
characteristics in patients with SLE. (A) Hemoglobin level (g/dL); (B) red blood cell count (RBC; ×106 
per mm3); (C) hematocrit concentration (HCT; %); (D) mean cell volume (MCV; fl); (E) platelet count 

Figure 6. Association of the MIR27A rs11671784 (G/A) polymorphism with biochemical characteris-
tics in patients with SLE. (A) Hemoglobin level (g/dL); (B) red blood cell count (RBC;×106 per mm3);
(C) hematocrit concentration (HCT; %); (D) mean cell volume (MCV; fl); (E) platelet count
(×103 per mm3); (F) white blood cell count (WBC; ×106 per mm3); (G) neutrophil percentage (%);
(H) lymphocyte percentage (%); (I,J) complement 3/4 (C3/4; mg/dL); (K) C-reactive protein (CRP;
mg/L); (L,M) erythrocyte sedimentation rate in the first/second hour (ESR 1st and 2nd; mm/hour);
(N) alanine transaminase (ALT; U/L); (O) aspartate transaminase (AST; U/L); (P) creatinine levels
(mg/dL). p-value < 0.05 is considered statistically significant.
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3.5. MIR27A Implication in SLE Etiopathology

Figure 8 and Table S2 show the experimentally validated gene targets of miR-27a-
5p in the SLE Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (hsa05322),
which include several histone variants (e.g., H3F3B) that are involved in the autoantigen
clearance/tolerance mechanism, the “major histocompatibility complex class II (MHCII)”,
and the “HLA class II histocompatibility antigen-DO alpha chain (HLA-DOA)”, which
are implicated in antigen presentation, RNA-binding proteins (e.g., TROVE2 and SNRPB),
glutamate ionotropic receptor NMDA type subunit 2A/B (GRIN2A/B), cytokines (i.e.,
IL10), and cluster of differentiation 28 (CD28) [71–73].
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Figure 8. Gene targets of miR-27a in the systemic lupus erythematosus KEGG (hsa05322) pathway.
The gene product targets represented here (yellow box) include the SS-A/Ro ribonucleoprotein
(TROVE2), H3.3 core histone protein (H3F3B), glutamate ionotropic receptor NMDA type subunit
2A/B (GRIN2A/B), interleukin 10 (IL10), and human leukocyte antigen (HLA). Data source: Diana
Lab tools (DIANA TOOLS-Reverse Mirpath (grnet.gr) (last accessed on 20 December 2022).
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KEGG pathway enrichment analysis for MIR27A showed significant implications of
its targets in extracellular matrix–receptor interaction, Hippo signaling, and transforming
growth factor-beta signaling pathways (Figure 9).
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Figure 9. Functional enrichment analysis of MIR27A target genes. The color key bar indicates the log
(p-value) of the enrichment analysis. The direction towards the red color indicates more significance,
as the log p < 0.05 is equivalent to p < −1.30. The significant pathways that may play a role in SLE
etiopathology are marked with a red box. Data source: Diana lab tools (Last accessed on 20 December
2022). ECM: extracellular matrix; hsa: homo Sapiens = human; TGF: transforming growth factor.

4. Discussion

Recent evidence suggests that miRNA variants are associated with susceptibility to
several autoimmune diseases, including SLE [74]. For example, the “rs3746444” variant of
miR-499 has been associated with an increased risk of SLE [75], rheumatoid arthritis [76],
and other autoimmune diseases [77,78]. The miR-146a “rs57095329” variant was associated
with increased SLE risk in East Asian regions [74,79,80]. The miR-149 rs2292832 polymor-
phism may confer susceptibility to Kawasaki disease [81], allergic rhinitis, and comorbid
asthma in Chinese children [82]. The association of the miRNA-34a rs2666433 variant with
SLE susceptibility and the miR-17 rs4284505 variant with susceptibility and severity of SLE
were also evident in the present cohort [2,61]. These SNPs can impact biogenesis and/or
dysregulate miRNAs, with a subsequent influence on immune development/differentiation
or response, leading to loss of immune tolerance and autoimmunity [83,84].

The role of miR-27a in SLE has been studied extensively in recent years. Studies have
shown that circulating plasma miR-27a is dysregulated in SLE patients compared to healthy
controls, with an area under the curve (AUC) = 0.948, diagnostic sensitivity = 0.818, and
specificity = 1.000 [34]. Furthermore, miR-27a is involved in the regulation of genes associ-
ated with SLE, such as interferon (IFN)-γ [85], interleukin (IL)-10 [86], and transforming
growth factor (TGF)-β [87,88], among others. MiR-27a regulates these genes by binding to
their 3′UTR and inhibiting their expression. The role of miR-27a in SLE has been further
investigated in the peripheral blood mononuclear cells and natural killer cells of patients
with SLE compared to controls [26]. In this latter study, the authors identified aberrant ex-
pression of miR27a in the isolated cells and found that forcing miR27a expression enhances
NKG2D (natural killer activating cell receptor) mRNA expression and could have a role in
SLE etiopathology.

Our in silico analysis confirmed the implication of miR-27a in the SLE pathway by
targeting several genes coding for variable histone family proteins, RNA-binding proteins,
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and several immune-response-related proteins, such as HLA class II histocompatibility
antigen and CD28, which can modulate antigen processing and presentation by immune
cells, autoantigen production, and the clearance mechanism, as depicted in Figure 8.
Furthermore, enrichment analysis of miR-27a target genes shows significant involvement
of miR-27a in potential pathways that may play a role in SLE etiopathology, such as
extracellular matrix–receptor interaction [89], Hippo signaling [90], and transforming
growth factor-beta signaling pathways [91].

In addition to its role in SLE, miR-27a has also been found to be involved in other
autoimmune diseases, such as rheumatoid arthritis [92] and systemic sclerosis [93]. In
a placebo-controlled trial, it was shown that miR-27a is a potential biomarker for the
favorable response to methotrexate/disease-modifying antirheumatic drug combination
therapy in patients with rheumatoid arthritis [94].

In the present study, we found that the homozygous A/A and G/G genotypes of
the MIR27A variant are more common in individuals with SLE than in healthy indi-
viduals and that the G/G genotype was associated with an increased risk of develop-
ing SLE in the recessive model. In contrast, the G/A genotype revealed a protective
effect against the development of SLE. The exact mechanism by which the MIR27A poly-
morphism could be associated with the risk of developing SLE is not yet known, but
it can be speculated to affect the expression level of mature microRNA, which can im-
pact the target genes involved in the immune system. By running the HaploReg v3
tool (https://pubs.broadinstitute.org/mammals/haploreg/haploreg_v3.phpto) (last ac-
cessed on 20 December 2022) [95] to predict the effect of the studied variant, we found
that this SNP can disrupt the Brachyury (a T-box transcription factor T) and Eomes (a
T-box transcription factor), as well as HNF4 (Hepatocyte Nuclear Factor 4), DNA mo-
tifs. Brachyury is involved in transcription repression by RNA polymerase II (https:
//www.ncbi.nlm.nih.gov/gene/20997) is a generated (last accessed 20 December 2022),
and Eomes is implicated in CD8 T-cell/natural killer cell differentiation [96] and plays a
substantial role in regulating cytotoxic function/development and survival of immune
cells [97].

Previous evidence also explained the role of the MIR27A rs11671784 variant in other
diseases by influencing the miR-27a maturation and/or expression levels. For example,
Katayama et al. reported that this variant can downregulate mature miR-27a with subsequent
increased expression of its target genes in bladder cancer cells [66]. Others suggested that it
can impact the processing efficiency of miR-27a [98]. Interestingly, Strafella and colleagues
computed the minimum free energy (MFE) of a miR-27a hairpin structure, including the
variant A allele, which generated a secondary structure with an “MFE = −38.76 Kcal/mol”,
whereas the structure with the G allele showed an “MFE = −38.24 Kcal/mol” [62]. They
concluded that the rs11671784 polymorphism located in the terminal loop of the pre-miR27a
might influence the expression levels of mature miR-27a without substantially, impairing
its processing and binding affinity with target mRNAs [62]. All these findings support the
significant association of the studied variant with SLE susceptibility/development reported
in the present study. Further mechanistic research is needed to understand the precise
implications of this polymorphism for SLE.

Although the studied variant did not show significant associations with most clin-
icolaboratory characteristics of the patients, it was associated with musculoskeletal and
mucocutaneous manifestations and showed borderline associations with platelet and white
blood cell counts. Interestingly, miRNA 27a has been found to play a vital role in osteo-
genesis, and its expression is downregulated upon osteogenic differentiation [99]. The
latter investigators revealed that grancalcin, “a regulator of osteogenesis” in human mes-
enchymal stem cells, is a target of miR-27a. Furthermore, the reported impact of miR-27a
on the overall regulation of “matrix metalloprotease-13” and “insulin-like growth factor
binding protein”, two genes involved in osteoarthritis pathophysiology and some skin
disorders [25,27,28,31,100,101], could partially support the association of this variant with
the identified clinical manifestations in the present SLE cohort. Additionally, miR-27a

https://pubs.broadinstitute.org/mammals/haploreg/haploreg_v3.phpto
https://www.ncbi.nlm.nih.gov/gene/20997
https://www.ncbi.nlm.nih.gov/gene/20997
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has been found to attenuate the expression of a critical regulator of hematopoiesis, the
“RUNX1 transcription factor”, in K562 cells, which could impact megakaryopoiesis and
differentiation [102]. This could partly explain the association of the studied variant with
the hematological findings reported in the present study.

It is worth noting that besides the studied MIR27A rs11671784 variant, several ge-
netic/epigenetic and environmental factors also participate in SLE susceptibility. Fur-
thermore, the relatively small sample size, the cross-sectional analysis of hospital-based
selected cohorts, and the lack of experimental studies to elucidate how this variant might
impact the disease could all limit this work. In this sense, large-scale longitudinal studies
on multiethnic populations supported with functional analyses are recommended.

5. Conclusions

We are the first to provide evidence that the MIR27a rs11671784 genetic variant could
be associated with SLE susceptibility/risk in the studied population. The homozygous
A/A and G/G genotypes of the miR-27a variant were more common in patients with SLE
than in healthy individuals, and the G/G genotype was associated with increased SLE
risk in the recessive model. Nevertheless, the studied variant did not show significant
associations with most clinical and laboratory characteristics of the patients, although there
was a significant association with musculoskeletal and mucocutaneous manifestations. The
potential impact of this variant on gene stability and processing with subsequent influence
on target genes related to SLE etiopathology requires future mechanistic validation studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life13030701/s1, Table S1: Biochemical characteristics of patients with systemic lupus ery-
thematosus, Table S2: TargetScan predicted interactions for hsa-miR-27a-3p in the systemic lupus
erythematosus (hsa05322) pathway.
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